
 
Received: 6 March, 2007. Accepted: 23 April, 2007. Invited Mini-Review 

Advances in Gene, Molecular and Cell Therapy ©2007 Global Science Books 

 
Myostatin: 

A Negative Regulator of Muscle Development and Maintenance 
 

Dominique Joulia-Ekaza1 • Gérard Cabello2* 

                                                                                                    
1 UFR Sciences de la Nature, Laboratoire de Physiologie Animale et Pharmacologie, Université d’Abobo-Adjamé, Abidjan, Ivory Coast 

2 INRA, UMR866 Différenciation cellulaire et croissance, 2 place Viala, F-34060 Montpellier, France; Université Montpellier 2, F-34060 Montpellier, France; Université 
Montpellier 1, F-34060 Montpellier, France 

Corresponding author: * cabello@supagro.inra.fr 
                                                                                                    

ABSTRACT 
Myostatin is a member of the TGF� family which plays a major role in negative regulation of muscle development. Not only do mstn-/- 
mice display a dramatic increase in skeletal muscle mass, cattle harboring loss of function mutations in the myostatin gene also exhibit 
muscle overdevelopment associated to a shift in the contractile and metabolic features of muscle fibers. The occurrence of such mutations 
associated to increased muscle mass in humans has also been reported. Recent data clearly suggest that myostatin is also involved in 
muscle tissue maintenance in adults, in particular by activating pathways leading to proteolysis and satellite cell activity. As myostatin 
expression generally increases during muscle atrophy, some promising attempts have been made to improve the behavior of some muscle 
pathologies, such as myopathies, by targeting myostatin activity. These attempts have opened the way for novel pharmacological 
strategies focused on skeletal muscle diseases. Here we review the physiopathological consequences of changes in myostatin expression 
and their clinical interest. We also briefly address the myostatin molecular pathway by describing the knowledge which makes it possible 
to test the efficiency of pharmacological inhibition of this growth factor activity in muscle pathologies. 
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INTRODUCTION 
 
Muscle development is the result of complex processes in-
cluding myoblast proliferation, fusion into multinucleated 
myotubes and acquisition of contractile properties. These 
events are mainly regulated by muscle-specific basic Helix 
Loop Helix transcription factors, MyoD, Myf5, MRF4 and 
Myogenin. However, myostatin cloning in 1997 revealed 
the occurrence of a powerful negative regulator of muscle 
growth by the demonstration that myostatin gene knockout 
in mice leads to a dramatic and widespread increase in ske-
letal muscle mass (McPherron et al. 1997). Myostatin, also 
called GDF8, belongs to the TGF� family and harbors the 
structural features of all members of this family. Natural 
myostatin mutations associated to the mh locus have been 
discovered in some cattle breeds (double-muscled) charac-
terized by an important increase in skeletal muscle mass 
due to myofiber hyperplasia (Grobet et al. 1997; Kambadur 
et al. 1997; McPherron and Lee 1997; Smith et al. 1997). 
More recently, a mutation leading to a mis-splicing of a 
108-base pair of the myostatin mRNA sequence has been 

identified in humans. This mutation leads to the synthesis of 
a severely truncated protein and is associated to muscle 
hypertrophy (Schuelke et al. 2004). Moreover, several stu-
dies have established that myostatin not only regulates mus-
cle growth during development but is also able to modulate 
muscle regeneration and atrophy. As a consequence, at-
tempts to modulate myostatin expression focus on a major 
interest aimed at developing new pharmacological strategies 
for treatment of diseases involving muscle wasting. 
 
