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ABSTRACT 
Lemna spp. of the family Lemnaceae have been widely studied for their potential application in phytoremediation. A few Lemna species 
are already being adopted to enhance natural attenuation for both organic and inorganic pollution in polishing ponds of wastewater 
treatment facilities, and constructed wetland designed for decontamination of metal pollution. In view of this growing interest, we review 
in this article the potency and limitation of Lemna species as effective phytoremediation agents. We find that Lemna species have many 
unique properties ideal for phytoremediation plants species: they are have fast growth and primary production; high bioaccumulation 
capacity; ability to transform or degrade contaminants; ability to regulate chemical speciation and bioavailability of some contaminant in 
their milieu; resilient to extreme contaminant concentration; and can be applied on multiple pollutants simultaneously. In addition, they 
have properties significant for public health likewise livestock production and aquaculture, and ecological function. However, we also 
find a few important limitations of Lemna as an ideal phytoremediation agent. The plants are small in size and floating in nature. Hence, 
they are easily blown off the water surface resulting in transferring contamination to uncontaminated sites because Lemna biomass 
degrades easily thereby readily releasing the contaminant back into the water pathway. This also results in both low sedimentation and 
contribution to humic material in the benthic. Further, Lemna has very high wet-dry biomass ratios which may be deceiving to believe that 
they have high bioaccumulation on one hand, while on the other, the energy required to dewater the biomass may be equivalent to 
conventional treatment plants. Nevertheless, Lemna species remain one of excellent plants for studying process in phytoremediation, and 
a good phytoextraction agent for application in shallow and small polishing ponds. 
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INTRODUCTION 
 
The legacy of rapid urbanization, industrialization, fertilizer 

and pesticide use has resulted in major pollution problems 
in both terrestrial and aquatic environments. In response, 
conventional remediation systems based on high physical 
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and chemical engineering approaches have been developed 
and applied to avert or restore polluted sites (Schnoor et al. 
1995; Schnoor 1997; Singh et al. 2003; Goulet et al. 2005; 
Pilon-Smits 2005). Much as these conventional remediation 
systems are efficient, they are sparsely adopted because of 
some economical and technical limitations. Generally, the 
cost of establishment and running deter their use and meet-
ing the demand particularly in countries with a weak econo-
my. Logical, this high cost technology can neither be ap-
plied justifiably where: (1) the discharge is abruptly high 
for a short time but the entire average load is relatively 
small, (2) the discharge is very low but long-term (entire 
load of medium range) nor (3) the discharge is continuously 
decreasing over a long duration (Dudel et al. 2001, 2004; 
Mkandawire et al. 2004a). Thus conventional remediation 
approaches are best for circumstances of high pollutant dis-
charge like in industrial, mining and domestic wastewater. 
Recently, it is evident that durability restoration and long-
term contamination control in conventional remediation is 
questionable because in the long run the pollution problem 
is only suspended or transferring from one site to another. 

In view of this, there has been growing interest in the 
search for alternative remediation technology that is effect-
tive, durable and also cost-effective. One such technology 
is phytoremediation, the use of plants and associated mi-
crobes for environmental cleanup. The technology is alle-
gedly cost-effective because it is natural energy driven and 
requires minimal capital and running costs. It is a non-inva-
sive alternative or complementary technology for engineer-
ing-based remediation methods (Salt et al. 1995; Schnoor et 
al. 1995; Adler 1996; Miller 1996; Schnoor 1997; Sadow-
sky 1998; Pilon-Smits and Pilon 2002; Singh et al. 2003; 
Pilon-Smits 2005). It is a cutting edge area of research in 
the contemporary field of environmental and remediation 
technology. Earlier research in phytoremediation focused 
on screening plants species for phytoremediation potential. 
The focus is drifting towards engineering the phytoremedi-
ation systems for efficiency and responsiveness to contami-
nation loading. Plant species with potential for phytoreme-
diation should posses the following properties: (1) they 
should extract and accumulate, transform, degrade, or vola-
tilise contaminants at levels that are toxic to ordinary 
plants; and (2) The plant species must have fast growth and 
high yield. Additionally, a good phytoremediation species 
should be applicable to remediate multiple pollutant simul-
taneously because pollution rarely occurs as a single chemi-
cal (Ochs et al. 1993; Horst 1995; Schnoor et al. 1995; 
Dakora and Phillips 2002; Miretzky et al. 2004; Tu et al. 
2004). 

Currently, a few plants species are know to possess 
these properties that qualify them to be good phytoreme-
diation species for terrestrial and aquatic environments 
(Fairchild et al. 1997, 1998; Cossu et al. 2001; Hume et al. 
2002; Sooknah and Wilkie 2004). Among species identified 
for aquatic phytoremediation are species from the genus 
Lemna, a free-floating tiny macrophyte (Salt et al. 1995; 
Carvalho and Martin 2001; Wang et al. 2002; Mkandawire 
et al. 2004c; Goulet et al. 2005; Stout and Nusslein 2005). 
Lemna species commonly grow naturally in wetlands inclu-
ding some highly contaminated water bodies (Landolt 
1982). Lemna species are highly advocated for application 
in wastewater treatment facility, constructed wetland and 
even in restoration of contaminated water bodies (Adler 
1996; Zayed et al. 1998; Wang et al. 2002). However, there 
are many questions that arise over the real efficiency and 
applicability of Lemna sp. in phytoremediation. If Lemna 
spp. really possesses the phytoremediation properties re-
ported in the literature, in addition to their abundance and 
availability in most contaminated water bodies, why is 
water pollution a big problem and issue? To answer this 
question, we reviewed the potency and limitation of Lemna 
spp. as an effective phytoremediation agent, and we report 
findings from the review process in this current article. This 
review is on the whole Lemna genus despite that Lemna 
minor and Lemna gibba are prominent because they are the 

most reported in literature and probably the most researched 
in phytoremediation. 
 
SYSTEMATIC POSITION AND ECOLOGY OF 
LEMNA 
 
Lemna is a genus of monocotyledonous free-floating aquatic 
macrophytes in the Lemnaceae family (Table 1), which is 
commonly known as duckweed. They commonly grow in 
stagnant or slow-flowing, nutrient-enriched waters through-
out tropical and temperate zones. Their growth conditions 
include temperatures range of 6-33°C, a wide pH range with 
optimal growth between pH 5.5 and 7.5 (Mkandawire and 
Dudel 2005a, 2005b). Lemna spp. form a Lemnatae type of 
macrophyte communities, a quartz “mono-specific” plant 
association in which they are the dominant primary produ-
cer (Landolt 1980, 1982, 1986; Les et al. 2002). Unlike 
most terrestrial and aquatic angiosperms, Lemna spp. repro-

Table 1 The family Lemnaceae after Landolt (1980, 1986) and Landolt 
and Kandeler (1987). 
Family Lemnaceae 
Sub-family Lemnoideae Wolffioideae 
Genus Lemna Wolffia Spirodela Wolffiella 
Species L. aequinoctialis 

L. gibba 
L. minor 
L. minuta 
L. trisulca 
L. turionifera 
L. valdivana 

W. arrhiza 
W. borealis 
W. brasiliensis 
W. columbiana 
W. globosa 

S. polyrrhiza
S. punctata 

W. lingulata
W. oblonga

 

Fig. 1 Dorsal view of Lemna gibba. (A) vegetative state (reproduced 
from Mkandawire 2005); and (B) flowering stage showing style and two 
stamens protruding from lateral budding pouch (Courtesy of Oregon State 
University Herberium in USA). 

A

B
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duces almost exclusively asexually despite being flowering 
plants, thereby allocating almost all their resources to vege-
tative growth (Landolt 1980, 1986; Landolt and Kandeler 
1987). Anatomically, they are a diffuse unit known as a 
frond which is composed of leaflets and a root-like struc-
ture (Fig. 1). From the phylogenetic point of view, Lemna 
spp. are in the evolutionary path of secondary simplifica-
tion of a former complex and highly differentiated vascular 
plants (Les et al. 1997). 

Their relatively simple but advance anatomical and 
physiological structure has scientific and engineering signi-
ficance. These properties allow easy handling, and manipu-
lating under laboratory conditions. Consequently, they are 
considered a model plant – representative of higher plants – 
for a number of chemical and biogeochemical studies invol-
ving regulation of element assimilation in higher plants. 
Apart from phytoremediation studies and use, the Lemna 
spp. are among the most standardised test organisms in 
aquatic ecotoxicology (EPA 1996; DIN 2000, 2001; Eberius 
2001; ISO 2001; OECD 2002). 
 
