Phytochemical Composition of *Brachystegia eurycoma* and *Mucuna flagellipes* Seeds

Donatus Ebere Okwu • Ezinne Okoro

Department of Chemistry, Michael Okpara university of Agriculture, Umudike, P.M.B 7267, Umuahia, Abia State, Nigeria

ABSTRACT

Brachystegia eurycoma and *Mucuna flagellipes* seeds, which are commonly used as soup condiment and flavoring agents in South Eastern Nigeria were analyzed for their chemical composition. Phytochemical studies revealed the presence of bioactive compounds comprising flavonoids (2.24-6.23 mg.100 g\(^{-1}\)), alkaloids (0.50-0.77 mg.100 g\(^{-1}\)), phenolic compounds (0.05-0.07 mg.100 g\(^{-1}\)), saponins (0.46-0.79 mg.100 g\(^{-1}\)) and tannins (0.13-0.16 mg.100 g\(^{-1}\)). The protein, carbohydrate, lipid and fiber content were 7.0-10.50%, 71.74-72.02%, 4.20-8.34% and 3.76-6.60%, respectively. The seeds are a good source of water-soluble vitamins, ascorbic acid (4.84-10.12 mg.100 g\(^{-1}\)), thiamine (0.05-0.13 mg.100 g\(^{-1}\)), riboflavin (0.13-0.22 mg.100 g\(^{-1}\)) and niacin (0.19-0.36 mg.100 g\(^{-1}\)). Both plant samples are good sources of minerals such as Ca, P, K, Mg, Na, Zn, Fe and Cu, while Pb and Co were not detected.

Keywords: chemical composition, flavonoids, Leguminosae, nutraceutical, saponins, tannins

INTRODUCTION

Nigeria is blessed with indigenous plants of medicinal and nutritional importance. Some of these are used as condiments, flavoring agents and as a soup thickener. Apart from their thickening and flavoring properties in soup, these plants exhibit a wide range of biological and physiological activities, namely anti-hypertensive, anti-inflammatory, anti-microbial, anti-diabetic and anti-carcinogenic. Among these plants are *Mucuna flagellipes* and *Brachystegia eurycoma* Harms, both Leguminosae.

B. eurycoma and *M. flagellipes* are Nigerian food crops used as flavoring agents and as a soup thickener (Ene-Obong and Carnovale 1990; Enwere 1998; Ene-Obong 2001).

B. eurycoma grows mainly along riverbanks or swamps but also on well-drained soils. It is a large tree with an irregular bole and huge-twisted, spreading branches, which forms a generous canopy (Enwere 1998). It also possesses a rough fibrous bark, which peels off in patches and often gives out brownish buttery exudates (Keay 1998). It flowers between April and May. The fruit occurs as broad leathery dark purplish brown pods containing between four and six brown shiny flat disc-like seeds (Keay 1989; Enwere 1998; Fig. 1A). Despite the fact that it exudes a gum, it is also used for its timber. The seeds have thin testa, which does not withstand long soaking in water (Burkik 1995). The seed is processed into flour, which is used as a soup thickener. A thickening and flavoring property in soup is its tendency to darken in color after food preparation and exposure to air ambient temperature (Enwere 1998). Soups thickened with *M. flagellipes* flour darken after preparation. It is among the thickeners consumed in South Eastern Nigeria (Ene-Obong and Carnovale 1990; Ene-Obong 2001). *Mucuna* has also been used as a uterine stimulant and as an aphrodisiac (Ezueh 1997).

Fig. 1 (A) Brachystegia eurycoma and (B) Mucuna flagellipes.

In Nigeria, other varieties like *M. sloaneri* have been cooked for pregnant women to avoid miscarriages (Ezueh 1997). Odoh et al. (2005) reported on the blood sugar-lowering effect of gum extract of *M. sloaneri* seed, which is widely used in Nigeria for the management of diabetes.
mellitus (Odoh et al. 2005). A variety of phenolic compounds have been isolated from *M. flagellipes*. The most important are catechins, cinamic acid ester, 3,4-dihydroxyphenolamine (DOPA), and tyrosine (Sapers 1993), aromatic acids, quinones and cinamic acids (Walker 1976, 1995). In spite of the various uses of *B. eurycoma* and *M. flagellipes* as food additives, food thickener and condiments in Nigeria, their constituents have not been fully documented with respect to their phytocchemical composition. The present study was undertaken to evaluate the chemical constituents of *B. eurycoma* and *M. flagellipes* and to consequently assess their potential usefulness as food supplements and pharmaceutical raw materials for drug formation.

