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ABSTRACT 
Grapevine (Vitis vinifera) cultivation is successfully established across large areas of the globe whose environmental conditions range 
from those of the northern temperate zone of the Rhine valley to those of the driest and hottest regions of the Greek islands and the 
Californian desert. The photosynthetic metabolism follows the C3 pathway and the responses of the photosynthetic machinery to essential 
environmental factors are similar to other C3 plants. The high adaptability of vines to a plethora of different environments is derived from 
several photosynthetic and associated anatomical and biochemical characteristics of the grapevine leaf. The tight stomatal control coupled 
with the heterobaric construction of the leaf may offer advantages in water conservation and light utilization and therefore in the photo-
synthetic performance. Leaves of some cultivars may transiently be anthocyanic or pubescent, characteristics that are believed to be rel-
ated to the protection against strong visible and ultraviolet radiation, especially during the sensitive stages of initial leaf development. An 
array of biochemical mechanisms renders the leaves of grapevine highly resistant to photoinactivation and lessens the possibility of photo-
oxidative damage. Since grapevine leaves are the source of the biomolecules which determine the quantity and quality of the fruits, any 
knowledge on the leaf structure-function relationships and on the leaf-environment interactions is of particular importance to viticulture. 
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INTRODUCTION 
 
Grapevine (Vitis vinifera L.) is the most widely grown fruit 
crop in the world since every year 7.3 million hectares of 
vineyards are harvested globally on all continents excluding 
Antarctica, yielding approx. 66 million metric tones of 
grapes (Food and Agriculture Organization of the United 
Nations 2005). Although more than 80% of the produce is 
destined to wine making, grapevine also supplies foodstuff 
and industrial products (Mullins et al. 1994) such as jam, 
grape juice, jelly, resins and grape seed oil. V. vinifera is a 
temperate-climate species which is sensitive to extreme 
winter temperatures and requires relatively high summer 
temperatures for the maturation of berries (Mullins et al. 
1994). For this reason, the majority of the vineyards world-

wide are established in Mediterranean type climates. In 
tropical climates V. vinifera behaves as an evergreen plant, 
producing poorly and tending to be short lived (Winkler et 
al. 1974). There are currently over ten thousand cultivars 
derived from this single species. The large genetic diversity 
available and the low chilling requirements for the release 
of dormancy in buds are considered as the main reasons for 
the widespread distribution of the grapevine crop (Williams 
et al. 1994). Rootstock genotype affects vine gas exchange, 
water status, canopy growth and yield (Soar et al. 2006). 
 
GENERAL CHARACTERISTICS OF GRAPEVINE 
LEAVES 
 
The leaf consists of the lamina and the petiole. A pair of 
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stipules, ephemeral appendages, protects the young 
developing leaves (Fahn 1991). The leaf is bifacial (dorsi-
ventral), with two types of photosynthetic parenchyma, 
palisade and spongy, occurring within the mesophyll (Esau 
1965). Leaves are hypostomatous since stomata occur only 
in the abaxial surface of the lamina. 

V. vinifera belongs to the functional group of C3 plants. 
Thus, the mesophyll cells assimilate CO2 from the atmos-
phere through the Calvin cycle, possess photorespiratory 
activity and show the typical photosynthetic responses to 
environmental factors similar to other C3 plants (Williams 
1996). Maximum net CO2 assimilation rates fall in the 
range between 8 and 13 �mol CO2 m-2 s-1 (Downton et al. 
1987; Correia et al. 1990, see also Table 1), although rates 
of 20 �mol CO2 m-2 s-1 have also been reported (Kriedeman 
et al. 1970; Roper and Williams 1989; Düring 1991). Pho-
tosynthetic capacity, measured by a leaf disc oxygen elec-
trode (Nikolopoulos et al. 2002) or by a CO2 analyzer (Dü-
ring 1991) at optimal conditions and 5% CO2 concentration, 
reaches values of up to 15-20 �mol O2 m-2 s-1. In the ab-
sence of stress factors, the CO2 photorespiratory losses 
range from 13% to 16% of the net assimilation rate (Düring 
1988, 1991). CO2 compensation point of mature leaves is 
around 25 �bar (Düring 1991). The estimated water use ef-
ficiency of irrigated vines grown in a shaded glasshouse is 
3.5-4.7 �mol CO2 �mol H2O-1 (Düring 1988). Under field 
conditions the estimated values range between 2 and 5 
�mol CO2 �mol H2O-1 (de la Hera et al. 2007). 
 