POTENCY OF LEMNA SPP. AS A 
PHYTOREMEDIATION AGENT 
 
Primary production 
 
The efficiency of carbon assimilation (primary production) 
in decontamination and detoxification from the water path-
way has many aspects which include: (1) generation of bio-
mass for accumulation and immobilisation of contaminants; 
(2) production of organic carbon in the form of litter for du-
rable fixation depending on biomass quality and stability 
against decay; (3) quick removal of excess nutrients from 
the medium to fuel fast growth and primary production; and 
(4) production of a Lemna mat that has bio-redox advanta-
ges by reducing gas exchange, and harbouring microflora 
(Salt et al. 1995; Ensley et al. 1996; Zayed et al. 1998; Car-
valho and Martin 2001; Wang et al. 2002; Mkandawire et al. 
2003, 2004a; Goulet et al. 2005). No doubt growth and pri-
mary production is an important deciding property for 
selec-ting phytoremediation species. 

Generally, Lemna species are considered as very fast 
growing, thereby a high turnover and yield (Landolt 1980, 
1986). Most Lemna species have a mean specific growth 
rate range of 0.2-0.3 d-1 with a doubling time in the ranging 
between 0.7 and 2 days (Landolt 1980, 1986; Bergmann et 
al. 2000; Cheng et al. 2002a; Körner et al. 2003; Prytz et al. 
2003). However, Lemna minor and Lemna gibba can reach 
specific growth rate of about 0.6 d-1 under ideal conditions, 
rich in nutrients (Reid and Stanly 2003; Mkandawire et al. 
2004c). Maximum relative growth rates (RGR) of 0.73 to 
0.79 d-1 have been observed in Lemna aequinoctialis Welw 

and Wolffia microscopica (Griffith) Kurz, which correspond 
to doubling times between 20 and 24 h (Körner et al. 2003). 
Lowest maximal growth rates are observed in submerged 

species (Landolt and Kandeler 1987). In general, Körner et 
al. (2003) find RGR values of Lemna spp. comparable to 
angiosperm herbaceous plants which range between 0.03 
and 0.37 d-1, whereas algae grow at rates between 0.26 and 
2.84 d-1. 

Landolt and Kandeler (1987) estimate annual mean 
yield for Lemna species of 73 tons ha-1 yr-1 dry biomass. 
Since maximum growth rates as well as yields of Lemna-
ceae are species and clone specific, Table 2 provides a se-
lection of measured yields of Lemna spp. in different parts 
of the world. Some yield of above180 tons ha-1 yr-1 dry bio-
mass have been recorded (FAO 2001). The yield of Lemna 
spp., when compared to algae in aquatic systems is rela-
tively high. The average yield of Lemna reported in litera-
ture lies between 25 and 50 g m-2 d-1dry biomass in natural 
uncontaminated water bodies, even though daily yield of 
close to 200 g m-2 d-1 have been estimated under laboratory 
cultures and in some tropical regions. Thus, Lemna species 
are estimated to have 41% and 75% of biomass-related ex-
traction potential for metals. For instance, Mkandawire et al. 
(2004c) estimated that L. gibba biomass can extracted arse-
nic and uranium in the magnitude of 751.9 ± 250 and 662.7 
± 203 kg ha-1 y-1 representing extraction potential of 48.3 ± 
15.1 and 41.4 ± 11.9% under ideal laboratory condition – 
optimal steady state condition with unlimited growth. Fig. 2 
shows estimated biomass yield of Lemna spp. through an-
nual seasons in tropics (Thailand) and temperate (Germany) 

Table 2 Some reported annual yield of Lemna spp. under near-optimal 
conditions in the field. 
Location Yield in dry 

biomass 
(t/ha/yr) 

Source 

Thailand-Vietnam 
region 

60-145 Landolt and Kandeler 1987; Anh and 
Preston,1997; Khang 2000 

Israel 36-51 Landolt and Kandeler 1987; Leng et al. 
1995; FAO 2001 

Russia 7-8 Landolt and Kandeler 1987; FAO 2001
Uzbekistan 7-15 FAO 2001 
Germany 22-34 Mkandawire et al. 2004b; Mkandawire 

et al. 2004c; Mkandawire and Dudel 
2005a 

India 30-70 Landolt and Kandeler 1987; Leng et al. 
1995; FAO 2001 

Egypt >30 Landolt and Kandeler 1987; Leng et al. 
1995; FAO 2001 

Different regions 
of USA 

57-185 Landolt and Kandeler 1987; Leng et al. 
1995; FAO 2001 
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Fig. 2 Monthly variation in Lemna spp. Biomass. (A) L. gibba and L. minor growth in tailing pond supplied with warm mine water from a flooded mine 
of an abandoned uranium mine in Saxony, Germany (average water T=23°C in summer and T=11°C in winter) and (B) L. minor in an effluent-receiving 
pond of a biodigester at Cantho University in Vietnam. Data extracted from Mkandawire et al. (2004c) and Khang (2000). 
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region. Firstly, the message is that despite reduced growth  
at different seasons of the year, Lemna species are capable 
of growing throughout the year and thereby can provide the 
required biomass to take up contaminants from the aquatic 
system. 
 
Capacity in wastewater treatment 

 
Since the early 1970s, considerable work has been done on 
the use of Lemna spp. as a means of treating wastewater of 
both agricultural and domestic origin (Oron et al. 1987; 
Buckley 1994; Hammouda et al. 1995; DIN 2001; Schnei-
der et al. 2001; Al-Nozaily and Alaerts 2002; Cheng et al. 
2002a; Obek and Hasar 2002; Valderrama et al. 2002; Zim-
mo et al. 2002, 2004; Goulet et al. 2005). Table 3 presents 
the cleaning capacity, while Table 4 presents mineral remo-
val potential of Lemna species, both calculated from the 
literature. Almost a decade ago, Koles et al. (1987) des-
cribed the guidelines for the use of Lemna spp. to remove 
ammonia and phosphorus from water. A Lemna-covered 
wastewater treatment system in practice work optimal with-
in depths between 30 and 150 cm (Koles et al. 1987). Smith 
and Moelyowati (2001) have also developed guidelines for 
designing a Lemna spp. based wastewater treatment system. 
The guidelines have a design program that suggests that a 
combination of anaerobic ponds, Lemna spp.-based treat-
ment systems and maturation ponds can minimise land re-
quirements associated with wastewater treatment using only 
phytoremediation procedure. Vatta et al. (1995) developed 
models for L. gibba-based wastewater treatment plants. 
They developed a comprehensive process model which si-
mulates the behaviour of a waste-water treatment system 
based on L. gibba. The model accounts for the main chemi-
cal and biochemical phenomena involved in a natural 
waste-water treatment system. Their predictions are quite 
reliable especially in mini-ponds and in real-size treatment. 

Both tables show that contamination cleaning potential 
and capacity of Lemna for mineral contamination is very 
high. The fast growth and turnover of Lemna spp. is fuelled 
by the ability to rapidly take-up high amount of nutrients 
from their medium. Thus, the high values of nutrient elimi-
nation potential are a direct result of rapid growth rate and 
high turnover. This is one of several properties exploited to 
remove surplus nutrients from effluents in wastewater treat-
ment systems. Therefore, harvesting of excess Lemna bio-
mass is a common practice in wastewater treatment systems 
to overcome space limitation and finally to remove surplus 
nutrients especially nitrogen and phosphorus, while at the 
same time maintaining a growth steady-state. Lemna spp. 
grow very densely in nutrient-rich environments in which 

layers of fronds grow one on top of another to form a mat 
that can be as much as 10 cm thick. This thick mat creates 
an anaerobic environment in the water on which this mat 
floats, which promotes anaerobic digestion and denitrifi-
cation of wastewater (Landesman 2000; Cheng et al. 2002a; 
Landesman et al. 2005). Therefore, Lemna spp. can also be 
part of constructed wetland systems, either in the waste-
water-receiving or to polishing ponds in wetland-treated ef-
fluents. Polishing is one of the last steps in wastewater treat-
ment used where residual nutrient, organic and suspended 
solids are removed either aerobically or facultative. A gene-
ral illustration of the process mainly involved degradation 
of organic pollutants in wastewater is presented in Fig. 3A. 
The elimination capacity for organic material in terms of 
biological oxygen demand (BOD) and chemical oxygen de-
mand (COD) is lower in comparison to other vascular plants 
and rich in cellulose but emerse growing macrophytes in 
constructed wetland. Nitrogen removal is at the same level 
or even higher (Gérard et al. 2002; Vymazal 2005). P-elimi-
nation is higher in halophyte than Lemna-dominated treat-
ment systems because phosphates are usually fixed on the 
gravel beds in the benthic zone. 