REGULATION OF MYOSTATIN EXPRESSION 
 
In developing mice, myostatin is essentially expressed in 
skeletal muscle, as early as 9.5 days post coitum. However, 
in adult animals, although it is predominantly expressed in 
skeletal muscle, several studies have also detected myosta-
tin expression in a range of other tissues, such as the mam-
mary gland, eyes, gill filaments, spleen, ovaries, gut and 
brain. In addition, myostatin protein has also been detected 
in serum, thus indicating that this growth factor could target 
different tissues (Gonzalez Cadavid et al. 1998; Ji et al. 
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1998; Ostbye et al. 2001; Rodgers et al. 2001; Maccatrozzo 
et al. 2001). In agreement with this possibility, fat pad 
weight and lipid content significantly decrease in 12- or 
32–week-old myostatin-null mice (Lin et al. 2002; McPher-
ron and Lee 2002). Moreover, recent data also suggest that 
myostatin could be involved in early osteogenic processes 
(Hamrick et al. 2007). 

Analysis of the highly conserved 5�-upstream regula-
tory region of the myostatin gene reveals the presence of 
several E boxes allowing MyoD-specific binding. This ob-
servation could explain the fairly muscle-specific pattern of 
myostatin expression. In addition, it suggests that MyoD 
control of myoblast withdrawal from the cell cycle could 
involve myostatin expression (Spiller et al. 2002). In paral-
lel, responsive elements for nuclear receptors have also 
been identified (reviewed in Joulia-Ekaza and Cabello 
2006), in particular for glucocorticoid receptors, suggesting 
that muscle wasting associated to treatments by this hor-
mone or its derivatives could result from activation of myo-
statin expression (see below). 

Interestingly, several FoxO boxes have also been cha-
racterized in the 5�-upstream regulatory region of the mouse 
myostatin gene, in agreement with the observation that 
FoxO1 expression stimulates myostatin promoter activity 
(Allen et al. 2006). This factor, expressed in skeletal muscle, 

belongs to the FoxO transcription factor family. Strikingly, 
FoxO1 seems to be involved in muscle protein degradation 
through activation of the ubiquitin ligase pathway during 
muscle atrophy. 

Overall, it appears that myostatin expression is regula-
ted by transcription factors involved in cell cycle with-
drawal (MyoD), proteolysis (FoxO1) and muscle wasting 
(glucocorticoid receptor), thus suggesting that it probably 
plays an important role in muscle development and in mus-
cle regeneration and/or atrophy. 
 
THE MYOSTATIN PATHWAY 
 
Myostatin is synthesized as a 376 amino-acid precursor 
protein, containing a signal sequence, a N-terminal propep-
tide domain, a proteolytic processing site and a C-terminal 
domain containing the conserved pattern of 9 cysteine resi-
dues – the cysteine knot – essential for TGF� family mem-
bers activity (McPherron et al. 1997). Proteolytic proces-
sing gives rise to the mature myostatin active in the form of 
a disulfide-linked dimer. Binding of myostatin to several 
proteins able to modulate its activation, secretion or re-
ceptor binding is observed in serum or in skeletal muscle 
(Table 1) (Thies et al. 2001; Hill et al. 2002; Nicholas et al. 
2002; Hill et al. 2003; Wang et al. 2003; Amthor et al. 
2004). 

Members of the TGF� family of growth factors exert 
their numerous effects through a family of serine-threonine 
kinase transmembrane heterotetrameric receptors. In the 
absence of a ligand, type I (RI) and type II (RII) receptors 
homodimerize at the cell surface. Binding of the active 
ligand to this dimer enhances transphophorylation of RI by 
RII in the GS sequence of the intracytoplasmic domain (Fig. 
1). Expression of a dominant negative form of Act RIIB 
(Activin B type II Receptor) in mice mimics myostatin 
gene knockout in increased muscle mass, leading to the 
conclusion that the in vivo myostatin pathway probably in-
volves ActRIIB receptors (Lee and Mcpherron 2001). In 
agreement with this possibility, in vitro binding studies 
have established that the active form of myostatin actually 
binds to ActRIIB. In turn, this receptor recruits ALK4 or 
ALK5 type I receptors to mediate myostatin signaling 
(Rebbapragada et al. 2003) (Table 2). These events are 
followed by phosphorylation of Smad 2 and Smad 3, indu-
cing their translocation to the nucleus and their binding to 
specific DNA sequences leading to changes in the expres-
sion of targeted genes. The Co-Smad Smad 4 has been 
shown to potentiate this signaling, whereas Smad 7 and 
Smurf 1 play an inhibitory role. In addition, the inhibition 
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Fig. 1 Structure of the TGF beta family of transmembrane receptors. 
Binding of myostatin to type II receptors induces recruitment of type I 
receptors, transphosphorylation of RI by RII at the GS (Gly-Ser) rich 
sequence, leading to activation of Smad2/Smad3 transcription factors. 

