Garlic Breeding System Innovations

S-J. Zheng1 • R. Kamenetsky2 • L. Féréol3 • X. Barandiaran4 • H. D. Rabinowitch5 • V. Chovelon6 • C. Kik7

1 Wageningen University and Research Centre, Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, the Netherlands
2 The Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel
3 CIRAD-FLHOR, Ta50/PS4, Boulevard de la Lironde, 34398 Montpellier Cedex 5, France
4 Dominon Biotecnología, C/. Josefa Valcarcel 3-5, 28027 Madrid, Spain
5 The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, P.O. Box 12, Rehovot 76100
6 INRA, Pathologie Vegetale, BP 94, 84143 Montfavet, France
7 Wageningen University and Research Centre, Centre for Genetic Resources, the Netherlands (CGN), P.O. Box 16, 6700 AA Wageningen, The Netherlands

Corresponding author: * chris.kik@wur.nl

ABSTRACT

This review outlines innovative methods for garlic breeding improvement and discusses the techniques used to increase variation like mutagenesis and in vitro techniques, as well as the current developments in florogenesis, sexual hybridization, genetic transformation and mass propagation. Sexual sterility of garlic reduces its potential for improvement of desired traits. Restoring fertility in this crop, which has been vegetatively propagated for millennia, provides new genetic possibilities for breeding purposes and/or genetic studies. In this context the recent developments on the manipulation of garlic florogenesis are discussed and it is shown that specific environmental conditions might allow for fertility restoration and seed production in bolting garlic. Furthermore the introduction of Agrobacterium-mediated and biolistic gene transfer systems in garlic, a species known for its recalcitrant behaviour in in vitro culture, are reviewed. Attention is paid to the development of a high quality callus year-round production method for transformation. Also the first garlic transgenics resistant to beet armyworm (Spodoptera exigua) and herbicides will be introduced. Garlic friable embryogenic calluses are of pivotal importance for the establishment of cell suspension cultures needed for rapid multiplication of elite garlic genotypes. The development of these suspension cultures are discussed in this review. It is shown that a large number of somatic embryos (potentially 8 x 10^3 to 10^4) can be produced annually, from a single clove, for each current variety and that the conversion into plantlets amounts approximately 50%.

Keywords: embryogenic suspension cultures, fertility restoration, florogenesis, genetic transformation, sexual hybridization

Abbreviations: AFLP, amplified fragment length polymorphism; GFP, green fluorescent protein; GLUAICS, γ glutamyl allyl L cysteine; GMO, genetically modified organism; GUS, β-glucuronidase; LYSV, leek yellow stripe virus; OYDV, onion yellow dwarf virus; PCV, packed cell volume; QTL, quantitative trait locus; RAPD, randomly amplified polymorphic DNA; SNP, single nucleotide polymorphism; SSR, simple sequence repeat

CONTENTS

INTRODUCTION... 6
MUTAGENESIS AND SOMACLONAL VARIATION ... 7
SEXUAL HYBRIDIZATION ... 7
Florogenesis... 7
Fertility restoration and seed production.. 8
GENETIC TRANSFORMATION... 9
Regeneration systems .. 9
Transformation systems ... 9
ELITE LINE MASS PROPAGATION THROUGH EMBRYOGENIC CELL SUSPENSION CULTURES ... 10
Establishment of embryogenic suspension cultures.. 10
Plant regeneration.. 12
CONCLUDING REMARKS .. 12
ACKNOWLEDGEMENTS ... 13
REFERENCES... 13

INTRODUCTION

Garlic is a diploid (2n=2x=16) predominantly cross-fertilizing species. Garlic however has lost its blooming potential and fertility already millenia ago and thus vegetative propagation is the sole production system used. Consequently garlic breeding has been limited to the selection of the pre-existing genetic variability and increase in garlic variability was attempted via mutation breeding and in vitro techniques, however with very limited successes. In recent years increase in garlic variability is sought via sexual hybridization and genetic transformation. In all cases, an efficient mass propagation system is needed for multiplication of selected elite material for commercial purposes. In this review, the current status of mutation breeding, somaclonal variation, sexual hybridization, genetic transformation and mass propagation in garlic will be discussed.
MUTAGENESIS AND SOMACLONAL VARIATION

Natural occurring variation originates from two sources namely genetic recombination and mutation. Domestication of garlic involved the selection of genotypes with strong vegetative development and bulb production. This selection process decreased generative reproduction and resulted in the development of almost only asexually propagating garlic cultivars. How long this situation is already occurring is not known, but it can most probably safely be stated that genetic recombination did not contribute much to the increase of variation in the garlic gene pool over the last thousands of years. No information is available on the effects of natural occurring mutations in garlic.