 
Bioaccumulation potential 

 
There are several studies that have shown that most Lemna 
spp. show an exceptional capability and potential for the up-
take and accumulation of heavy metals, radionuclides as 
well as metalloids, surpassing that of algae and other aqua-
tic macrophytes (Körner and Vermaat 1998; Szabo et al. 
1999; Vidakovic-Cifrek et al. 1999; Zimmo et al. 2000; Ax-
tell et al. 2003; Zimmo et al. 2004). Table 5 presents some 
selected metals reported in the literature which shows high 
accumulation capacity in some Lemna species. For example, 
the zinc concentration in frond tissue was 2700 times higher 
than that of its medium (Sharma et al. 1995). Under experi-
mental conditions, L. minor is a good accumulator of Cd, Se, 
and Cu, but a moderate accumulator of Cr, and a relatively 
poor accumulator of Ni and Pb (Zayed et al. 1998). Lemna 
spp. have also shown potential in attenuation of uranium as 
well as arsenic in surface waters of decommissioned ura-
nium mining (Mkandawire et al. 2004a, 2004c; Mkandawire 
2005). The uptake rates of Al by Lemna spp. is estimated 
between 0.8-17 mg g-1 d-1 (Goulet et al. 2005). Therefore, 
practical utilisation in phytoremediation is using more than 
one Lemna spp. but also in complement to other aquatic 
macrophytes. 

The accumulation of metals and metalloids in Lemna 
takes advantage of quality biomass for biosorption on the 
cell surface, and high metabolic mediated incorporation of 
contaminants into the cells. The metabolic mediated incur-
poration is regarded as a more permanent sink of pollutants, 
while biosorption can be either temporary or permanent de-
pending on the biosorption mechanism process involved 
(Mkandawire et al. 2003). Biosorption is a property of cer-
tain types of inactive biomass to bind and concentrate me-
tals by acting as a chemical substance, or an ion exchanger 
of biological origin (Dudel et al. 2004). We investigated the 
biosorption of both uranium and arsenic on L. gibba bio-
mass (Mkandawire et al. 2003), while other groups have 
also studied biosorption of different metals and radionuclide 
on the biomass of L. minor extensively (Cecal et al. 1999; 
Palit et al. 1994; Singh et al. 2000). We agree, along with 
other researchers that L. minor and L. gibba dry biomass are 
excellent biosorbents for a few metals and metalloids (Du-
shenkov et al. 1997; Axtell et al. 2003; Mkandawire et al. 
2003). Apart from removing contaminants from the water’s 
pathway, their biosorption shields toxicity by fixing conta-
minants in dead biomass (Mkandawire et al. 2003, 2005). A 
few physiological studies have found metals and metalloids 
in the vacuole and cell in the cellulose of the cell wall. Once 
toxic metals and metalloids are incorporated into Lemna 
cells, they are compartmentalised through enzymatic-medi-
ated sequestration. The processes involved in sequestration 
of contaminants in Lemna cells is summarised in Fig. 3B. 

Table 4 Some mineral compositions of Lemna spp. and their potential to 
remove minerals from water bodies (calculated from the literature). 

Fractions  
Culture medium 
(mg L-1) 

Lemna dry biomass 
(mg kg-1) 

Elimination potential
(kg ha-1 y-1) 

N 0.75 60,000 6000 
P 0.3-3.0 5000-14,000 560-1400 
K 100 40,000 4000 
Ca 360 10,000 1000 
Mg 72 6000 600 
Na 250 3250 320 
Fe 100 2400 240 

Table 3 Removal potential of nutrients by Lemna spp. from wastewater 
ponds (calculated and modified from values reported in literature). 

Mean concentrations in wastewaters 
(mg L-1) 

 

Influent Effluent 

Elimination 
capacity 
(%) 

COD 500 320 30-40 
BOD 50 30 60 
Total N 40 20 50 
NH3 17   2 80-90 
Total P   6   3 50-60 
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Furthermore, the growth rates combined to this metal bio-
accumulation potential and harvest necessity make Lemna a 
very good candidate for phytoremediation. 
 
Are Lemna really hyperaccumulator plants? 

 
Plant species accumulate appreciable quantities of metal in 
their tissue regardless of the concentration of metal in the 
media are classified as hyperaccumulator. As a rule of 
thumb, plant species should accumulate above 1000 
mg  kg–1 of dry-biomass (Wang et al. 2002; Cobbett 2003). 
About a thousand plant species are known as metal hyper-
accumulators. The dominating species are from the Astera-
ceae, Brassicaceae, Caryophyllaceae, Cyperaceae, Cunou-
niaceae, Fabaceae, Flacourtiaceae, Lamiaceae, Poaceae, 
Violaceae, and Euphobiaceae families. According to the li-
terature, whose data is partially summarised in Table 5, 
most Lemna species can formally be classified in the hyper-
accumulator category. However, other hyperaccumulators 
listed above have ontogenetic and productivity characteris-
tics not typically of Lemna spp. Normally, hyperaccumu-
lator plants have coevolved in a metal-rich environment 
like bed rock (Baker and Walker 1990). Hyperaccumulation 
in Lemna spp. is related to the direct contact between the 
plant and the contaminants, which are controlled by the wa-
ter chemical conditions (i.e. anaerobic and micro-anaero-
bic) below the Lemna canopy. These conditions are trig-
gered by Lemna’s organic matter production, and they can 
be especially induced and regulated by changing the phy-
sicochemical conditions, nutrient regime and contaminant 
loading in the milieu (Dudel et al. 2002; Mkandawire et al. 
2004a, 2005c). 

 
Biotransformation of organics 

 
In relation to the degradation of complex synthetic organics 
(xenobiotics) and natural complex organics there are some 
reports on complete mineralisation of hazardous and toxic 
substances to CO2 or to lower toxic decay products in Lem-
na communities with associated microbes. However, the 
role and share of the associated bacteria and fungi in this 
degradation process is not clear. Most Lemna plants take up 
and transform organic pollutants of which some are well 
known persistent organic pollutant (POP). For instance, 
Goa et al. (2000) investigated the uptake and phytotransfor-

mation of pesticide dichlordiphenyltrichlorethane (DDT) 
using three axenically cultivated Spirodela oligorrhiza and a 
few other aquatic macrophytes including Lemna spp. Du-
ring the 6-day incubation period, almost all of the DDT was 
removed from the medium, and most of it accumulated in or 
was transformed by the plants. Spirodela oligorrhiza de-
monstrated the greatest potential to transform both DDT iso-
mers; 50-66% was degraded or bound in a non-extractable 
manner with the plant material. Dichlorodiphenyldichloro-
ethane (DDD) were the major metabolites and small 
amounts of dichlorodiphenylethane (DDE) were also found. 
Apparently, reduction of the aliphatic chlorine atoms of 
DDT is the major pathway for this transformation. L. minor 
and L. gibba can metabolise phenol and a series of chlori-
nated phenols (i.e. 4-chlorophenol to pentachlorophenol) 
producing �-glucoside conjugate metabolites 2,4-dichloro-
phenol and 2,4,5-trichlorophenol (Ensley et al. 1996). It 
seems that chlorophenols are incorporated into the vacuoles 
and cell walls of L. minor as either 2,4-dichlorophenyl-�-D-
glucopyranoside (DCPG), 2,4-dichlorophenyl-�-D-(6-O- 
malonyl)-glucopyranoside (DCPMG) or 2,4-dichlorophe-
nyl-�-D-glucopyranosyl-(6, 1)-�-D-apiofuranoside (DCPAG). 
Further, the plants are able to progressively dechlorinate the 
phenols (Ensley et al. 1996). Chlorophenols are an impor-
tant class of xenobiotics used in a variety of biocides and 
have been shown to be resistant to microbial degradation. L. 
minor can also metabolise and transform metolachlor 
(MET)-contaminated waters (Fairchild et al. 1998). How-
ever, it is principally a poor sequester for the herbicide atra-
zine (ATR) in the surface water (Fairchild et al. 1997, 1998; 
Crum et al. 1999). Nonetheless, the presence of Lemna 
accelerates extracellular degradation of metolachlor and 
atrazine, which significantly reduces herbicides content 
from the water pathway, even more than the sequestering of 
the herbicides into the plant. 

Datko and Mudd (1985) investigated the capacity and 
preferential uptake of organic compounds by Lemna pauci-
costata from their milieu. L. paucicostata had preferential 
uptake for neutral L-�-amino acids, basic amino acids, pu-
rine bases, choline, ethanolamine, tyramine, urea, and aldo-
hexoses. They found that the neutral amino acid system nei-
ther transports basic amino acids nor is inhibited by these 
compounds in Lemna spp. The basic amino acid system 
does not transport neutral amino acids but is strongly inhi-
bited by some, but not all, of these compounds. Therefore, 
the maintenance of these active, specific, and discrete sys-
tems in Lemna suggests they play important roles permitting 
Lemna to remove organic compounds occurring naturally in 
its environment. 

