AEM 2: Figures (6 pp. 13 in total) supplementing Szentmihályi et al. Vol. IV, 328-335

Fig. 3 GC chromatogram of essential oil of *Salvia officinalis* leaf. The numbering is equal to numbering in Table 2, AEM1.

Fig. 4 GC chromatogram of essential oil of *Salvia officinalis* calyx-leaf. The numbering is equal to numbering in Table 2, AEM1.

Fig. 5 GC chromatogram of essential oil of *Salvia officinalis* petal. The numbering is equal to numbering in Table 2, AEM1.

Fig. 7 GC chromatograms of essential oil of *Salvia sclarea* calyx-leaf. Numbering: 1 myrcene, 2 limonene, 4 eucalyptol, 5 linalool, 6 α -terpineol, 7 linalyl acetate, 13 γ -humulene, 14 α -farnesene.

Fig. 8 GC chromatograms of essential oil of *Salvia sclarea* petals. Numbering: 1 myrcene, 2 limonene, 4 eucalyptol, 5 linalool, 6 α -terpineol, 7 linalyl acetate, 13 γ -humulene, 14 α -farnesene.

Fig. 9 GC-MS chromatogram of *Salvia sclarea* essential oil. Number 24 = sclareol.

Fig. 10 GC-MS chromatogram of *Salvia sclarea* essential oil obtained by steam distillation.

Fig. 11 Transfer of calcium and magnesium in percentage of initial oil (conditions: from pH=5.5 to pH= 7.5, 37°C).

Fig. 12 Yield of extraction as a function of solvent-seed ratio (conditions: 100 bar, 25°C).

Extract (g/100g seed)

		Solvent	P(bar)	T(^o C)
Extract v	•	CO2	200	35
	+	CO ₂	300	35
	V	C ₃ H _B	50	25
		C_3H_8	80	25
	×	C ₃ H ₈ +CO ₂	100	25
Essential oil ⊀	0	C 0 ₂₋	200-300	35
	¥	$C_3 H_8$	50;80	25
	∠	C3H8+CO2	100	25

Fig. 13 Yield of extraction as a function of extraction degree.

Figs. 14, 15 Volatile oil spectrum of supercritical fluid extract (250 bar, 25°C) (14, left), and obtained by distillation (15, right). Components: 1 limonene, 2 D-linalool, 3 geranyl acetate, 4 linalyl acetate.