Table 1 Myostatin binding proteins. 
Localisation Binding molecule Myostatin form bound Consequence of binding 
Serum Myostatin propeptide Mature myostatin Inhibits Myostatin receptor binding 
Serum GASP1 Mature myostatin and myostatin propeptide Inhibits Myostatin activation 
Serum FLRG Mature myostatin Inhibits Myostatin receptor binding 
Skeletal muscle hSGT Myostatin N-term signal peptide region Inhibits Myostatin secretion and activation 
Skeletal muscle Titin cap Mature myostatin Inhibits Myostatin latent complex formation and secretion
Skeletal muscle Follistatin Mature myostatin Inhibits Myostatin receptor binding 

 

Table 2 Elements of the TGF� ligand family pathway. 
Ligand Type II receptor Type I receptor R-Smad 
�ctivins 
Myostatin 

�ctRII 
�ctRIIB 

ActRIB/�LK4 Smad2 
Smad3 
Smad2 
Smad3 

 
 
TGF� 

 
 
T�RII 

 
T�RI/�LK5 
�LK1 
ActRI/�LK2 

Smad1 
Smad5 
Smad8 

 
BMPs 
GDFs 

BMPRII 
ActRII 
�ctRIIB 

BMPRIA/�LK3 
BMPRIB/�LK6 
ActRI/�LK2 

Smad1 
Smad5 
Smad8 
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of Smad 7 expression by myostatin establishes a negative 
regulatory feedback loop setting up fine-tuning of the cel-
lular influence of this growth factor (Zhu et al. 2004). 
 
MOLECULAR BASIS OF MYOGENIC MYOSTATIN 
INFLUENCE 
 
At cell level, myostatin overexpression or addition of re-
combinant myostatin in culture media reduces myoblast 
proliferation by inducing their accumulation in the G0/G1 
or G2 phases of the cell cycle. In addition, myoblasts fail 
to fuse into myotubes when exposed to differentiating con-
ditions, a deficiency related to a general decrease in the ex-
pression of differentiation markers. Lastly, the myoblast 
apoptotic rate is inhibited by myostatin in both growing 
and differentiating conditions (Thomas et al. 2000; Rios et 
al. 2001, 2002; Joulia et al. 2003). In vitro studies in-
cluding myostatin depletion by an antisens strategy, a more 
physiological approach, have led to the conclusion that 
myogenin and p21 are probably the major target genes of 
myostatin (Joulia et al. 2003). The latter data satisfactorily 
explain the accumulation of myoblasts in particular phases 
of the cell cycle (p21) and impaired differentiation (myo-
genin). Overall, all these studies clearly indicate that myo-
statin is involved in important processes of early events 
involved in muscle development by controlling prolifer-
ation and differentiation of precursor cells (myoblasts or 
satellite cells). 

Furthermore, recent data clearly suggest that myostatin 
could also be involved in muscle tissue maintenance pro-
cesses. In particular, McFarlane et al. (2006) have reported 
that myostatin positively influences expression of FoxO1, a 
transcription factor stimulating expression of ubiquitin-
proteasome components, leading to protein degradation. 
On the other hand, as mentioned above, FoxO1 can en-
hance myostatin promoter activity (Allen et al. 2006). Con-
sequently, activation of such a positive regulatory loop 
could induce an important proteolytic process able to ex-
plain the relationship between high myostatin expression 
levels and the muscle wasting observed in some chronic 
pathologies, as discussed below. Therefore, these data 
clearly suggest that myostatin is not only involved in mus-
cle development, but also in the processes controlling adult 
skeletal muscle maintenance. 
 