 
Survival strategies in extreme milieu conditions 

 
Sequestration and compartmentalisation of 
contaminants 
 
Most Lemna plants are capable of withstanding an extreme 
concentration of contaminants by sequestrating and com-
partmentalising them into cell organelles (Fig. 4). The prin-
ciple was first illustrated by Pilon-Smits (2005) for plants, 
but we tested and proved that the principle functions in the 
same way but with minor difference in L. gibba (Mkanda-
wire 2005; Mkandawire and Dudel 2005a). Steveninck et al. 
(1992) showed that a Zn-tolerant clone of L. minor exposed 
to a high level of Zn had cellular deposits of Zn, Mg, K and 
P or Zn, K and P (Zn phytate). The same clone had globular 
deposits consisting of Cd, K and P in mature fronds, but the 
immature cells of the enclosed daughter fronds contained 
relatively large deposits with Cd and S as the main compo-
nents which were presumed Cd-phytochelatin. Ex-cess Ca2+ 
in L. minor and L. gibba is deposited in the cells as Ca 
oxalate (de Kock et al. 1973; Cohan and Tirimzi 1997; Volk 
et al. 2004). 

In L. gibba, arsenic was deposited in the cell wall as ar-
senite species as observed in a few other plant species 
(Zhang et al. 2002; Quaghebeur and Rengel 2004; 

Table 5 Selected bioaccumulation and transfer factors of some heavy
metals in some Lemna spp. as reported in the literature (Charpentier et al.
1987; Steveninck et al. 1992; Miranda and llangovan 1996; Dirilgen 2001; 
Mkandawire et al. 2004c; Ater et al. 2006). 
Species Metal Bioaccumulation 

(mg kg-1 dry biomass) 
Bioaccumulation 
coefficient* 

L. gibba Pb - >500 
 As 1000-1500 ~10000 
 Cu 745-1050 ~3000 
 U 850-1100 ~7000 
 Cr 900-1710 ~1000 
L. minor Zn 212.5-1010 >1000 
 Cd 14200 ~20000 
 Cu  200-800 >500 
 Cd 14200 ~12000 
 Co  200-2000 >1500 
 Pb  >750 >500 
 Cr 13.48 ~250 
 Ba 226.1 ~800 
 Al  1700-4560 >4000 
L. trisulca Cd 130-1200 >3500 
 Al 19238.09 ~18000 
 Cr 1555.30 ~2000 
 Cu 217.06 ~300 
 Ba 107.69 >500 
 Zn 1308.56 ~700 
 Pb 233.38 >500 

* Bioaccumulation coefficients were estimated from values from the same 
literature source. 
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Mkandawire 2005). Uranium and arsenic were detected in 
the vacuoles of L. gibba cells (Mkandawire 2005; Mkanda-
wire et al. 2005b). Lemna spp. transforms organic substan-
ces into less toxic compounds and either volatilisation (e.g. 
methyl arsenic species) or probably the contaminants are 
sequestrated and deposited in the different cell compart-
ments, mainly the vacuole and cell wall material (Sachs and 
Michael 1971; Nissen and Benson 1982; Cullen et al. 1994; 
Guerin et al. 2000; Abedin et al. 2002; Miguens-Rodriguez 
et al. 2002). Thus, Lemna and other species manage to 
survive extreme concentrations through this strategy. 
 
Strategy for synthesizing organic compounds 

 
A few low molecular weight organic acids have been stu-
died in Lemna species, especial L. gibba. For instance, Slo-
vin and Cohen (1988) and later Rapparini et al. (2002) re-
ported the occurrence of indole-3-acetic acid (IAA) during 
the growth of L. gibba G-3. Mkandawire et al. (2002) re-
ported the occurrence of oxalic acids in L. gibba, while a 
few authors have reported the presence of oxalates in L. mi-
nor and Lemna spp. in general (de Kock et al. 1973; Fran-
ceschi 1987; Kostman et al. 2001; Volk et al. 2002; Hud-
gins et al. 2003; Mazen et al. 2004; Volk et al. 2004). Jas-
monic acid was extracted and determined in L. minor 
(Kristl et al. 2005). Glutathione and organic acid metabo-
lism plays a key role in metal tolerance in plants, including 
Lemna spp., where detoxification of arsenic, cadmium and 
uranium have been attributed to these organic compounds 
(Schmöger et al. 2000; Geoffrey et al. 2002; Schäffner et al. 
2002; Schutzendubel and Polle 2002; Yin et al. 2002; Zhao 
et al. 2003). Formation of arsenosugars in Lemna spp. ex-
posed to different arsenic species have also been widely re-
ported in the literature (Gomez-Ariza et al. 2000; Miguens-
Rodriguez et al. 2002; Sanchez-Rodas et al. 2002). 

In extensive physiological studies by Datko’s research 
group between 1977 and 1990, a number of organic com-
pounds in Lemna spp. were identified and quantified. These 
include sulphur complex-forming organic compounds to 
enzymes that catalyze S-adenosylmethionine-dependent N-

methylations of phosphatidylmethylethanolamine, phospha-
tidyldimethylethanolamine, and phosphatidylcholine syn-
theses (e.g. inorganic sulphate, glutathione, homocysteine, 
cysteine, methionine, S-methylmethionine sulphonium, S-
adenosylmethionine, S-adenosylhomocysteine, cystathio-
nine, sulpholipid, protein cysteine, and protein methionine) 
(Datko et al. 1978a, 1978b; Datko and Mudd 1982, 1985; 
Giovanelli et al. 1986; Datko and Mudd 1988). Thus, orga-
nic compounds play a major role in metal tolerance in Lem-
na spp., specifically where organic acids directly conjugate 
the metals or organic pollutants, to initiate extra-cellular de-
gradation or fixation. Indirectly, some of the compounds as 
well as heavy metals induce survival strategies like flower-
ing (Satish and Subhashni 1967; Tanaka et al. 1982; Yama-
guchi et al. 2001) to facilitate propagation and dispersion of 
Lemna plants. This survival strategy may seem more impor-
tant in ecotoxicology, it is equally important in phytoreme-
diation because it enables survival of Lemna spp. even in 
adverse conditions. 

 
Morphological plasticity 

 
A few Lemna species have been confirmed to demonstrate 
phenotypic plasticity. The plasticity in most Lemna spp. has 
been observed at morphological level such as frond produc-
tion rate, change of shoot to root ratio, and yield as well en-
zymatic protein production at molecular level like in terres-
trial vascular plants (Vasseur and Aarssen 1992; Crawford et 
al. 2001). In a study involving different genotypes of L. mi-
nor from four continents and grown in different environ-
mental treatments, Vasseur and Aarssen (1992) and later 
Scheiner (1993) described that the rate of frond multiplica-
tion and production biomass vary significantly among geno-
types likewise among environmental conditions. Mkanda-
wire et al. (2005b) and Mkandawire (2006) demonstrated 
that root length and leaflet size of L. gibba can be regulated 
by varying phosphorus supply and uranium loading in mi-
crocosms. Under phosphorus and nitrogen deficiency, and 
high iron, uranium or arsenic, and high redox potential en-
vironments, L. gibba develops long roots and a relatively 
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Fig. 4 Tolerance mechanism for inor-
ganic and organic pollutants in Lemna 
cells. Detoxification involves in active se-
questration in parts that can do least harm. 
The chelators involved are: glutathione 
(GSH); glucose (Glu); Metallothioneins 
(MT); nicotiamines (NA); organic acids 
(OA); and ploychelatines. This is the rea-
son Lemna species accumulate high con-
centration of contaminants. Modified from 
Pilon-Smits (2005). 
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smaller than average normal frond (Dudel et al. 2002; 
Mkandawire 2005; Mkandawire et al. 2005c). The pattern 
and level of plasticity are also influenced by initial treat-
ments. Since some genotypes may be more affected than 
others by environmental conditions, the origin of the effect 
may accentuate the interaction and therefore, modify the 
pattern and amount of plasticity (Vasseur and Aarssen 1992; 
Scheiner 1993). The traits related to fitness, such as frond 
production rate, phenotypic variation of adaptive advantage 
makes Lemna sp. apt to survive under a wide range of envi-
ronmental conditions. Thus, the ability of most Lemna spp. 
to withstand high levels of contamination in the environ-
ment directly benefits from this property. 