FACTORS AFFECTING GRAPEVINE LEAF 
FUNCTIONAL PERFORMANCE 
 
Light 
 
Leaves of field-grown grapevines are exposed to different 
light intensities during the day according to their position 
on the canopy. Leaves at the outer part of the canopy 
receive high light intensities during the day (sun leaves), 
whereas leaves inside the canopy are generally exposed to 
lower light intensities (shade leaves). Sun and shade leaves 
show distinctly different photosynthetic characteristics, as a 
result of their acclimation to different light intensities. 
Maximum CO2 assimilation rates, stomatal conductance, 
Rubisco activity, light saturation point, light compensation 
point and chl a/b ratio are higher in sun than in shade leaves 
(Table 1). Moreover, the mean leaf blade inclination and 
the leaf thickness are higher in sun than in shade leaves 
(Table 1). Pallioti and Cartechini (2001) estimated quantum 

yield at 0.034 and 0.041 for sun and shade leaves respec-
tively. Due to the low light intensities under which shade 
leaves are grown, they show limited capacity for photoprot-
ective responses such as energy dissipation (Table 1). The 
�-carotene and lutein content and the xanthophyll pool sizes 
of these leaves are generally lower than that of sun leaves 
(Düring 1998; Ortoidze and Düring 2001), although dif-
ferent data have also been reported (Bertamini and Nedun-
chenzhian 2004). Mature shade leaves show 35-40% lower 
values of in vivo nitrate reductase activity, soluble proteins, 
maximum electron transport rate and triose phosphate utili-
zation compared to sun leaves (Bertamini and Nedunchez-
hian 2001; Bertamini and Nedunchezhian 2002; Schultz 
2003b). The above mentioned effects of light regime on 
photosynthetic metabolism of sun and shade leaves may be 
modulated by other factors such as temperature, age, type 
and the stage of the growing season of a leaf (see below). 

As mentioned above, photosynthetic CO2 assimilation 
of sun-exposed leaves of V. vinifera is saturated at light 
intensities of around 800 �mol m-2 s-1, considerably less 
than in full sunlight (around 2000 �mol m-2 s-1). Therefore, 
on sunny days in the field, leaves absorb excessive light 
energy which may cause photooxidative damage to the pho-
tosynthetic apparatus. Indeed, under field conditions, photo-
inhibition of photosynthesis is considered to be a potential 
threat for the grapevine leaves (Chaves et al. 1987; Correia 
et al. 1990). Moreover, the combination of high light inten-
sities with other environmental stress factors, such as severe 
water stress at midday (Düring 1998), extreme temperatures 
(Gamon and Pearcy 1990a, 1990b; Hendrickson et al. 2004), 
and high UV doses (Pfündel 2003), may cause severe photo-
inhibitory damage to PS II (see below; see also Chow et al. 
2005). Fortunately, excess light energy beyond that used to 
drive photosynthetic electron flow may be dissipated by a 
number of protecting biochemical mechanisms. According 
to Chaumont et al. (1995, 1997), the dissipation of excess 
energy as heat through the xanthophyll cycle accounts for 
almost all non-photochemical quenching in V. vinifera 
leaves. It is estimated that, under non-stressful conditions, 
45-64% of the absorbed light energy is dissipated by this 
biochemical cycle, whereas under stress, this proportion 
may rise to 75-92% (Flexas and Medrano 2002; Medrano et 
al. 2002; Hendrickson et al. 2004). Moreover, daily fluc-
tuations of the xanthophyll cycle are associated with the 
degree of photosynthetic depression often observed at noon 
(Chaves et al. 1987; Düring 1991). Consequently, cycle en-
gagement is maximal at noon due to overexcitation of the 
reaction centers (Düring 1999). 

Table 1 Summary of morphological and physiological characteristics related to photosynthetic function of the leaves of V. vinifera grown under different 
light regimes. 