IN VIVO ABROGATION OR REDUCTION OF 
MYOSTATIN ACTIVITY STRONGLY INFLUENCES 
SKELETAL MUSCLE MASS 
 
Since 1997, the development of myostatin gene-null mice 
has provided striking data concerning muscle growth. 
These mice are about 30% larger than heterozygous and 
wild-type littermates at 3-6 months of age. This over-
growth is essentially due to a widespread increase in ske-
letal muscle mass, with individual muscles weighing about 
2-3 times more than those in wild-type littermates (Mc-
Pherron et al. 1997). Subsequently, several attempts were 
made to inhibit the myostatin pathway without total sup-
pression of its expression. Two types of genetically-modi-
fied mouse models were generated. In one approach, a 
myostatin protein lacking its normal cleavage site was 
overexpressed; this acts as a dominant negative form of the 
growth factor which can prevent formation of the active 
myostatin dimer (dnMS mice) (Zhu et al. 2000). In the 
other approach, mice overexpressed the myostatin prodo-
main under the control of a myosin light chain promoter, 
with the aim of inhibiting binding of myostatin to its recep-
tor (Yang et al. 2001). Because myostatin activity was only 
partially inhibited in these models, phenotypic analyses es-
tablished in both cases a significant increase in skeletal 
muscle mass, though considerably lower than that recorded 
in myostatin-null mice. 

Interestingly, myostatin overexpression in adult rat 
muscle by electrotransfert led to a 10 to 20% reduction in 
muscle mass (Durieux et al. 1997). Reciprocal results were 

reported using an inducible tamoxifen myostatin invalida-
tion in adult mice (Welle et al. 2007), thus demonstrating 
that this growth factor is not only involved in the early pro-
cesses of muscle development, but also in the regulation of 
muscle mass increase and/or maintenance in adults. In an-
other approach not using transgenesis, changes in myostatin 
availability were made by injections of myostatin-blocking 
antibodies in adult mice. This procedure also induced an in-
crease in skeletal muscle size of 13 to 30%. Moreover, 
treatment with this antibody in adults did not induce side 
effects such as size and histological features of other organs 
or serum parameters (Whittemore et al. 2003). Interestingly, 
this last experiment established the possibility of inhibiting 
the negative myogenic influence of myostatin in vivo by 
means other than transgenesis, thus opening the way to new 
therapeutic strategies for pathologies involving muscle 
wasting. 

Taken all together, these in vivo studies clearly estab-
lished that absence of myostatin or reduction of its activity 
leads to enhanced muscle growth due to skeletal muscle 
fiber hypertrophy, in some cases associated to hyperplasia, 
depending on the experimental approach (McPherron et al. 
1997; Zhu et al. 2000; Lee and McPherron 2001; Yang et 
al. 2001). Reciprocal results were obtained after muscle-
specific overexpression of myostatin, leading to a signif-
icant reduction in the cross-sectional area of muscle fibers 
and in the number of nuclei per fiber (Reisz-Porszasz et al. 
2003). 

After characterization of several mutations occurring in 
the myostatin gene in double-muscled cattle inducing about 
a 20% increase in skeletal muscle mass associated to hyper-
plasia, identification of a natural mutation in a young boy 
exhibiting muscle hypertrophy at birth once more focused 
attention on myostatin. This mutation in the myostatin gene 
leads to the synthesis of a severely truncated protein, due to 
the appearance of a premature stop codon, the mutated 
mRNA accounting for 68.8% of the total amount of myo-
statin mRNA. Phenotypic observations revealed that de-
creased myostatin levels in humans induce a phenotype 
very close to that observed in mstn-/- mice, consisting of a 
strong increase in skeletal muscle mass associated to a de-
crease in fat accumulation (Schuelke et al. 2004). 
 