 
Hormesis 

 
L. gibba and L. minor multiply quickly when exposed to 
low dosages of arsenic, uranium, and metamitron as well as 
under relatively nutrient deficient environment, especially 
phosphorus (Engelen et al. 1998; Brock et al. 2004; Mkan-
dawire et al. 2004b, 2006a). L. gibba culture exposed to do-
ses of arsenic exhibited a “U”-shaped dose-response curve, 
commonly observed with essential elements, particularly 
PO4

3– (Lockhart et al. 1989; Mkandawire et al. 2004b). 
This is a hormetic response, which is an adaptive response 
characterised by biphasic dose-responses that are either di-
rectly induced by the quantity of stimulant or the result of 
compensatory biological processes following an initial dis-
ruption in homeostasis (Calabrese and Baldwin 2003). Es-
sentially, hormesis has been the subject of controversy due 
to its challenge of basic understandings of the dose-res-
ponse relationship and implications for phytoremediation 
and ecotoxicology (Mkandawire et al. 2004b). Some stu-
dies argued that hormesis in Lemna sp. is an adaptive res-
ponse with distinguishing dose-response characteristics that 
is induced by either direct acting or overcompensation-in-
duced stimulatory processes at low doses. Thus, it is Lem-
na’s strategy to optimising resource allocation to maintain 
homeostasis (Calabrese and Baldwin 2003; Mkandawire 
2005). Others suggest that it is an adaptive response that 
operates within normal maintenance functions that allows 
for metabolic excursions at extremely low concentrations 
(Meyer et al. 1998). Nonetheless, it is a steady-state adap-
tive response that modulates physiological dynamics, and 
plays an important role in Lemna spp. capacity to survive 
extreme conditions in the environment; subsequently, this is 
advantageous for the use of Lemna spp. as phytoremedia-
tion agents. 

 
Rare properties and behaviour advantageous for 
remediation 

 
Resource trade-off and homeostatic-induced 
decontamination 

 
Mkandawire and Dudel (2002) and later Mkandawire et al. 
(2005) reported DOC accumulated in the Lemna-test cul-
ture in correspondence to nutrient limitation and uranium 
stress. They attributed to L. gibba an ability to exude low 
molecular weight organic acids such as IAA (Slovin and 
Cohen 1988; Rapparini et al. 2002) and oxalic acids (Dudel 
et al. 2002; Mkandawire et al. 2005b). The exudation was 
induced by the disruption of homeostasis due to interaction 
between nutrients, metabolites and contaminants which re-
sults in changes of chemical speciation in the milieu. The 
speciation changes render some essential nutrients inclu-
ding toxic metals non-bioavailable. Phosphates may form 
complexes with some metals like uranium which is not 
taken up by L. gibba. Consequently, L. gibba exudes low 
molecular weight organic compounds to improve the status 
of the growth-limiting element P whose deficiency is in-
duced by speciation. Therefore, the organic acids form 
complexes with metals which may lead to precipitation or 
initiate redox processes which eventually render the conta-
minant less toxic. They may also conjugate organic com-

pounds and facilitate their degradation. The speciation 
changes can also be caused by dynamics of O2 and CO2 
concentration below the Lemna mat and consumption of nu-
trients and uptake of contaminants, as well as the accumu-
lation of plant excreta (Mkandawire et al. 2004b, 2005a) 
(recapped in Fig. 2). Further studies are required to ascer-
tain if some surface microflora of Lemna are capable of 
using electrons from some metals as a source of energy as 
anoxic conditions partially develops. For organic contacts, 
the microflora may induce degradation and transformation 
(e.g. fermentation). 

 
Allozymic variation 

 
The ability of Lemna species to withstand extreme environ-
mental conditions is also related to allozymic variation. 
There is high level of allozymic variation within species in 
the general Lemnaceae, despite being a predominantly clo-
nal plant. Despite very seldom flowering (sexual reproduce-
tion), the genome of Lemna is as complex and diverse as in 
other vascular plants. They are commonly composed of se-
veral genetically different clones (Amado et al. 1980; Lan-
dolt 1980, 1982; Crawford et al. 2001; Les et al. 2002). Vas-
seur et al. (1991) reported that allozymic similarity among 
clones of L. minor is usually neither related to morpheme-
tric similarity nor the degree of geographic separation nor 
climatic similarity of their sites of origin. Thus, the varia-
tions are largely neutral and not a consequence of different-
tial selection. Most of the studies in the literature, however, 
have focused on a relatively small geographical area. Few 
studies have investigated the genetic structure among clones 
that are representative of the overall distribution of a species. 
Therefore, this is an area requiring more investigation to 
give more insight not only the genomics and the role of allo-
zymism as a survival benefit for Lemna spp., but also the 
overall contribution to phytoremediation and ecotoxicology. 

 
Benefits from associated surface microflora 

 
Since the beginning of 1960s, several studies on the asso-
ciation between Lemna and microflora have been conducted. 
They mostly focused on microscopic observations and enu-
meration of bacteria on plant surfaces as well as several cul-
ture-dependent studies (Hosselland and Baker 1979; Körner 
et al. 1998; Szabo et al. 1999; El-Alawi et al. 2002; Falabi 
et al. 2002; Stout and Nusslein 2005; Vogel et al. 2006). 
Other areas widely studied and reported in the literature are 
the removal of excess nutrients – especially nitrogen and 
phosphorus – from waste water using the Lemna-microbial 
association; and N2 fixation by N2-fixing heterotrophic bac-
teria and cyanobacteria were associated with the duckweed 
mats (Zuberer 1982, 1984). Definitely, inoculation of some 
micro-organisms in Lemna culture would yield positive ef-
fect because, Chang et al. (2006) report that inoculation of 
bacteria to a floating macrophytes Eichhornia crassipes like 
wise a submerge Elodea nuttallii increases significantly the 
capacity of improving water quality in eutrophic water bo-
dies compared to the un-inoculated treatments. Earlier, Kör-
ner and Vermaat (1998) reported that L. gibba was itself 
directly responsible for 30% and up to 52% of the total N- 
and P-loss, respectively. The indirect contribution of L. 
gibba to the total nutrient removal was through algae and 
bacteria in biofilm on the plant surface which accounted for 
35 and 32 % of the total N- and P-loss, respectively. 

Despite the increased interest in Lemna spp. for aquatic 
phytoremediation, there have been limited studies of micro-
bial communities associated with the plant, especially in re-
lation to heavy metal uptake or immobilisation (Stout and 
Nusslein 2005). So far in the literature, only Stout and Nus-
slein (2005) and Vogel et al. (2006) have direct addressed 
microbial communities associated with Lemna spp. in the 
presence of heavy metals and metalloids. The former stu-
died the influence of indigenous rhizospheric bacterial com-
munities of L. minor on Cd uptake and immobilisation from 
water while the latter investigated and isolated arsenic-resi-
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stant surface microflora associated with L. gibba and L. mi-
nor in abandoned uranium mines. The isolated microflora 
was found to belong mainly to six physiological groups, 
namely: oligotrophs, nitrogen fixing, phosphate solubilising, 
ammonifying, nitrifying and denitrifying bacteria. Most re-
sistant bacterial to arsenic were the pseudomonas and reac-
tive to gram negative. Otherwise, this is an important area 
not very exploited and published despite the fact that plant-
associated microbial communities have previously been 
shown to be involved in controlling plant uptake of metals 
and metalloids from their surrounding environment (Sizova 
et al. 2002; Evans et al. 2005; Lyubun et al. 2006). 

Last but not least, it is worth to mention that culture-
dependent studies have been criticised for two reason: (1) 
they are mostly conducted in batch culture mode with 
extremely high test and nutrient concentrations compared to 
natural water bodies (Asad et al. 1997; Mkandawire et al. 
2005a). As a result the validity of results obtained from 
laboratory tests performed batch-wise are often questioned 
because of dissimilarities to natural systems in respect to 
physical characters as well as process conditions such as 
high nutrient and test substance concentrations (Asad et al. 
1997; Mkandawire et al. 2005a); and (2) most Lemna spp. 
are nutrient media sensitive that their performance get af-
fected when a wrong media is used. Several studies have 
reported stress resulting from the medium content which re-
duced the life span of the plants by inducing early flower-
ing (Satish and Subhashni 1967; Posner 1973; Tanaka et al. 
1982; Cleland and Tanaka 1986; Yamaguchi et al. 2001). 
Normally, Lemna spp. rarely flower and reproduce mainly 
vegetative. To overcome the problems associated with high 
concentrations of nutrient and test chemicals, semicontinu-
ous culture system should adopted except where the studies 
are intended to simulate highly contaminated stagnant 
ponds. Generally, it is advisable to avoid media that induce 
flowering of Lemna. 