 Sun 
(1500-2000 �mol m-2 s-1)

Shade 
(see references for light conditions) 

References 

Leaf thickness 
(�m) 

120-151 106-131 Ortoidze and Düring 20011 

Leaf inclination 
(degrees) 

81.4 15.4 Palliotti and Cartechini 20012 

Photosynthetic CO2 assimilation rate 
(�mol CO2 m-2 s-1) 

12.7-16.7 8.8-11.4 Ortoidze and Düring 2001 

Stomatal conductance  
(�mol H2O m-2 s-1) 

70-95 45-68 Ortoidze and Düring 2001 

Rubisco activity 
(�mol CO2 mg-1 protein h-1) 

48.6-52.7 34-37.4 Bertamini and Nedunchezhian 20011, 20022

Chlorophyll a/b ratio 2.71-2.8 2,44-2.2 Bertamini and Nedunchezhian 20011, 20022

Light saturation point 
(�mol m-2 s-1) 

806 332 Pallioti and Cartechini 20012 

Light compensation point 
(�mol m-2 s-1) 

60 28 
 

Zufferey et al. 2000; Pallioti and Cartechini 
20012 

Quantum yield 0.034 0.041 
 

Pallioti and Cartechini 20012 

Risk of photoinhibition low high Bertamini et al. 20042; Ortoidze and Düring 
20011 

1shade conditions: leaves taken from the inner part of the canopy, light intensity 80-120 �mol m-2 s-1 
2shade conditions: vines were kept under a black polypropylene cover (40% light transmittance, light intensity 800 �mol m-2 s- 
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Water availability 
 
Soil water deficits affect both the development of young 
leaves and the photosynthetic performance of mature 
leaves. Shoot growth is extremely sensitive to water deficit 
(Keller 2005) and the reduction of the number of leaves on 
branches occurs soon after the beginning of soil drying 
(Lebon et al. 2006). This response may be characterized as 
the first line of defense against extensive water losses and 
is not related to carbon availability, photosynthetic activity 
or the content of soluble sugars of the young expanding 
leaves (Lebon et al. 2006). Cell expansion requires cell 
wall loosening and positive turgor within cells. Young 
leaves posses higher cell wall elasticity than the mature 
ones. This enables cells to maintain a positive turgor, 
enough to allow cell elongation and thus plant growth even 
under mild water stress conditions (Patakas et al. 1997). 
However, severe water stress may cause complete inhib-
ition of leaf growth (Schultz and Matthews 1993; Lebon et 
al. 2006). The inhibition of leaf expansion under these con-
ditions may be attributed to the decreased cell wall exten-
sibility of the cells (Schultz and Matthews 1993). 

Water stress also increases the water use efficiency as 
well as the rates of photorespiration (Düring 1988; Cifre et 
al. 2005). Under mild drought conditions, stomatal closure 
appears to be the main cause for the decrease of the photo-
synthetic activity of the mature grapevine leaves (Flexas et 
al. 1998; Chaves et al. 2002; de Souza et al. 2005). There 
are indications that stomatal responses are linked mostly to 
soil moisture content rather than to leaf water status 
(Chaves et al. 2002; Paranychianakis et al. 2004). The tight 
regulation of stomatal control under mild drought condi-
tions makes stomatal conductance a useful indicator of 
water stress in grapevine (Cifre et al. 2005). Experiments 
with field-grown vines showed that as summer drought 
progresses, stomata respond to ABA produced by the 
water-stressed roots in parallel to the maintenance of the 
leaf water status under constant levels (Correia et al. 1995; 
Stoll et al. 2000). In the long term, stomatal closure is ac-
companied by down-regulation of photosynthetic machi-
nery in order to acclimate to the low CO2 availability. 
Under these conditions, the activity of certain enzymes of 
the Calvin cycle, the apparent quantum yield are reduced 
(Correia et al. 1990; Chaves et al. 2002; Maroco et al. 
2002; Bertamini et al. 2006a) and proline content is in-
creased (Bertamini et al. 2006a). Usually, under field con-
ditions water stress does not induce photoinhibition, even 
when stomatal conductance and photosynthetic rates are 
reduced to very low levels (Flexas et al. 1998; Medrano et 
al. 2002; de Souza et al. 2005). It seems that increased 
electron transport to alternative pathways prevents further 
down-regulation of photochemical reactions. Under these 
conditions, increases in thermal energy dissipation (mainly 
through the xanthophyll cycle) account for up to 90% of 
total energy dissipation (Medrano et al. 2002). High photo-
respiratory activity under drought stress may also provide 
additional protection against photoinhibitory damage 
(Guan et al. 2004). 