Reports dealing with mutation breeding research in garlic are very scarce. Al-Safadi et al. (2000) showed that via the use of gamma irradiation (4-7 Gray) the resistance to white rot (caused by Sclerotium cepivorum) could be improved. In cultivar ‘Kisswany’ the infection by white rot could be reduced to 3% as compared to 29% in the control, in cultivar Yabroudy these figures amounted less than 5% white rot infection for mutant lines versus 20% infection for the control. Recently Taner et al. (2005) determined the effective dose for Cesium-137 around 4.5 Gray for mutation breeding in garlic.

Induction of somaclonal variation in garlic and its use in plant breeding was scarcely carried out. In vitro culture of various garlic tissues, like bulb plate, inflorescences and apical meristems, resulted in genetically uniform plants. A callus phase on the like bulb plate, inflorescences and apical meristems, resulted in direct organogenesis in the absence of a dedifferentiation process decreased generative reproduction and resulted in the development of almost only asexually propagating garlic cultivars. How long this situation is already occurring is not known, but it can most probably safely be stated that genetic recombination did not contribute much to the increase of variation in the garlic gene pool over the last thousands of years. No information is available on the effects of natural occurring mutations in garlic.

In vitro culture was primarily aimed at the rapid propagation of elite material (for review see Novak 1990). Novak (1990) concluded that direct organogenesis in the absence of a dedifferentiating callus stage in in vitro culture of various garlic tissues, like bulb plate, inflorescences and apical meristems, resulted in genetically uniform plants. A callus phase on the other hand often leads to somaclonal variation. In this context, Al-Zahim et al. (1999) showed that basal plate callus cultures generated significant somaclonal variation of five garlic cultivars as determined by RAPD and karyotype analyses. Via RAPD analyses it was found that the frequency of variant RAPD fragments was around 0.63%. Karyotype analyses indicated that 16% of the regenerants were abnormal (non-diploids). Comparing these data with data from other plant species indicated that stress due to in vitro conditions has a considerable impact on the genome constitution of garlic (Al-Zahim et al. 1999).

SEXUAL HYBRIDIZATION

Florogenesis

Similar to many geophytes (Flaishman and Kamenetsky 2006), garlic florogenesis consists of five distinct phases: meristem transition from vegetative to reproductive stage, scape elongation, inflorescence differentiation, completion of floral development, and anthesis (Kamenetsky et al. 2004b). In garlic, the apical meristem may undergo any of the following developmental processes: (1) initiation of an incomplete leaf, cessation of growth activity, and finally degeneration; (2) formation of a dormant clove; (3) initiation of a spathe (prophyll), followed by the formation of a floral meristem and inflorescence differentiation (Takagi 1990). The transition of the apical meristem from a vegetative to a reproductive state occurs in the field, during the active growth stage (Kamenetsky and Rabinowitch 2001).

In general, the garlic inflorescence can be described as an umbel-like flower arrangement, whose branches (flower clusters) arise from a common meristem. An initial elongation of the flower stalk precedes the spathe (prophyll) formation and the swelling of the floral meristem. The differentiation of floral initials begins only after the scape reaches 5-7 mm in length and the apex diameter exceeds 0.5 mm. Later, the apical meristem subdivides to form several swellings, each of which gives rise to a number of individual flower primordia. Concomitantly, leaf-like membranous bracts appear at the periphery of the inflorescence, and grow faster than the developing floral primordia. The differentiation of individual flowers begins when the inflorescence meristem reaches a diameter of about 2-3 mm (Kamenetsky and Rabinowitch 2001; Fig. 1A-C).

In the individual flower, each perianth lobe and the subtended stamen arise simultaneously from a single primordium, as in bulb onion (Jones and Emsweller 1936; Esau 1965; de Mason 1990), shallot (Krontal et al. 1998) and other Allium species (Kamenetsky and Rabinowitch 2002). Following differentiation of the outer perianth lobes and stamens, the inner whorl is differentiated, and the carpels are initiated when the outer perianth lobes overarch the stamens (Kamenetsky and Rabinowitch 2001). In some garlic cultivars, e.g., the Japanese ‘Shanhai-wase’, floral malformations and abnormal formation of embryo sacs may occur during flower differentiation (Etoh 1985).