 
Nucleation of biomineralisation 

 
There are circumstantial evidence that metals sequestrated 
in Lemna biomass may result into biominerals. Some stu-
dies have reported that some Lemna spp. assimilate metals 
in sugars, peptides, proteins and some low-molecular-
weight organic acids (de Kock et al. 1973; Mazen and El-
Maghraby, 1998; Bovet et al. 2000; Weiss et al. 2000; Ab-
bas et al. 2001; Prasad et al. 2001; Yin et al. 2002; Mazen 
et al. 2004), which have been reported elsewhere as the nu-
cleus of biomineralisation (Mann et al. 1989; Mkandawire 
et al. 2005b). Mkandawire et al. (2005b) investigated the 
durability of uranium fixation in L. gibba biomass, and 
found that about 40-50% of uranium is easily eluted from 
dead biomass within a month of contact with water, weak 
acids and EDTA. However, further elution did not take 
place and there was no release of uranium from the de-
caying biomass after four months. Using microscopy and 
Energy Dispersive X-ray (EDX) technology, we discovered 
possible crystals of uranium oxalate in L. gibba fronds. 
Others have also reported the presence of calcium oxalate 
crystals and other organometalic compounds in L. minor, L. 
gibba and L. polyrhiza (de Kock et al. 1973; Franceschi 
1987; Prychid and Rudall 1999; Kostman et al. 2001; Hud-
gins et al. 2003; Mazen et al. 2004). Thus the evidence is 
so far circumstantial and requires further studies. If Lemna 
spp. really initiates biomineralisation through sequestration 
of metals in their biomass, this would be a big break-
through in the application of Lemna-based phytoremedi-
ation systems. 

 
Other environmental benefits 

 
Lemna species have more environmental benefits than mere 
phytoremediation potential. Initially, a great deal of work 
has been done on the nutritional value of species of the 
Lemnaceae in aquaculture and livestock production (Abdu-
layef 1969; Trewavas 1972, 1973; Culley et al. 1981; Skil-

licorn et al. 1993; FAO 2001). Even the World Bank and 
FAO have been promoting the use of Lemna spp. as a source 
of feed for fish, poultry and cattle production because of its 
protein content (Culley et al. 1981; Skillicorn et al. 1993; 
FAO 2001). Table 6 shows the chemical fraction in Lemna 
biomass, while Table 7 shows the protein content in L. gib-
ba as an example for Lemna species. Generally, the amino 
acid composition is more comparable to animal protein than 
plant protein because it has a high lysine and methionine 
content, two amino acids normally deficient in plant pro-
ducts (Dewanji et al. 1997; Landesman 2000). Mkandawire 
and Dudel (2005b) reported allelopathic behaviour of L. 
gibba where it inhibited growth of some unicellular algae 
and blue-green algae through exudation. Others have 
claimed that L. minor produces anti-mosquito-larval com-
pounds that can be exploited for public health benefit and 
can have commercial significance (Culley et al. 1981; FAO 
2001). The compounds exuded by L. minor interfere with 
egg oviposition by Culex pipiens pipiens L., and is lethal to 
Culex p. pipiens larvae and Aedes aegypti L. (FAO 2001; 
Heidrich et al. 2004). These mosquitoes are a known vector 
of deadly human diseases such as malaria and yellow fever. 

It is estimated that wastewater treatment systems coved 
by Lemna have up to 20% less evaporation compared to 
open wastewater systems because of the development of the 
10 cm thick Lemna mat on the water body (Oron et al. 
1986; Landesman 2000). The reduced evaporation in Lem-
na-covered wastewater treatment is an asset in arid climates. 
The Lemna mat also has ecological significance in the aqua-
tic system. It can be used in biological control of algae 
bloom through reducing light penetration and nutrient com-
petition (Körner and Vermaat 1998; Szabo et al. 1999; Parr 
et al. 2002). The outer margins of Lemna spp. fronds (phyl-
losphere) support dense populations of diatoms, green algae, 
rotifers, and bacteria (Coler and Gunner 1969; Zuberer 1982, 
1984). Associated with this epiphytic community of Lemna 
spp. are an assortment of insects, including beetles, flies, 

Table 6 Chemical fractions in Lemna sp. biomass. Modified from Lan-
desman (2000) and FAO (2001). 
 Chemical Composition 

(%age total dry biomass) 
Dry matter 3.5  
Crude protein 20-45 
Crude fat 4.4 
Fiber (cellulose) 8-10 
Non-fibre carbohydrate 17.6 
Ash 16.0 
 

Table 7 Amino acid fractions in dried Lemna species. Modified from 
Landesman (2000) and FAO (2001). 
 Content in dry biomass 

(g kg-1) 
Alanine 23.0 
Arginine 21.4 
Aspartic Acid 35.1 
Cysteine 4.4 
Glutamic Acid 36.7 
Glycine 19.3 
Histidine 7.3 
Isoleucine 16.6 
Leucine* 28.9 
Lysine* 18.5 
Methionine* 6.4 
Ornithine 0.5 
Phenylalanine 17.5 
Proline 14.2 
Serine 13.9 
Taurine 0.3  
Threonine 16.8 
Tryptophan 4.0 
Tyrosine 12.7 
Valine* 21.2 

* Essential amino acid  
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weevils, aphids, and water striders (Scotland 1940). The 
presence of Lemna spp. contributes dissolved organic mat-
ter into a water body in form of exudates and excrete like 
low organic acids (Baker and Farr 1987; Mkandawire and 
Dudel 2002; Mkandawire 2005), amino-acids and enzymes, 
and recalcitrant organic matter (Baker and Farr 1987; Tho-
mas and Eaton 1996) and humic substances through humifi-
cation of dead biomass which provide nutrients to other or-
ganisms such as bacteria, epiphytic algae, invertebrates and 
other microdetrivores (Baker and Farr 1987; Thomas and 
Eaton 1996). In addition cyanobacteria residing in the phyl-
losphere of Lemna spp. fronds and fix atmospheric nitrogen, 
providing nitrogen input in oligotrophic environments 
(Tran and Tiedje 1985; Cheng et al. 2002a, 2002b; Lan-
desman et al. 2005). 

 
A system with flexibility to manipulate 

 
Significant progress has been made in engineering phytore-
mediation systems for higher capacity, efficiency and dura-
bility of fixation. The knowledge generated is being effici-
ently exploited in Lemna-based phytoremediation system 
that it is possible to engineer the system to enhance natural 
attenuation (Stahl and Swindoll 1999; Dudel et al. 2002, 
2004; Mkandawire et al. 2004a). For instance, the mecha-
nisms and processes involved in uptake and accumulation 
in Lemna are well described and a number of manipulations 
are currently possible. One way of manipulating the system 
is the facilitation of contaminant bioavailability to Lemna 
plants through the application of various acidifying agents, 
fertilizer salts and chelating materials. Reports in the litera-
ture show that the general phytoextraction of most metals is 
enhanced when acidifying agents are added to the media 
thereby increasing the bioavailability to Lemna (Kumar et 
al. 1995; Salt et al. 1995; Kayser et al. 2000; Lasat 2002; 
Watt et al. 2002). The retention of metals to sediment orga-
nic matter is also weaker at a low pH, resulting in more 
available metal in the water system for uptake. Chelates are 
used to enhance the phytoextraction of a number of metal 
contaminants including Cd, Cu, Ni, Pb, and Zn (Maywald 
and Weigel 1997; Fargasova 2001; Abollinoa et al. 2002; 
Buykx et al. 2002). Polar and Kucukcezzar (1986) demons-
trated that the amendment of culture medium with some 
metal chelators – ethylenediaminetetraacetic acid (EDTA), 
ethylenediamine-N,N'-bis-(o-hydroxyphenylacetic acid) 
(EDDHA) or salicylic acid – significantly increased the up-
take and accumulation of cadmium in L. gibba. When ap-
plied to soils, chelates accelerate the leaching of metals into 
groundwater. However, it may be an acceptable strategy in 
stagnant and slow flowing shallow surface water with a 
dense sediment layer because chelate would lenders metals 
bound in deeper water and sediments bioavailable to Lemna 
plants in the up layers of water. 

In metabolically active uptake, L. minor had reduces 
the elimination of Zn2+ by continuously increasing the de-
gree of Fe3+ uptake (Cecal et al. 2002; Popa et al. 2006). 
Therefore, a system targeting Zn elimination can be mani-
pulated by reducing content of Fe3+. Further, L. gibba res-
ponds homeositically to chemical speciation changes in the 
media (Mkandawire and Dudel 2002; Mkandawire 2005). 
Hence, any substance that may influence the speciation of 
the media without significantly affecting the growth of 
Lemna can be used to manipulate uptake, accumulation, im-
mobilisation and even degradation of the contaminants. 