INTER-RELATIONS BETWEEN MYOSTATIN 
EXPRESSION LEVELS AND SKELETAL MUSCLE 
PATHOLOGIES 
 
Myostatin and glucocorticoid-induced muscle 
atrophy 
 
Glucocorticoids are widely used in the treatment of chronic 
inflammatory illnesses, and administration of high doses 
generally leads to muscular atrophy in humans and animals; 
similarly, hypercortisolism is involved in muscle atrophy 
observed in Cushing’s disease (Odebra et al. 1983; Dar-
devet et al. 1995; Auclair et al. 1997). As discussed above, 
the presence of glucocorticoid response elements in the 
myostatin promoter suggests that glucocorticoids could in-
fluence myostatin expression. In agreement with this possi-
bility, administration of dexamethasone promotes a dose-
dependent decrease in total body weight and skeletal mus-
cle mass in rats, associated with dose-dependent upregula-
tion of both myostatin mRNA and protein in muscle (Ma et 
al. 2003). Reciprocally, mstn-/- mice appear to be protected 
from glucocorticoid-induced muscle atrophy when com-
pared to wild-type animals (Gilson et al. 2007). Along 
these lines, it has been recently shown in dexamethasone-
treated rats that glutamine ingestion reduces glucocorticoid 
stimulation of myostatin expression and, consequently re-
duces muscle mass and weight loss (Salehian et al. 2006). 
All these data clearly indicate an important involvement of 
myostatin in glucocorticoid-induced muscle wasting. 
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Changes in myostatin expression during muscle 
wasting 
 
Adult muscle growth is the result of recruitment of quies-
cent muscle cells – satellite cells – located along the fibers. 
Satellite cell activation induces their proliferation and 
fusion with the muscle fibers, providing them with more 
nuclei and consequently additional potentiality to synthe-
size muscle proteins. Numerous studies tend to conclude 
that myostatin expression levels are related to muscle was-
ting, thus suggesting that myostatin could target not only 
myoblasts during early myogenic processes, but also satel-
lite cells by inhibiting their proliferation rate (Carlson et al. 
1999; Wehling et al. 2000; McCroskery et al. 2003). This 
raises the possibility that the dramatic increase in muscle 
mass observed in myostatin-null mice could be due in part 
to stimulation of satellite cell activity. In agreement with 
this possibility, Dasarathy et al. (2004) have reported im-
pairment of satellite cell proliferation and differentiation in 
relation to elevated levels of myostatin in a rat model of 
cirrhosis (portacaval anastamosis). Indeed, normal mice 
immobilization leading to muscle atrophy induces a signi-
ficant reversible rise in muscle myostatin expression (Zim-
mers et al. 2002). Moreover, in chronic pathologies such as 
HIV infection in humans, a positive correlation has been 
established between serum levels of myostatin and the 
extent of muscle atrophy (Gonzalez-Cadavid et al. 1998). 
These data suggest that increased myostatin levels may 
contribute to muscle wasting during HIV infection or im-
mobilization. Furthermore, a decrease in skeletal muscle 
mass has been observed in nude mice bearing myostatin-
expressing tumors (Zimmers et al. 2002). Therefore, myo-
statin could be involved in the muscle loss encountered in 
other pathologies. However, although prolonged absence 
of myostatin in mice reduced aging-induced sarcopenia 
(Siriett et al. 2006), contrasting data have been published 
concerning myostatin levels in aging-induced sarcopenia in 
humans or rodents. (Kawada et al. 2001; Welle et al. 2002; 
Bauman et al. 2003), and the eventuality of influence by 
myostatin on these aging processes should be studied fur-
ther. 

In cattle, myostatin expression appears to decline fol-
lowing muscle injury, mRNA levels being reduced by 
82.6% at day 5 after injury, and restored by day 10, in 
good correlation with myostatin protein levels. On the op-
posite, expression of the four muscle regulatory factors is 
induced while myostatin levels decrease, thus allowing 
muscle regeneration (Shibata et al. 2006). Regeneration ef-
ficiency in mstn-/- mice can be tested when these animals 
suffer muscle injury. In fact, lack of myostatin actually 
seems to improve their muscle repair processes when com-
pared to wild-type littermates. Furthermore, in vitro experi-
ments have established greater proliferation and earlier 
differentiation rates in mstn-/- satellite cells, underlining 
the importance of myostatin in muscle repair processes 
(McCroskery et al. 2005; Wagner et al. 2005). 