Partial drying of the root system may affect shoot 
growth and physiological parameters of the leaves. Photo-
synthetic activity and stomatal conductance are partially 
reduced in response to experimental treatments where one 
half of the root system of the vines is subjected to drought, 
without associated change in shoot water status (Dry and 
Loveys 1999; Dry et al. 2000), although differences may 
be observed between cultivars (de Souza et al. 2005b). 
Hormonal signals, possibly ABA, synthesized by the roots 
of the drying zone are probably transported through the 
transpiration stream to the leaves (Dry and Loveys 1999). 
This manipulation may cause an increase in water use ef-
ficiency of the vines (de Souza et al. 2003, 2005a, 2005b; 
de la Hera et al. 2007). 

It seems, however that ABA is not responsible for 
other stomatal responses, such as the diurnal variation in 
stomatal conductance observed in some cultivars (Correia 

et al. 1995). During the warm days of spring and summer, 
stomatal aperture decreases progressively after a mid-mor-
ning peak (Loveys 1984; Loveys and Düring 1984; Chaves 
et al. 1987; Tenhunen et al. 1987; Düring 1991; Patakas 
1993; Chaumont et al. 1994). This reduction (termed aniso-
hydric behavior) is observed even in well watered plants, 
but is more intense under water stress conditions (Downton 
et al. 1987; Correia et al. 1995; Cuevas et al. 2006). How-
ever other cultivars behave as isohydric plants that maintain 
a near constant leaf water potential during the day, irrespec-
tive of the soil water status. These differences between cul-
tivars may be attributed to differences in hydraulic archi-
tecture mainly of the petiole of the leaves (Schultz 2003a). 
Stomatal closure may prevent embolism in anisohydric 
varieties and the signal could be derived from cavitations 
(Schultz 2003a). These differences between cultivars may 
be responsible for the observed variation in transpiration 
efficiency and carbon isotope discrimination among grape-
vine varieties (Gibberd et al. 2001). 

Under severe drought, photosynthetic metabolism is 
progressively impaired. In contrast to the stomatal limit-
ation under mild water stress, this phenomenon is irrever-
sible (Escalona et al. 1999; Keller 2005). The depression of 
photosynthesis is accompanied only by a slight decrease in 
respiration and thus the carbon balance is disturbed (Keller 
2005). Moreover, the combination of severe water stress 
and high light intensities at midday may cause photoin-
hibitory damage to PS II (Downton 1987; Chaves et al. 
2002). Water-stressed leaves of Vitis californica exposed to 
high light intensities exhibit greater reductions of net CO2 
assimilation rates than water-stressed plants exposed to low 
light intensities (Correia et al. 1990; Gamon and Pearcy 
1990a). 
 
Salinity 
 
Grapevine is referred either as sensitive or relatively resis-
tant to salinity species, depending on the rootstock. A 
morphological symptom of vines under osmotic stress in 
the field is the reduction of leaf area (Ben-Asher et al. 
2006). Salt treatment (90 mM NaCl) causes recoverable 
reduction in shoot growth, photosynthetic activity and 
stomatal conductance (Walker et al. 1981; Downton et al. 
1990). Salinity also causes reduction in the value of carbon 
isotope discrimination (�) and influences N partitioning 
(Gibberd et al. 2003). Vines are able to acclimate to high 
levels of cellular Cl– and leaves are able to tolerate Cl– le-
vels up to 200 mM without sustaining permanent reduction 
in photosynthetic activity (Walker et al. 1981). The de-
crease in photosynthetic activity has been attributed to sto-
matal limitation rather than a toxic effect of Na+ or Cl– on 
the photosynthetic machinery (Downton 1977; Walker 
1981; Downton et al. 1990; Gibbert et al. 2003). The ac-
cumulation of chloride within leaves at levels of about 350 
mM causes necroses in the margins of the leaf blade 
(Downton and Millhouse 1983). 

Reactive oxygen species (ROS) are normally produced 
as by-products of various metabolic processes and scav-
enged by biochemical mechanisms in order to prevent 
damage of sensitive cellular targets. ROS production is 
increased under stress conditions (Apel and Hirt 2004). In 
grapevine cell suspensions, salinity stress results in the 
accumulation of reactive oxygen species (ROS). Moreover, 
under these conditions, increased proteolytic activity results 
in the accumulation of ammonium ions at toxic levels and 
there are indications that produced ROS act as a signal that 
triggers the expression of anionic glutamate dehydroge-
nases to form glutamate that is used for proline synthesis. 
Thus, the increase in the aminating activity of GDH helps 
grapevine cells to detoxify the high concentration of am-
monium ions that is generated by the proteolytic and dea-
minating activities (Skopelitis et al. 2006). Thus, the in-
crease in proline concentration under water stress (Berta-
mini et al. 2006a) may not be directly related to osmoreg-
ulation but to the detoxification of ammonium ions. 
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The relative resistance of grapevine to salt stress is at 
least partially attributed to osmoregulation. There are indi-
cations that under water stress osmotic adjustment is 
achieved by the accumulation of inorganic ions and not of 
soluble carbohydrates (Rodrigues et al. 1993; Patakas and 
Noitsakis 2001; Patakas et al. 2002). 
 