A Lemna-phytoremediation system can be regulated 
through resource stoichiometry. We also manipulated urani-
um and arsenic uptake and accumulation in L. gibba with 
specific resources – PO4

3– and NH4+ – amended under field 
and laboratory conditions. An increase in the supply of 
PO4

3– increased the accumulation of uranium in L. gibba 
but had the opposite effect on arsenic bioaccumulation. 
NH4+ increased bioaccumulation of both uranium and arse-
nic in L. gibba but lower than the effect of PO4

3– (Mkanda-
wire et al. 2004b, 2005c; Mkandawire 2005; Mkandawire 
and Dudel 2005c). In a related study we managed to regu-

late the accumulation of DOC and exudation of low-mole-
cular weight organic acids by L. gibba with varying PO4

3– 
supply. The organic acids were later found to be responsible 
for chemical speciation, which was crucial in determining 
uranium bioavailability, and consequently ecotoxicity ef-
fects. In a field study, we found that arsenic and uranium ac-
cumulation in L. gibba was highly influenced by water qua-
lity like water hardness, pH, presence of other metal cations 
and the amount of sulphates in the aquatic system. For in-
stance, uptake of uranium was greatly reduced in high Mg2+, 
Ca2+ and CO3

2- , PO4
3-, like high conductivity of the water 

while presence of SO4
2- and lower pH favoured uptake of 

uranium (Mkandawire et al. 2004b, 2006, 2007). For arse-
nic, the higher the content of PO4

3-, the lower the uptake and 
accumulation of arsenic (Mkandawire and Dudel 2005a). 
The reason behind this is ion competition, complexation of 
the contaminant and on top of all chemical speciation which 
result in contaminants being non-bioavailable. Hence, these 
factors can all be used to manipulate the Lemna-phytoreme-
diation system to enhance natural attenuation. 

The Lemna biomass can also be manipulated to increase 
biosorption capacity by protonation (i.e. application of aci-
difying agents that donate H+ to the biomass). Biosorption 
processes are very important because they are the initial 
contact between the plant material and the contaminants in 
question. The biosorption of Cd, Cu, Ni, Pb, and Zn by L. 
minor biomass can increase by almost 20% with the appli-
cation of 0.1 N HNO3 (Palit et al. 1994; Cecal et al. 1999; 
Singh et al. 2000; Mkandawire et al. 2003). Protonated bio-
mass is a more effective sorbent signifying that the com-
plexation process contributes to the uptake mechanisms in L. 
minor while the presence of Mg2+ and Ca2+ reduces the bio-
sorption capacity of uranium by L. gibba biomass (Mkanda-
wire et al. 2003; Mkandawire 2005). Similarly, alkalinity re-
duces uranium biosorption. Phosphates reduce biosorption 
of arsenate in L. gibba biomass while increasing the uptake 
of uranium (Mkandawire et al. 2004b; Mkandawire 2005). 
 
LIMITATIONS OF LEMNA SPP. AS A 
PHYTOREMEDIATION AGENT 
 
Flexibility to external milieu influence 
 
Most Lemna species are relatively insensitive to environ-
mental changes like pH, temperature and availability of re-
sources including photosynthetic active radiation and nutria-
ents in comparison with other higher plants. Despite the op-
tima growth condition for Lemna spp as presented in Table 
8, most Lemna spp. have been observed to stop growing in 
temperature below 6°C and above 30°C, and below pH 3 
(Landolt 1980, 1986; Mkandawire 2005). However, they are 
sensitive to most organic contaminants especially herbicides 
and heavy metals under certain environmental conditions. 
Changes in most physicochemical conditions result in re-
duced growth due to adaptation through reallocation of re-
sources (e.g. developing longer roots, and small leaflet in 
hard water and high conductivity conditions) (Mkandawire 
and Dudel 2005b; Mkandawire et al. 2005c, 2007). The up-
take and accumulation of contaminants in a few Lemna spp. 
depends on the milieu’s conditions. For instance, we found 
that the accumulation of uranium and arsenic in L. gibba 
were reduced significantly with increase of water hardness 
vis-à-vis concentration of Ca2+, Mg2+ and CO3

2–, and acidity 

Table 1 A generalized set of conditions for culturing L. gibba and L. 
minor. Adopted from Mkandawire et al. (2005a). 
 Optimal condition Information source 
Temperature (°C)  18-24 °C ISO/WD 20079 
Salinity (g l-1) 20-24 g l-1 ISO/WD 20079 
Light intensity (lux) 4200 and 6700 lux 

85-125 �E m-2 s-1 
or 400-700 nm 

EPA712-C-96-156 
OPPTS 850.4400 
ISO/WD 20079 

Photoperiod 14-16 hr d-1 Mkandawire (2005) 
pH 5.6-7.5 Mkandawire et al. (2002)
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in the form of Fe ions (Mkandawire et al. 2004a; Mkanda-
wire 2005). Further, SO3

2–, PO4
3– and NH4

+/NO3
– influ-

enced both growth and bioaccumulation of both uranium 
and arsenic. Increasing electric conductivity and redox po-
tential equally the amount of dissolved oxygen reduced bio-
sorption potential and accumulation of uranium in L. gibba 
(Mkandawire et al. 2004a). In summary, the physicoche-
mical conditions influence the interaction among the che-
mical constituents of the media, likewise the interaction 
with the biotic constituents. The interactions lead to chemi-
cal speciation and influence the bioavailability of the con-
taminants. They may also result in ion competition for up-
take. Other works investigated the factors influencing the 
response of to Cd and its interaction with L. minor photo-
synthesis At molecular level, a few studies have shown that 
sulphate uptake and reduction are essential to detoxify Cd 
in L. minor (Charpentier et al. 1987; Steveninck et al. 1992; 
Saygideger 2000). The Cd interferes with photosynthesis 
processed in L. minor. Consequently, L. minor responses by 
increasing sulphate metabolism, which is also energetically 
very expensive and thus, requires an efficient and active 
photosynthesis. Yet sulphates are found in large amounts in 
most wastewater and natural water bodies, which may pre-
sent problem to implement an efficient Lemna-based phy-
toremediation system, particularly in large water bodies 
where: (1) Lemna spp. are only used to enhance natural at-
tenuation, and (2) manipulation of the milieu’s condition 
for optimal performance may be impossible due to the size 
of the water body requiring remediation, or it may be very 
costly. 
 
Anatomical and physiological restrictions 
 
One of the limitations of Lemna-based treatment systems is 
related to the size and existence as free-floating macro-
phytes (Landolt 1980, 1986; Landolt and Kandeler 1987). 
Even though Lemna form mats of about 10 cm above the 
water, their direct influence on contaminants like uptake, 
transformation or immobilisation with exudates or transfor-
mation only at the surface may be limited to a few centime-
tres deep (Amado et al. 1980; Boniardi et al. 1994; Lemon 
and Posluszny 2000; Les et al. 2002; Mazen et al. 2004). 
Hence, the influence in a few metres deep stagnant water 
ponds devoid of mixing should be very low. However, there 
may be the question of fibre contribution to sedimentation 
and humification of dying Lemna biomass to the deeper 
waters, discussed in detail below. Their small size results 
also in a high water volume to plant biomass ratio (Mkan-
dawire 2005). This entails that the high accumulation of 
metals in the Lemna plant may not really have significance 
in removal or immobilisation of contaminants. Anatomi-
cally, Lemna are reduced diffuse plants without a vascular 
system (vessels in roots and shoots) (Lemon and Posluszny 
2000; Les et al. 2002). Therefore, the plants are less advan-
taged in utilisation of solar-driven apoplastic flow of water 
into the plant together with contamination, but contami-
nants left by evapotranspiration accumulated in the plants is 
missing in the Lemna plant system. Therefore, most of the 
accumulation may be metabolically driven with energy 
consumption. 

The biomass yield is considerably reduced with is own 
plant density. There is a minimum biomass at which yield 
decreases and an upper biomass where yield is limited by 
crowding. The influence of Lemna species in shallow ponds 
may require large areas that may not be available near ur-
ban areas. Thus harvesting of excess biomass is a must, yet 
the water volume to Lemna biomass ratio should be re-
duced in order to optimise its phytoextraction potential. 
Further, in temperate climates Lemna spp. grows slowly in 
the winter. This may restrict the use of such treatment sys-
tems in cooler climates particularly when applied in large 
constructed wetland. Water temperatures of about 11°C 
were recorded in winter in a Lemna-covered wetland tailing 
pond of a former uranium mine in eastern Germany while 
the atmospheric temperatures were below zero (Dudel et al. 

2004; Mkandawire et al. 2004c). The observation suggests 
that in small constructed wetland or wastewater treatment, 
the Lemna mat covering small ponds function as an insu-
lator and keep the water temperatures high. Nonetheless, 
Lemna-based treatment systems may be limited to treating 
secondary effluents from small communities where land 
costs are low (Cheng et al. 2002a). 
 