When floral pedicels elongate and the inflorescence becomes spherical, new undifferentiated meristicomes become visible at the periphery of the inflorescence. These quickly differentiate and develop into small inflorescence bulbs (topsets) (Kamenetsky and Rabinowitch 2001; Fig. 1D), which intermingle with the young flowers and physically squeeze the developing floral buds, thus causing their degeneration (Fig. 1E). Therefore, in some garlic clones, a perpetual removal of the developing topsets resulted in the development of a small number of normal flowers some of which produced viable pollen and seed (Konvicka 1984; Etoh et al. 1988; Poole and Simon 1994; Jenderek 1998; Jenderek and Hannan 2000; Kamenetsky and Rabinowitch 2002; Simon and Jenderek 2004).

Gustafsson (1946, 1947; cited by Etoh 1985) assigned Allium species to the group of viviparous plants, in which topsets (bulbils) develop instead of flowers or intermingle with flowers in the inflorescence. Later sterility was as-
sumed to result from competition for nutrients, between floral and vegetative buds (topsets) in the developing inflorescence (Koul and Gohil 1970); degeneration of the tapetum (Novak 1972) or degenerative-like diseases, induced by organisms such as rickettsia, mycoplasma and/or viruses (Konvicka 1973).

In garlic, differentiation of topsets begins in the periphery of the apex. Size, number and pace of development vary with genotype. Following flowering, topsets develop quickly and, in most cases, with consequent degradation and abortion of the developing flower buds. Different morphotypes vary in the ratio between flower and topset buds, and time of floral abortion.

In horticultural practice softneck and hardneck garlics are recognized, however from a physiological point of view the terminology bolters and non-bolters is more correct. Scape elongation and inflorescence development vary considerably among garlic varieties and were classified by Takagi (1990) as: (1) Nonbolting – with a few exceptions these plants do not form normally a flower stalk, but produce cloves inside an incomplete scape. They form a bulb made of cloves developing in the axils of the five or youngest foliage leaves, (2) Incomplete bolting – plants produce a thin, short flower stalk, bear only a few large topsets, and usually form no flowers; the stalk and topsets may remain enclosed by the pseudostem. These genotypes form a bulb made of cloves developing in the axils of the two or three youngest leaves and (3) Complete bolting – plants produce a long, thick flower stalk, with many flowers and topsets; these genotypes normally form bulbs made of cloves in the axils of the two youngest foliage leaves.

Scape development and blooming in garlic are determined by the genetic make-up of the individual plant and the environment (Takagi 1990) and thus variation can also be observed within a single clone (ERJ Keller, pers. comm., 2002). Long photoperiod is both obligatory and quantitative for the reproductive process of garlic. Long days are required for scape elongation beyond the leaf sheaths while continuous short photoperiods result in a dwarfed scape enclosed inside the false stem. The process is triggered by long photoperiods in post-transformational plants and permits the completion of florogenesis (Kamenetsky et al. 2004b).

Under exclusively long day conditions, scape elongation is fast, but only a few plants reach maximum inflorescence size and spathe-break, probably because of hormonal effects and changes in distribution of assimilates between the developing bulb and inflorescence (Rosen and Tong 2001). Cold storage (-2 to 9°C) or low field temperatures and long photoperiod may promote scape elongation in non-bolting complete bolters, whereas high storage or field temperatures, and short days might inhibit scape elongation in bolting plants (Kamenetsky et al. 2004b).

In the developing inflorescence, flower formation is followed by differentiation of topsets and is promoted by a long photoperiod. Sophisticated manipulation of the environment, both prior to and after planting, can lead to the development of viable flowers in a topset-free umbel (Fig. 1F). However, normal flowering cannot be achieved if one of the developmental stages is disturbed.

Fertility restoration and seed production

The sexual sterility of garlic inhibits or markedly reduces possibilities of improvement of economically important traits, including pest and disease resistance, yield, and quality through breeding. Restoration of fertility after millennia of vegetatively propagation opens for the first time new horizons for breeding and genetic studies in garlic. Many researchers attempted to restore fertility in garlic (Kononkov 1953; Novak and Havranek 1975; Katarzhin and Katarzhin 1978; Konvicka 1984; Etoh 1985; Etoh et al. 1988; Etoh 1997; Etoh and Simon 2002; Kamenetsky et al. 2004a, 2004b; Simon and Jenderek 2004).