Temperature 
 
Photosynthetic activity of field-grown grapevines usually 
shows a quite broad temperature optimum (between 25 and 
35°C). Generally it declines at temperatures above 35°C, 
but positive activities occur even up to 40°C (Kriedemann 
1968; Williams et al. 1994 and the literature therein; Kadir 
2006). The photosynthetic response of grapevine to high 
temperatures is also strongly genotype-dependent (Kadir 
2006). Dark respiration rate, light saturation point and light 
compensation point respond strongly to temperature, with 
differences between leaf ages (Zufferey et al. 2000). Light 
saturation point increases with temperature, probably due 
to the increase of photorespiratory activity (Iacono and 
Sommer 1996; Zufferey et al. 2000). Light compensation 
point increases strongly with temperature due to differen-
ces in dark respiration rates. The effect is more pronounced 
in young compared to mature leaves (Zufferey et al. 2000). 

Temperature acclimation of leaves after chilling or heat 
stress is crucial for tolerance under temperature extremes. 
Non-acclimated leaves suffer ultrastructural damage in 
mesophyll cells (Zhang et al. 2005). Ca2+ ions are involved 
in the process of acclimation of grapevine mesophyll cells 
to temperature extremes (Wang et al. 2004). Both heat ac-
climation and exogenous salicylic acid application are also 
important factors that determine thermotolerance of grape-
vine leaves. It is probable, therefore, that endogenous sali-
cylic acid play a role in heat acclimation, by inducing the 
activities of related antioxidant enzymes (Wang and Li 
2006). 

Chilling temperatures under controlled conditions 
(between 0 and 15°C) during the night cause photoinhib-
ition, measured by means of Fv/Fm at midday. The ratio of 
variable (Fv) to maximum (Fm) chlorophyll fluorescence is 
a parameter derived from the study of fluorescence yield of 
the PSII reaction center. Decreases in Fv/Fm are associated 
with decreases in PSII intrinsic photochemical efficiency 
(Butler and Kitajima 1975). A marked loss of PSII activity, 
probably due to the loss of D1 and 33kDa proteins of the 
reaction center, is observed (Balo et al. 1991; Bertamini et 
al. 2005a, 2005b, 2006b). However, under field conditions, 
grapevine leaves remain relatively unaffected by low-tem-
perature-induced photoinactivation of PSII. Under these 
conditions, the leaves maintain high levels of quantum 
yield of PSII, despite the reduced energy dissipation by 
both CO2 assimilation and photorespiration. It is suggested 
that the photoprotection is provided mainly through the 
xanthophyll cycle and to a lesser degree through the 
Mehler reaction (Flexas et al. 1999; Hendrickson et al. 
2003). A high intrinsic rate of D1 polypeptide repair is also 
responsible for the resistance of grapevine leaves against 
photoinactivation (Hendrickson et al. 2004). Thus grape-
vine leaves seem to be more resistant to photoinactivation 
at high and low temperatures compared to other species 
(Hendrickson et al. 2004; Chow et al. 2005). 
 
Leaf age and leaf position on the canopy 
 
Maximum rates of photosynthesis in grapevine leaves are 
observed 30-40 days after unfolding (just before or at full 
expansion) and thereafter a gradual decrease occurs (Krie-
demann et al. 1970; Intrieri et al. 1992; Bertamini and Ne-
dunchezhian 2003a). The low photosynthetic activity of the 
young leaves may be due to immaturity of the photosyn-
thetic machinery (Bertamini and Nedunchezhian 2003a, 
2003b), high resistance to CO2 diffusion due to the absence 
of intercellular spaces (Kriedeman et al. 1970) or the oc-
currence of non functional stomata. Young leaves show 