MATERIALS AND METHODS

Seeds were purchased from Ndro market, Ikwunando, Abia State, Nigeria. The plant material were identified and authenticated by Dr. A. Meregini of the Taxonomy Section, Forestry Department, Michael Okpara University of Agriculture, Umudike. Voucher specimens were deposited in the Forestry Department, Herbarium of Michael Okpara University of Agriculture, Umudike.

Mature seeds of *M. flagellipes* and *B. eurycoma* were each weighed (400 g). The testa of mature seeds of *M. flagellipes* were broken with a hammer, and the flattened cotyledons (400 g) were sufficiently cooked to tenderize them, then ground into uniform flour using a Thomas-Wiley mill machine (model Ed-5, USA). The flour was then dried and stored for up to three months in airtight bottles (yield = 298.95 g).

Chemical analysis

Total nitrogen (N) content was determined by the use of a Microkjeldahl MD 55 (Singapore) apparatus. The protein content was calculated as N \times 6.25. Crude fat (ether extract), crude fiber and ash content were determined according to the methods of AOAC (1984). Total carbohydrates were estimated as the remainder after accounting for ash, crude fiber, protein and fats (Muller and Tobin 1984). Total carbohydrates were estimated according to the methods of Osborne and Voogt (1978), by using the equation:

\[
FE = (%CP \times 4) + (%CHO \times 4) - (%Fat \times 9)
\]

where: \(FE \) = food energy (in g calories), \(Cp \) = crude protein and \(CHO \) = carbohydrates.

The major elements were comprised of calcium, phosphorus, sodium, potassium, magnesium and trace elements (iron, copper, zinc and lead), all of which were determined according to the method of Shahidi et al. (1999).

Phosphorus content of the digest was determined colorimetrically according to the method described by Nahapetain and Basiri (1995).

Alkaloids and phenols were determined according to the method of Harborne (1973) while tannin was determined using the method of van Burden and Robinson (1981). Saponin was determined using the method of Obadoni and Ochuku (2001). Flavonoids were determined according to the method of Boham and Kocipa (1994).

The B-complex vitamins (thiamine, riboflavin and niacin) were determined according to the methods of SK-ALAR Analyzers (2000) while ascorbic acid (Vitamin C) was determined using the method of Baraket et al. (1993).

Statistical analysis

All measurements were replicated three times and standard deviations determined. The Turkey’s student t-test at \(P \geq 0.05 \) was applied to assess the difference between the means (Steel and Torrie 1980).

RESULTS AND DISCUSSION

The phytochemical content of *B. eurycoma* and *M. flagellipes* is shown in Table 1. The flavonoid content was very high in *M. flagellipes* (6.23 mg.100 g\(^{-1}\)) but lower in *B. eurycoma* (2.24 mg.100 g\(^{-1}\)). Flavonoids are a widely distributed group of polyphenolic compounds, characterized by a common benzopyrone ring structure that has been reported to act as an antioxidant in many biological systems. The various biological functions of flavonoids, apart from their antioxidant property, include protection against allergies, inflammation, free radicals, platelet aggregation, microbes, ulcers, hepatopins, viruses and tumors (Okwu and Okwu 2004; Okwu and Omodamo 2003; Okwu and Ndu 2006). Another secondary metabolic constituent of *B. eurycoma* and *M. flagellipes* seeds that was detected was saponin. Saponin was found in *M. flagellipes* seeds at 0.79 mg.100 g\(^{-1}\) while 0.46 mg.100 g\(^{-1}\) was detected in those of *B. eurycoma*. Some of the general characteristics of saponins include the formation of foams in aqueous solutions, hemolytic activity, cholesterol binding properties and bitterness (Sodipo et al. 2000).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Phytochemical composition of Brachystegia eurycoma and Macu- ma flagellipes seeds on a dry weight basis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytochemical</td>
<td>Brachystegia eurycoma</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>0.50 ± 0.10</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>2.24 ± 0.20</td>
</tr>
<tr>
<td>Tannins</td>
<td>0.13 ± 0.11</td>
</tr>
<tr>
<td>Saponins</td>
<td>0.46 ± 0.20</td>
</tr>
</tbody>
</table>

Data are means ± standard deviation of triplicate determinations on a dry weight basis. Means followed by the same superscript in each row are not significant (P>0.05).