Under the same environmental conditions, garlic accessions differ significantly in morphological traits, including leaf number prior to bolting, flowering date (date of spathe opening), final stem length, as well as in flower/topset ratio and pollen viability (Etoh 1985, 1986; Takagi 1990; Pooler and Simon 1993a, 1993b; Engeland 1995; Etoh and Simon 2002; Simon 2003; Kamenetsky et al. 2004b; Simon and Jenderek 2004; Kamenetsky et al. 2005). Marked variation among garlic clones with regard to flowering ability and flower to topset ratio led Etoh (1981) to propose flowering in garlic as a process from sexual to asexual reproduction. Accordingly, ancestral garlic had normal meiosis, was fertile, and developed numerous flowers in the long-scape umbel. Compared with modern clones, ancestral plants probably had greater adaptation to a variety of climatic conditions, a larger number of foliage leaves, and diverse maturation dates. The status of garlic fertility prior to domestication is at present unclear. However, fertility restoration by decapitation of the flower stalk and/or environmental manipulation clearly indicates that the genetic cascade coding for flowering remained intact and is not impaired. In some garlic genotypes gradual accumulation of chromosomal mutations during millennia of vegetative propagation resulted in complete sterility, shorter scapes and fewer flower buds and topsets. Domestication and subsequent cultivation and sterility of garlic has probably been accelerated by selection for larger bulbs.

Central Asia, the centre of origin for many *Allium* species, is a valuable source for *Allium* diversity, and a good potential for solving the enigma of its sterility (Hanelt 1990; Simon 2003). In the early 1980s, expeditions to Central Asia, collected a number of garlic accessions in Uzbekistan, Tajikistan, Kirgizistan, and Kazakhstan (Etoh et al. 1988). The collected plants were grown at Kagoshima, Japan, and following topset decapitation, 17 clones developed fertile flowers with over 3,000 viable seeds. One of the clones was male sterile. Later, more fertile garlic plants were found in Armenia, Georgia, and Sin-Kiang (Etoh et al. 1991). Pooler and Simon (1994) improved floral production and seed set by scape decapitation and removal of topsets, but seed germination was low and ranged between 10 and 12%. Later, Inaba et al. (1995) and Jenderek (1998) obtained 50,000 and 1.2 million garlic seeds, respectively. They identified 27 clones as highly fertile, producing over 400 seeds per umbel, with seed germination of 67 to 93%. Removal of topsets was necessary only in the early generations, as the strong selection pressure for blooming and seed production resulted in improved seed set. Recently, fertile accessions were identified in the USDA garlic collections (Jenderek and Hannan 2000, 2004), producing 0–85 seeds per umbel in the first propagation cycle. Major blooming traits, including flower stem appearance, spathe opening, umbel shape, and the number of flowers per umbel were stable and similar across populations evaluated.

The first step towards marker-assisted selection of fertile garlic clones was made by Etoh and Hong (2001) using RAPDs. They screened twelve pollen fertile and sterile clones using 60 10-mer primers and found two RAPD markers, which amplified only in the pollen fertile clones. These two markers were tested on 60 clones, and found to be correlated to pollen fertility.

During 1995-2001, collection missions to Central Asia have gathered over 300 garlic land races and plants from natural populations (Baitulin et al. 2000; Kamenetsky et al. 2004b). The collection was evaluated in Israel for fertility and many other traits, and 30 accessions produced seeds. In Israel, the seven most productive accessions produced 400–1,000 seeds per umbel, with germination rates around 50%, and normal seedlings development. The young plants formed two to five leaves, prior to bulbing and ripening. However, in the Netherlands, under field and greenhouse conditions, the aforementioned clones produced only small number of seed with less than 5% germination. It is speculated that field conditions in the Netherlands are less conducive to quality seed production than those in Israel (Kamenetsky et al. 2005).

A search for genes involved in the control of flowering
in garlic, resulted in identification of garlic LEAFY/FLO homologue, gaLFY (Rotem et al. 2007). gaLFY is expressed in both flowering and non-flowering genotypes, however further comparative analyses of gene expression revealed two gaLFY transcripts, differing in 64 nucleotides, with clear splicing borders. The short one was common in both genotypes throughout their development, whereas the long variant appears in the flowering genotype only during the reproductive phase. Thus, the phenotypic differences in garlic, with regard to flowering, may be associated with the efficacy of the splicing process.

Open-pollinated families of garlic seedlings populations exhibit a large variation in many traits including single-clove bulbs with white, purple, gray and brown skins differed in bulbing ability and ripening dates (Kamenetsky et al. 2004b), survival ability (7.5-83.5%), bulb maturity, bulb weight, number of cloves (2.9-10.4), and the ability to mature in one growing season (76.5-100%) (Jenderek 2004; Jenderek and Zewdie 2005). Seedlings populations also possess important traits like disease resistance, for example, tolerance to rust, Puccinia allii (Jenderek and Hannan 2004). This partial list of variable traits indicates the potential present in sexually derived progenies for the improvement of garlic. The discovery of fertile plants on one hand and the development of a sophisticated environmental system (Kamenetsky et al. 2004b) for fertility restoration, thus enable in depth studies on the genetics of garlic, on flowering and fertility in plants, as well as classic and molecular breeding work crop improvement.