higher values of the light compensation point, higher pro-
portion of xanthophyll cycle pigments, but lower concen-
tration of total chlorophylls per unit area than the mature 
ones (Chaves 1981; Bertamini et al. 2003b).Young leaves 
retain most of the carbon they assimilate before they reach 
ca. 50% of their final size while larger leaves begin to 
export carbohydrates (Williams 1996). Senescent leaves 
show a reduction in the overall photosynthetic rates due to 
marked losses of both PSII and Rubisco activities (Berta-
mini and Nedunchezhian 2003a). According to Petrie et al. 
(2000), the decline in the photosynthetic rate of mature 
leaves may be caused by an increase in the source to sink 
ratio (as measured by the leaf area to fruit weight ratio) due 
to progressive leaf emergence. Remobilization of nitrogen 
(either in inorganic or organic form) occurring in shaded or 
senescing leaves to other parts of the canopy (Keller 2005) 
may also affect photosynthetic rates. 

Leaf position on the canopy also affects photosynthetic 
rates. Middle leaves are the most functional; however on a 
whole-leaf basis the basal, larger leaves show the higher 
contribution (Intrieri et al. 1992). Other positional effects 
such as leaf orientation and mutual shading may determine 
the photosynthetic performance of individual leaves (Wil-
liams et al. 1994). 

Leaf orientation and position on the canopy are impor-
tant determinants of leaf temperature. Differences in micro-
climate between canopy sides resulting in suboptimal leaf 
temperatures may be responsible for limited carbon gain 
and subsequent restricted shoot growth rates (Hendrickson 
et al. 2004). Horizontally restrained leaves are exposed to 
high heat load during summer under field conditions and 
this may cause severe, long-term damage to one or more of 
the partial processes of photosynthesis (Gamon and Pearcy 
1989). Heat load may be a significant stress factor when 
stomata are closed. Leaf movements may protect the photo-
synthetic components during summer extremes. The dec-
rease of the angle between leaf blade and petiole reduces 
the light absorption and thus the overload of absorbed ener-
gy under prolonged water stress or nitrogen limitation (Kel-
ler 2005). 
 
Wind 
 
Wind affects stomata behavior of grapevine leaves by 
reducing stomatal conductance and therefore transpiration 
rates (Kobriger et al. 1984; Campbell-Clause 1998). How-
ever, leaf water potential is not affected by wind treatment 
(Kobriger et al. 1984). For moderate wind speed, stomatal 
conductance is brought back to normal levels within one 
day after wind break, whereas for high wind speed the 
effect on stomatal conductance continues for longer periods. 
No effect is observed on stomatal conductance under mode-
rate wind speed when vines are acclimated under low speed 
wind (Kobriger et al. 1984). In the long-term wind may 
develop asymmetrical canopies due to wind-induced mor-
phogenesis and thus wind may affect light interception 
from leaves, photosynthetic activity and fruit development 
(Tarara et al. 2005). 
 
Mineral nutrition 
 
Among all mineral nutrients, nitrogen is the most important 
for grapevines and may easily limit growth (Keller 2005). 
A linear relationship between percent N content and net 
CO2 assimilation rate expressed either on area or dry 
weight basis exists (Williams and Smith 1985). Nitrogen 
deficiency negatively affects photosynthesis by reducing 
the activity of photosynthetic enzymes, including Rubisco 
(Chen and Cheng 2003). A reduction in chlorophyll content 
and activation of thermal energy-dissipation and antioxi-
dant systems to protect from photo-oxidative damage under 
high light intensities, are also observed (Chen and Cheng 
2003; Keller 2005). Under N limiting conditions, growth 
processes are suppressed more than photosynthesis and this 
leads to the accumulation of carbohydrates in leaves and 
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synthesis of carbon-based secondary metabolites, such as 
anthocyanins, which are accumulated in the petioles and 
the leaf veins (Keller 2005; Grechi et al. 2007). Similar 
symptoms can also be observed under phosphate defici-
ency. P limitation can also cause a reduction in stomatal 
conductance and thus a restriction in cell expansion due to 
water shortage (Keller 2005). 

Iron supply also affects the photosynthetic perfor-
mance of Vitis leaves. Fe limitation causes significant re-
duction in the activities of certain enzymes of Calvin cycle, 
including Rubisco, in the PSII activity and hence in the 
CO2 assimilation rates (Bertamini et al. 2002b; Chen et al. 
2004; Bertamini and Nedunchezhian 2005c). As a result, 
Fe-deficient leaves have lower concentrations of non-struc-
tural carbohydrates (Chen et al. 2004). Under these condi-
tions, photoprotective mechanisms such as the xanthophyll 
cycle and the ascorbate-glutathione antioxidant system are 
enhanced to cope with the excess light absorbed (Smith 
and Cheng 2005). 
 