B. eurycoma has more phenol (0.7 mg.100 g\(^{-1}\)) than *M. flagellipes* (0.05 mg.100 g\(^{-1}\)). Phenolic compounds from plant extracts act as an antimicrobial agent (Ofokansis et al. 2005). The darkening of soup is due to the oxidation of phenolic constituents, especially o-hydroxy or trihydroxy phenolics, by a phenol oxidase present in the tissue of *M. flagellipes*. The presence of polyphenols such as L-Dopa (3,4 dihydroxyphenylalanine) and other micro-chemicals available in *M. flagellipes* may be responsible for its uses in herbal medicine and its ability to cause soup darkening. The presence of phenols indicates that *B. eurycoma* and *M. flagellipes* could act as anti-inflammatory, anti-clotting, anti-oxidant, immune enhancement and hormone modulators (Okwu and Omodamo 2005).

A good amount of alkaloids were found in *M. flagellipes* (0.77 mg.100 g\(^{-1}\)) while 0.50 mg.100 g\(^{-1}\) of alkaloids were available in *B. eurycoma*. Pure, isolated plant alkaloids and their synthetic derivatives are used as a basic medicinal agent for its analgesic, anti-psamodic and bacterial effects (Okwu and Okwu 2004; Okwu 2005). They exhibit marked physiological activity when administered to animals. Most plant parts used in the cure of diseases have been reported to contain traces of alkaloids. For instance Azadirachta indica used in the cure of malaria contains alkaloids (Stray 1998). Quinine, isolated from *Cinchona* bark is the oldest known effective anti-malarial agent (Vollhard and Schone 1994). The content of these phytochemicals are fairly similar to those of *Glycine max* (soybean) (Iwe 2003) and Nigerian legume seeds namely bambara groundnut, kidney bean, lima bean, pigeon pea, jack bean and *Vigna unguiculata* (cow-pea) (Apata and Ologho 1994).

The seeds of *B. eurycoma* and *M. flagellipes* have a high content of protein, carbohydrates, lipids and minerals (Tables 2, 3). The highest amount of crude protein (10.50%) was found in *M. flagellipes* while *B. eurycoma* contained 7%. Plant protein may be consumed as whole plants or leaves, raw, dried or cooked (Okwu 2006). These flavoring agents are not only rich in protein but also calories. *B. eurycoma* had the highest energy of 390.8 \(10^{1}\). The high-energy value in *B. eurycoma* is due to its high lipid content of 8.54%. The total carbohydrates available in the
Table 2 Proximate composition and energy content of Brachystegia eurycoma and Mucuna flagellipes seeds on a dry weight basis (mg.100 g-1).

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Brachystegia eurycoma</th>
<th>Mucuna flagellipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein N X 6.25%</td>
<td>7.00 ± 0.10a</td>
<td>10.50 ± 0.11a</td>
</tr>
<tr>
<td>Crude fibre %</td>
<td>3.76 ± 0.20a</td>
<td>6.60 ± 0.20a</td>
</tr>
<tr>
<td>Lipids %</td>
<td>8.54 ± 0.11a</td>
<td>4.20 ± 0.02a</td>
</tr>
<tr>
<td>Ash %</td>
<td>8.96 ± 0.20</td>
<td>6.68 ± 0.03</td>
</tr>
<tr>
<td>Carbohydrates %</td>
<td>71.74 ± 0.10a</td>
<td>72.02 ± 0.20a</td>
</tr>
<tr>
<td>Food energy (g/calories)</td>
<td>391.82 ± 0.10a</td>
<td>367.88 ± 0.11a</td>
</tr>
</tbody>
</table>

1 Data are means ± standard deviation of triplicate determinations on a dry weight basis. Means followed by the same superscript in each row are not significant (P<0.05).

Table 3 Mineral composition of Brachystegia eurycoma and Mucuna flagellipes seeds on a dry weight basis (mg.100 g-1).

<table>
<thead>
<tr>
<th>Macro elements (%)</th>
<th>Brachystegia eurycoma</th>
<th>Mucuna flagellipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>1.61 ± 0.20</td>
<td>1.81 ± 0.20</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.94 ± 0.11a</td>
<td>1.25 ± 0.13a</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.83 ± 0.10a</td>
<td>0.62 ± 0.11a</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.52 ± 0.01a</td>
<td>0.49 ± 0.20</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.14 ± 0.20</td>
<td>0.23 ± 0.20</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.20a</td>
<td>6.60</td>
</tr>
<tr>
<td>Zinc</td>
<td>1.20 ± 0.20</td>
<td>1.70 ± 0.30</td>
</tr>
<tr>
<td>Pb</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Co</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

1 Data are means ± standard deviation of triplicate determinations on a dry weight basis. Means followed by the same superscript in each row are not significant (P<0.05).