Wet to dry biomass ratio 
 
Several studies have shown that most Lemna species retain 
less than 3% of their weight biomass after drying (Landes-
man 2000; Mkandawire 2005). This means that the highest 
percentage of Lemna content is water just like many other 
aquatic emersed and even submersed macrophytes and algae. 
Therefore, the high bioaccumulation of metals and metal-
loids reported in the literature is attributed to the loss of wa-
ter which leaves the contaminant to Lemna biomass ratio 
very high. That means, considering the wet biomass of Lem-
na, that high accumulations are very legible. Consequently, 
using Lemna for phytoremediation will require excessive 
high dry biomass production. Further, removal of water 
from Lemna in order to concentrate-up the contaminants re-
quires much energy and technical equipment which may 
render the system less economic and limit the using Lemna 
as a phytoremediation agent. 
 
Carbon sequestration into sediments 
 
The fate of contaminants, especially metals and metalloid 
complexes on or accumulated in organic matter in the 
course of litter deposition and sedimentation, is decisive for 
plant-mediated elimination of contaminants from the water 
pathway. Dead and dying Lemna spp. fronds (Laube and 
Wohler 1973), specifically L. gibba (Szabo et al. 2000) fall 
to the bottom of the water column where their decay contri-
butes organic matter, nitrogen, phosphorus, and other mine-
rals to the benthos. Logically, the organic matter should 
later be part of recalcitrant organic carbon (e.g. humic ma-
tter after humification), thereby containing most contami-
nants, especially metals, bound to the organic matter frac-
tion of decaying Lemna biomass. This is very important 
when the aim of using Lemna spp. is to stabilise or enhance 
natural attenuation, and not extraction of the contaminants. 

In a study of two separate ponds in an abandoned ura-
nium mine, we found that ponds covered by a thick Lemna 
mat had significantly organic carbon accumulation but low 
humic substance in the sediments compared to ponds domi-
nated by halophyte communities with Typhus latifolia and 
Phragmites australis. The obvious reason was the size of 
the Lemna spp., crowned by the big ratio between dry and 
weight biomass. Lemna spp. are blown or swept away easily 
from the water surface by strong winds or flowing water, 
respectively. In a wastewater treatment pond, floating mats 
of fronds are held in place by partitions and baffles that pre-
vent or reduce wind from blowing fronds off the water sur-
face. These partitions and baffles are usually made of poly-
ethylene in industrialised countries but may be made of 
bamboo or other materials in developing countries which 
may be costly, on one hand, and on the other, difficult to im-
plement in natural systems. 

This explains our finding that showed lower uranium 
deposition in the organic carbon-rich fraction of sediment 
cores from Lemna-covered rather than communities of halo-
phyte-dominated ponds by Typhus latifolia in the same site. 
Generally, the layers of sediments rich in organic matter ac-
cumulated the highest uranium (Dudel et al. 2004). Neither 
we nor others in the literature have managed to establish the 
fraction of heavy metals (e.g. uranium, radium, etc.) that se-
diment together with recalcitrant organic carbon (e.g. lingo-
celluloses). Similarly, quantification of fixed heavy metals 
in the course of Lemna litter decay or originated in the 
course of microbial carbon mineralisation of dead Lemna 
biomass has never been tackled in literature. Thus, this sets 
limits in durability and permanent sink of metal contami-
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nants in a Lemna-based phytoremediation system which de-
feats the reasons for using phytoremediation as an alterna-
tive conventional remediation technology. 

Szabo et al. (1999, 2000) demonstrated that the nutrient 
flux from decomposing Lemna litter is mainly a microbial-
mediated process. They found that organic matter in L. gib-
ba litter lost about half its weight more rapidly in the pre-
sence of micro-organisms than in axenic vessels. In the case 
of axenic conditions, the C and K concentration of the re-
maining Lemna litter decreased; while the N, Ca, Fe and B 
concentration increased. The concentration of total N, P, K, 
Mg, and Mo increased in the receiving water. Mass balan-
ces of nutrients in the vessels and flux of these nutrients 
between Lemna litter, water and sediment compartments 
showed leaching of organic potassium and magnesium du-
ring the first term of incubation and then slowed down. 
Under biotic decomposition, the elemental content of the 
litter decreased in rates of K> Mo> C> Mg> S> P> Na> N> 
B in the course of the four month experiment. Calcium and 
iron immobilised in the litter. Most of the released N, S, P, 
K, Mg and Mo remained in the water, but B and Mn settled 
into the sediment. Therefore, application of Lemna-based 
phytoremediation requires removal or harvesting of bio-
mass before death. This limits the use of Lemna in waste-
water treatment plants only because harvesting or removal 
would require high amount of resources to be applied in a 
natural eutrophicated water body. 
 
NEW PERSPECTIVE FOR PHYTOREMEDIATION 
STUDIES WITH LEMNA SPP. 
 
Despite the limitations, the potency of Lemna spp. make 
this macrophyte an attractive phytoremediation agent worth 
further studies and application trials, mainly in the enhance-
ment of natural attenuation and phytoextraction. Therefore, 
it is imperative to study Lemna spp. further in the context of 
phytoremediation. The studies should focus on the mecha-
nisms and processes that enable the macrophytes to tolerate 
and detoxify multiple aquatic contaminants beyond what is 
currently known. This would require identification of meta-
bolic pathways and genes involved in both toxicity tole-
rance mechanism and remediation processes. For instance, 
Lemna has been applied in decontamination of xenobiotic 
herbicides, applied against vascular plants. What makes 
Lemna exceptional to withstand herbicides is not clear, 
hence this needs further investigations. Recent advances in 
knowledge derived from the "omics" need to be considered 
high in Lemna phytoremediation studies because, there is 
considerable potential in developing this green technology 
using genomics and proteomics. However, strategies to pro-
duce genetically altered Lemna spp. to remove, destroy or 
sequester toxic substances and the long-term implications 
have either not been investigated thoroughly or not reported 
much. There is also a need for better knowledge of the pro-
cesses that affect pollutant availability to Lemna and how 
the plants regulate the processes. This should include in-
vestigations on rhizospheric processes, pollutant uptake 
mechanisms, translocation, chelation, degradation, and vo-
latilization. Currently, the influence of the Lemna-micro-
flora consortium on pollutant detoxification, decay of orga-
nic polymers, or change of chemical speciation and remo-
val of non-degradable contaminants like heavy metals from 
aquatic systems has been less exploited. Influence of micro-
bial inoculation in Lemna culture on the phytoremediation 
potential requires more insight. Last but not least, selection 
of clones or strains of Lemna for phytoremediation is also 
an area less reported. It requires more insight. 
 
CONCLUDING REMARKS 
 
With respect to tolerance, bioaccumulation and biotransfor-
mation potential and biomass productivity, Lemna species 
have importance in the treatment of domestic and industrial 
wastewater and effluents as well as in the restoration of de-
commissioned mining sites. They have most of the proper-

ties of an ideal phytoremediation species. Hence, they can 
be part of constructed wetland systems, either as a compo-
nent of a wetland receiving wastewater or as plants that po-
lish nutrients from wetland-treated water. The potential of 
Lemna spp. as a phytoremediation agent are strengthened 
further by the ability to be applied to multiple pollutants and 
possession of other environmental benefits. The literature 
has clearly documented the use of Lemna spp. to major pol-
lutants from domestic wastewater (e.g. DOC, and excess nu-
trients). They are confirmed to be good accumulators and 
potential hyperaccumulators for many metals including the 
widely reported Cu, Cr, Cd, Ni, Pb, U, As and Zn as well as 
137Cs, and 90Sr. Some Lemna species, particularly L. gibba 
and L. minor have shown the ability to phytotransform some 
persistent organic pollutants (POP) (e.g., chlorophenols 
used in a variety of biocides, dichlordiphenyltrichlorethan 
DDT, organophosphorus (OP) pesticides including Malathi-
on, demeton-S-methyl, and crufomate). Further, Lemna spe-
cies have more environmental benefits than mere phytore-
mediation like reduction of evaporation of Lemna-covered 
surfaces in wastewater treatment, which is an asset in arid 
climates. Lemna cover can control growth of algae, and 
breeding of mosquitoes which is of public health signify-
cance and may provide a source of mosquito anti-larval 
compounds that could have commercial significance. Lemna 
spp. are already known and widely used as a protein source 
in aquaculture and livestock production. However, they are 
very limited in application because of their nature as small 
and free floating plants. The water volume to Lemna bio-
mass ratio is always small. Therefore, Lemna spp. are con-
fined to application for special remediation purposes and 
conditions only. The use of a Lemna-based phytoremedia-
tion system should be carefully tested before application. 
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