Fruit load 
 
Net photosynthesis is positively correlated with fruit load 
(Edson et al. 1995; Petrie et al. 2000). On the other hand, 
grapevine leaves are acclimated to fruit loss. Fruit removal 
does not cause any noticeable changes in photosynthetic 
function. Under these conditions the carbon budget of the 
leaves remains unaffected with the synthesis and contents 

of starch and sucrose remaining rather stable (Chaumont et 
al 1994). It seems that although the fruits are the major sink 
for the assimilated carbon, other carbon-requiring processes 
or carbon stores are activated to balance the carbon flow. 
 
STRUCTURE-FUNCTION RELATIONSHIPS AND 
STRESS TOLERANCE 
 
The surface of leaves constitutes the first line of defense 
against external biotic or abiotic stresses. The epidermis 
and the cuticle play an important role in protecting the 
mesophyll against water and carbon losses allowing only 
small amounts of CO2 and water vapor to pass through. The 
cuticle shows a CO2 conductance of only 5.7% that of 
water vapors (Boyer et al. 1997). Therefore, gas exchange 
is essentially absent in leaves with tightly closed stomata 
(Boyer et al. 1997). The cuticle also contributes to pro-
tecting mesophyll tissues against biotic attacks and high 
doses of UV radiation. 

The adaxial epidermis of grapevine leaves contain con-
siderable amounts of phenolic compounds located mainly 
in the vacuoles of the epidermal cells (Kolb and Pfündel 
2005). Synthesis of hydroxycinnamic acids is stimulated by 
high visible light intensities and flavonoid production is 
specifically enhanced by UV radiation (Kolb et al. 2001). 
These substances absorb strongly in the UV region and 
offer considerable protection against the penetration of the 
harmful UV-B radiation into the mesophyll. Thus, the epi-

Fig. 1 Young leaves of Vitis vinifera cv. 
‘Soultanina’ 35 days after emergence 
(DAE). (a), cv. ‘Siriki’, 35 DAE (b) and 
cv. ‘Athiri’ 21 DAE (c). d-f. Light micro-
graphs of hand-cut cross sections of young 
leaves of Vitis vinifera. (d) developing leaf 
of cv. ‘Siriki’ at 28 DAE showing antho-
cyanic pigmentation of abaxial and adaxial 
epidermal cells (red arrowheads). (e, f) 
progression of pubescence in developing 
leaves of cv. ‘Athiri’. At very early stages 
of leaf expansion (14 DAE), hairs appear 
in both adaxial and abaxial surfaces (e). At 
35 DAE, hairs remain only at the abaxial 
leaf surface (f; black arrowheads). Scale 
bar 100 �m. Micrographs taken by Klouva-
tou, A. (see also Liakopoulos et al. 2006). 
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dermis behaves as a selective optical filter that allows the 
penetration of visible radiation, but prevents the penetra-
tion of UV-B and part of UV-A radiation (Karabourniotis 
et al. 1999). 

Morphological characteristics such as the outline, size, 
color, contour, dentation and venation pattern as well as 
the pubescence of the leaves are useful characters for culti-
var description and identification. Some of these characters 
affect the optical properties of the leaves and thus the pho-
tosynthetic performance of a particular cultivar. V. vinifera 
cultivars offer a model system for testing how epidermal 
appendages and/or epidermal pigmentation affect the op-
tical properties of leaves and thus the photosynthetic per-
formance of the lamina. 

In several cultivars, pubescence on the surface and 
anthocyanins in the epidermis are particularly abundant 
during the early developmental stages of the leaves (Fig. 1). 
Transient pubescence or pigmentation is considered as a 
defensive character against photodamage in developing 
leaves, as these are more susceptible to photoinhibition 
compared to the mature ones, due to their immature pho-
tosynthetic apparatus (Jiang et al. 2006; Liakopoulos et al. 
2006). The trichome layer behaves as a light screen that 
reduces the penetration of both UV and visible light into 
the mesophyll (Karabourniotis et al. 1999). Compared to 
glabrous-green leaves, both anthocyanic and pubescent 
leaves of the particular V. vinifera cultivars show greater 
dark-adapted PSII photochemical efficiency, net photosyn-
thetic rates and considerably smaller ratio of xanthophylls 
cycle components and mid-day de-epoxidation state of the 
xanthophyll cycle. These differences were more evident in 
pubescent leaves, indicating that trichomes are more effec-
tive in protecting mesophyll from light stress than a pig-
mented epidermis (Liakopoulos et al. 2006). 