Table 4 Vitamin content of Brachystegia eurycoma and Mucuna flagellipes seeds on a dry weight basis (mg.100 g-1).

<table>
<thead>
<tr>
<th>Vitamins (mg.100 g-1)</th>
<th>Brachystegia eurycoma</th>
<th>Mucuna flagellipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascorbic acid (Vitamin C)</td>
<td>10.12 ± 0.10a</td>
<td>4.84 ± 0.20</td>
</tr>
<tr>
<td>Niacin (Nicotinic acid)</td>
<td>0.36 ± 0.01a</td>
<td>0.19 ± 0.01a</td>
</tr>
<tr>
<td>Riboflavin (Vitamin B2)</td>
<td>0.23 ± 0.20a</td>
<td>0.13 ± 0.10a</td>
</tr>
<tr>
<td>Thiamin (Vitamin B1)</td>
<td>0.13 ± 0.11a</td>
<td>0.05 ± 0.20a</td>
</tr>
</tbody>
</table>

1 Data are means ± standard deviation of triplicate determinations on a dry weight basis. Means followed by the same superscript in each row are not significant (P<0.05).

seeds are very high, with M. flagellipes and B. eurycoma recording 72.02% and 71.74%, respectively. The amount of crude fiber was high with M. flagellipes having 6.60% fiber content. M. flagellipes therefore not only acts as food thickener but also as a dietary fiber, which, among other things and enhances frequent waste elimination including bile acids, sterols and fats (Akobundu 1999). The mineral content of both seeds is shown in Table 3. Calcium was the most abundant macro element present. Iron was present at 125.85 mg.100 g-1 in B. eurycoma, while M. flagellipes contains 92.10 mg.100 g-1 of iron. Zinc content was 1.70 and 1.20 mg.100 g-1 in B. eurycoma and M. flagellipes, respectively. The zinc content could mean that the seeds can play a valuable role in the management of diabetes, which results from insulin malfunctioning. Zinc is vital for the production of insulin, a hormone and carbonic anhydride, an enzyme in the body (Okwu 2005). A high content of iron (125.85 mg.100 g-1) was observed in B. eurycoma while M. flagellipes contained 92.10 mg.100 g-1. Iron is a component of hemoglobin. It helps oxygen transport. Iron, together with hemoglobin and ferroxdin plays an important role in a man’s metabolism by transporting oxygen within the body (Okwu 2006). However, the lower sodium content in these seeds might be an added advantage due to the direct relationship of sodium intake with hypertension in humans (Dahl 1974).

Lead and cobalt were not detected in the two seeds. Calcium was the most abundant microelement in the seeds with B. eurycoma having 1.61 mg.100 g-1 and M. flagellipes contained 1.81 mg.100 g-1. Normal extra-cellular calcium concentrations are necessary for blood coagulation (Okaka and Okaka 2001). Thus the potential of M. flagellipes and B. eurycoma to stop bleeding and their use in treating osteoporosis in herbal medicine could be as a result of high calcium content. Results of the analysis of B. eurycoma and M. flagellipes showed that the seeds are rich in vitamins (Table 4). Riboflavin, thiamin and niacin were also detected in both seeds.

The use of high performance liquid chromatography (HPLC), gas chromatography (GC) and mass spectrophotometery (MS) allows for the identification and quantification of relevant secondary metabolites. These equipments allow the development of micro separation techniques. HPLC and GC-MS permits the combination of powerful separation techniques with sophisticated structural elucidation and isolation devices (Seger et al. 2005). However, this equipment is very expensive and can not be afforded in many analytical laboratories. We have adopted and adapted alternative methods that are cheap and affordable to analyze medicinal plants and plant-derived phytopharmaceuticals. These methods also permit the identification and quantification of relevant secondary metabolites but could not produce structural elucidation of the compounds as HPLC and GC-MS.