All these data suggest that high myostatin levels could 
reduce postnatal growth and regeneration processes by in-
hibiting satellite cell activation. Furthermore, the regula-
tory loop occurring between myostatin and FoxO, leading 
to increased proteolysis, probably plays an important role 
in muscle wasting of different origins. 
 
Myostatin: a promising therapeutic target in 
muscle dystrophies? 
 
The strong influence of myostatin on muscle atrophy and 
regeneration raises the possibility of a new therapeutic 
target in muscle diseases such as muscle dystrophies. Seve-
ral approaches have been developed in an attempt to im-
prove mdx mice phenotype. These mice exhibit diaphragm 
rounds of degeneration followed by incomplete regenera-
tion, which leads to extensive fibrosis and fatty replace-
ment, similar to those encountered in human Duchenne and 
Becker muscular dystrophies. These approaches consist ei-

ther of reducing myostatin activity – by injections of myo-
statin-blocking antibody or propeptide or transplantation of 
dnActRIIB-expressing myoblasts – or by establishing mstn-
/-mdx mice. All these attempts have led to attenuation of 
the mdx phenotype, but some histological abnormalities 
typical of mdx mice have still been detected (Bogdanovitch 
et al. 2002; Wagner et al. 2002; Bogdanovitch et al. 2005; 
Benabdallah et al. 2005). Muscle mass and regeneration are 
also improved in the limb-girdle muscular dystrophy mouse 
model (scgd-/-), following injections of myostatin-blocking 
antibody, combined with a reduction in the extent of 
fibrosis. However, loss of myostatin activity in the late 
stages of the pathology does not provide positive results 
(Parsons et al. 2006). An innovative approach has also been 
developed in the limb-girdle muscular dystrophy 1C 
(LGMD1C) mouse model with intraperitoneal injections of 
the soluble myostatin receptor form (ActRIIB-Fc) (Ohsawa 
et al. 2006). This procedure enables interference with myo-
statin signaling reflected by the inhibition of the expression 
levels of p-Smad2 and p21. As a consequence, mice exhibit 
a significant increase in the myofiber cross-sectional area 
and improvement in muscle atrophy. Nevertheless, since 
ActRIIB is targetted by both myostatin and other growth 
factors belonging to the TGF� family, injection of 
ActRIIB-Fc is likely to inhibit not only myostatin signaling 
but signaling of these factors as well (Table 2). This means 
the exact part played by myostatin inactivation in this im-
provement remains to be established, as does the influence 
of interference with ActRIIB signaling over time, and con-
sideration given to potential side effects. To conclude, ge-
neration of double-deficient dyw/dyw;mstn-/- mice for the 
purposes of ameliorating laminin-deficient congenital mus-
cular dystrophy does not improve all aspects of muscle 
pathology, probably due to the absence of laminin �2; 
moreover it leads to important side effects, particularly an 
increase in pre-weaning mortality (Li et al. 2005). 
 
CONCLUSIONS 
 
Since its identification in 1997, myostatin appears to be a 
crucial regulator of skeletal muscle growth and maintenance. 
Reducing in vivo myostatin expression or activity promotes 
skeletal muscle growth or enhances muscle regeneration, 
suggesting a potential benefit for the muscle wasting en-
countered in some human pathologies. Characterization of 
molecules able to bind to myostatin has provided pharma-
cological targets to inhibit myostatin signaling without dis-
ruption of the myostatin gene, opening promising new pros-
pects for treatment of human muscle pathologies. Recently, 
it has been suggested that myostatin-treated adipocytes posi-
tively influence metabolism, at least in part through in-
creased glucose oxidation, thereby improving insulin sensi-
tivity and resistance to obesity (Feldman et al. 2006). As a 
consequence, in addition to treatment of muscle wasting, 
targeted myostatin exposure may be of therapeutic benefit in 
human metabolic diseases. 
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