The repeated branching of the veins gives the charac-
teristic palmate venation of the leaf. V. vinifera leaves are 
heterobaric: at least the main veins consist of the vascular 
bundle surrounded by a sheath which creates extensions 
(bundle sheath extensions, BSEs) to the epidermis on both 
sides of the leaf forming transparent regions in the leaf 
blade. Thus, the mesophyll of grapevine leaves is separated 
into many small compartments termed ‘aeroles’ or ‘BSE 
compartments’ (Terashima 1992). The occurrence of BSEs 
in V. vinifera leaves has two consequences: A) each aerole 
behaves as an autonomous photosynthetic compartment 
that closes or opens its stomata according to environmental 
(light intensity, water availability, salinity, atmospheric 
humidity) or internal (ABA) signals (Downton et al. 1988a, 
1988b, 1990; Düring 1992; Düring and Loveys 1996; Dü-
ring and Stoll 1996a, 1996b). Thus, under stress conditions, 
some aeroles have open stomata while others have not. 
This non-uniform stomatal closure pattern (stomatal pat-
chiness) causes heterogenous gas exchange and a reduction 
in photosynthetic activity on a whole leaf basis. This al-
lows a more tight control of water losses and may be bene-
ficial under stress conditions. B) The pigment-free bundle 
sheath extensions of V. vinifera leaf create transparent ribs 
which surround the photosynthetic parenchyma cells. 
These structures behave as ‘windows’ transferring visible 
light within the internal layers of photosynthesizing meso-
phyll cells (Karabourniotis et al. 2000). The light environ-
ment in the interior of each aerole is enriched and the pho-
tosynthetic performance is increased accordingly (Nikolo-
poulos et al. 2002). 

The particular mesophyll anatomy of the leaves of each 
cultivar may also affect the photosynthetic performance 
(Patakas et al. 2003a). Patakas et al. (2003b) proposed that 
differences in parameters such as the fraction of mesophyll 
volume represented by the intercellular spaces and the sur-
face area of mesophyll cells exposed to intercellular air-
spaces may be responsible for the observed differences in 
photosynthetic rates between different cultivars. 

Calcium oxalate crystals, in the form of raphide bun-
dles, occur in specialized cells (idioblasts) within meso-
phyll of grapevine leaves (Fabbri et al. 1992; Arnott and 

Webb 2000; Jauregui-Zuniga et al. 2003; de Bolt et al. 
2004). Raphides develop within an organic matrix which 
provides control for crystal formation. The matrix consists 
of two structural phases, membrane chambers enclosing de-
veloping crystals and a water-soluble phase (containing an 
unusual polymer with glucuronic acid linkages and inor-
ganic ions, mainly calcium and potassium) surrounding the 
crystal chambers. Both crystal chambers and matrix contain 
proteins that promote crystal nucleation (Webb et al. 1995). 
It is believed that raphides are cellular sites of calcium 
sequestration and that they take part in the defense against 
herbivores. 
 
CONCLUDING REMARKS 
 
Recent advances in plant science have revealed many 
aspects of the ability of V. vinifera to adapt and/or acclimate 
across different environments. Recent work has identified 
three CBF genes as well as two dehydrin genes, related to 
freezing and drought tolerance, that are expressed as a res-
ponse to stimulants related to tissue dehydration, namely 
cold, salinity, drought or ABA treatment (Xiao and Nassuth 
2006; Xiao et al. 2006). More information at the molecular 
level on responses related to stress tolerance is urgently 
needed to assist in producing highly tolerant grape cultivars.  
At the physiological level, several aspects of the adaptab-
lity of grapevine to various stressful regimes are primarily 
ascribed to the efficiency of the photosynthetic machinery 
and the strategic water management of the plant. Grapevine 
cultivars show markedly different physiological and mor-
phological characteristics which will be evaluated and em-
ployed to design improved plants in the near future. Re-
search projects focusing on the correlation between structu-
ral and functional aspects, especially under field conditions, 
will promote the improvement of the grapevine crop yield. 
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