Fig. 3 GC chromatogram of essential oil of Salvia officinalis leaf. The numbering is equal to numbering in Table 2, AEM1.

Fig. 4 GC chromatogram of essential oil of Salvia officinalis calyx-leaf. The numbering is equal to numbering in Table 2, AEM1.
Fig. 5 GC chromatogram of essential oil of Salvia officinalis petal. The numbering is equal to numbering in Table 2, AEM1.

Fig. 6 GC chromatograms of essential oil of Salvia sclarea leaf. Numbering: 1 myrcene, 2 limonene, 4 eucalyptol, 5 linalool, 6 α-terpineol, 7 linalyl acetate, 13 γ-humulene, 14 α-farnesene.
Fig. 7 GC chromatograms of essential oil of *Salvia sclarea* calyx-leaf. Numbering: 1 myrcene, 2 limonene, 4 eucalyptol, 5 linalool, 6 α-terpineol, 7 linalyl acetate, 13 γ-humulene, 14 α-farnesene.

Fig. 8 GC chromatograms of essential oil of *Salvia sclarea* petals. Numbering: 1 myrcene, 2 limonene, 4 eucalyptol, 5 linalool, 6 α-terpineol, 7 linalyl acetate, 13 γ-humulene, 14 α-farnesene.
Fig. 9 GC-MS chromatogram of *Salvia sclarea* essential oil. Number 24 = sclareol.

Fig. 10 GC-MS chromatogram of *Salvia sclarea* essential oil obtained by steam distillation.
Fig. 11 Transfer of calcium and magnesium in percentage of initial oil (conditions: from pH=5.5 to pH= 7.5, 37°C).

Fig. 12 Yield of extraction as a function of solvent-seed ratio (conditions: 100 bar, 25°C).
**Fig. 13** Yield of extraction as a function of extraction degree.

**Figs. 14, 15** Volatile oil spectrum of supercritical fluid extract (250 bar, 25°C) (14, left), and obtained by distillation (15, right). Components: 1 limonene, 2 D-linalool, 3 geranyl acetate, 4 linalyl acetate.