Using the proximate, phytochemical, mineral and vitamin composition as approximate indices for the expression of the nutritional quality, it would appear that B. eurycoma and M. flagellipes lay in the range between most legumes such as Glycine max (soybeans), Vigna unguiculata (cowpea), bambara groundnut, kidney bean, lima bean (Apata and Ologhobo 1994). The outcome of this investigation has greatly elucidated the nutritional composition of the seeds of M. flagellipes and B. eurycoma as quality food with good medicinal properties. The nutritional and health benefits of M. flagellipes and B. eurycoma place these crops in an excellent position for utilization as nutraceuticals. The pharmaceutical and nutraceutical industries should undertake innovative research into the potential use of these plants for food and drug formulation.

REFERENCES

Odoh UE, Ezegwu CO, Ajali U (2005) Blood sugar lowering effect of gum

105
extract of *Mucuna sloani* Fawc & Rendle (Fam. Papilionaceae) seed. *Bio-
Research* 3, 49-51

Ofokansi KC, Esimone CO, Anele CK (2005) Evaluation of the *in vitro* com-
bined antibacterial effects of the leaf extract of *Bryophylum pinnatum* (Fam.
Crassulaceae) and *Ocimum gratissimum* (Fam: Labiate). *Plant Root Re-
search Journal* 9, 23-27

Okaka JC, Okaka ANO (2001) Food Composition, Spoilage and Shelf-Life
Extension, Ojejacko Academic Publisher, Enugu, Nigeria, pp 54, 56

Okwu DE (2004) Phytochemicals and vitamin content of indigenous spices of
South Eastern Nigeria. *Journal of Sustainable Agriculture and Environment* 6, 30-37

Okwu DE, Okwu ME (2004) Chemical composition of *Spondias mombin*
Linn. plant parts. *Journal of Sustainable Agriculture Environment* 6, 140-147

Okwu DE (2005) Phytochemicals, vitamins and mineral contents of two Nige-
rian medicinal plants. *International Journal of Molecular Medicine and Ad-
vanced Sciences* 1, 375-381

Okwu DE (2006) The potentials of *Ocimum gratissimum*, *Pogaria stricta* and
Tetraplura tetraperta as spice and flavouring agents. *Journal of the Chemical
Society of Nigeria* 31, 38-42

Okwu DE, Omodamiro OD (2005) Effect of hexane extract and phytoche-
metal content of *Xylopia aethiopica* and *Ocimum gratissimum* on uterus of
guinea pig. *Bio-Research* 3, 40-44

Okwu DE, Emenike IN (2006) Evaluation of the phytonutrients and vitamin
contents of citrus fruits. *International Journal of Molecular Medicine and Ad-
vanced Science* 2, 1-6

of some varieties of yam (*Dioscorea* sp.). *International Journal of Molecular
Medicine and Advanced Science* 2, 199-203

Osborn DR, Voogt P (1978) Calculations of Calorific Value in the Analysis of
Nutrients in Roots, Academic Press, New York, pp 239-244

Sapers GM (1993) Browning of foods; control by sulfites antioxidants and
other means. *Institute of Food Technologists. Expert Panel and Food Safety
and Nutrition*, pp 1-9

SKALAR Analyzers (2006) Segmented Flow Analyzer for Analytical Process
Laboratories, The Netherlands, pp 45, 50, 60

Seger C, Godejohann M, Tseng L, Spraul M, Girtier A, Sturm S, Stuppner
H (2005) LC-DAD-MS/SPE-NMR Hyphenation. A tool for the analysis of
pharmaceutically used plant extracts; identification of isobaric iridoid glyco-
side regioisomers from *Harpagophytum procumbens*. *Analytical Chemistry* 77, 878-885

Shahidi F, Chavan UD, Bal AK, Mckenzie OB (1999) Chemical composition
of beach pea (*Lathyrus maritimus* L.). *Plant Parts and Food Chemistry* 64,
39-44

Sodipo OA, Akinyi JA, Ogunbomoro JV (2000) Studies on certain charac-
teristics of extracts of bark of *Pansinystalia macrocerus* (K. Schemp) Pierre

Special Reference to Biological Science, McGraw-Hill, New York, 481 pp

Intl., London, pp 12-16

van Burden TP, Robinson WC (1981) Formation of complexes between prot-
ein and tannic acid. *Journal of Agriculture and Food Chemistry* 1, 77-82

Vollhardt KPC, Schone NE (1994) *Organic Chemistry*, WCH Freeman and
Co., New York

In: Lee CY, Whitaker JR (Eds) *Enzymatic Browning and its Prevention*, ASC
Symposium series 608, America Chemical Society, Washington DC, pp 8-22

Walker JRI (1976) The control of enzymatic browning in fruits juices by cin-
namic acids. *Journal of Food Technology* 11, 341-345