Zewdie et al. (2005) constructed the first linkage map of garlic on the basis of a population of 84 individuals, originating from a selfing of a single plant, using SNP, SSR, and RAPD markers. Thirty-seven genetic markers formed nine linkage groups covering 414.5 cM and many of the markers proved to have a skewed segregation. A male fertility locus was also included in the map. Ipek et al. (2005) constructed, on the basis of progenies originating from selfing two unrelated garlic plants, two low-density genetic maps, using AFLP and gene-specific markers. A total of 360 and 321 markers segregated in the two populations respectively, indicated a high level of heterozygosity in the nuclear genome. 94.7% of the segregating traits fit a 15:1 ratio for two loci, suggesting extensive levels of duplication in the garlic genome and supporting similar observations for onion.

One option for breeding new garlic varieties is the development of a system similar to the one used for potato, namely annual cross-fertilization of a large number of garlic clones and the subsequent selection between and within progenies over the years originating from these hybridizations (Kik 2002). An alternative option is the selection of highly fertile parental lines and the production of hybrid seed for direct seeding. The latter case would save the need for vegetative propagation and virus elimination (Salomon 2002).

GENETIC TRANSFORMATION

Regeneration systems

A successful garlic genetic transformation system depends on two key factors: refined of methods for the introduction of preferred target genes into garlic, and the development of sophisticated recovery methods of intact plants, either from fully dedifferentiated or from organized tissues.

Regeneration of somatic embryogenesis in garlic was first reported from callus of bulb leaf discs and stem tips by Abo El-Nil (1977). Subsequently, Fereol et al. (2002, 2005a, 2005b) used young leaf explants from four European garlic cultivars to produce embryogenic calli and obtained efficient regeneration via somatic embryos. Regeneration in garlic was also reported from basal plate (Al-Zahim et al. 1999), leaf (Wang et al. 1994; Zheng et al. 1998a), receptacle (Xue et al. 1991), and flower buds (Suh and Park 1988). Suh and Park (1995) used abnormal garlic roots derived from anthers, pedicels, and bulbs as explants to regenerate plantlets. Other reports on organogenesis or embryogenesis in regenerants of garlic plants were mainly based on shoot tip or stem disc explants (Kehr and Schaeffer 1976; Nagasawa and Finer 1988; Choi et al. 1993; Ayabe et al. 1995; Ayabe and Sumi 1998; Myers and Simon 1999; Kondo et al. 2000; Hasegawa et al. 2002). Haque et al. (1997, 1999) obtained up to 75% shoot regeneration from shoot tips without an intervening callus phase. Thus, it is evident that root tip explants are commonly used for the development of a garlic regeneration system with or without a callus phase (Haque et al. 1997, 1998; Barandiaran et al. 1999a, 1999b; Robledo et al. 2000). However, this type of explant is in limited supply per plant. Myers and Simon (1998) reported on a continuous callus production and regeneration system from garlic root segments including root tips, but the time from tissue sampling to regeneration required 10 months. Using both apical and non-apical garlic root segments from the four most widely cultivated European garlic cultivars, namely ‘Messianome’, ‘Morado de Cuena’, ‘Morasol’, and ‘Printanor’, Zheng et al. (2003) developed an efficient procedure for callus induction and regeneration procedure thus requiring 2 months for callus induction followed by 2 months of regeneration, with the same number of plants developed by Zheng et al. (1998b, 1999) for other Allium crops. The use of both apical and non-apical root segments for callus production provides ample root segments that can be harvested every 4-6 weeks from in vitro plantlets. Such young and actively dividing callus is uniquely suitable for genetic transformation year-round.

Transformation systems

Despite recent progress in restoration of garlic fertility, the availability of a reliable genetic transformation system remains highly valuable due to lack of variability in desired traits, or because of insurmountable species barriers. Transformation of recalcitrant monocots like rice, wheat, barley and maize has been achieved by direct gene transfer systems: chemical methods, electroporation, particle bombardment and silicon carbide fibres (Curtis 2004). Recently, Agrobacterium-mediated transformation of monocots has gained favour and many transgenic plants have been obtained using specific Agrobacterium strains (Hiei et al. 1994; Rashid et al. 1996; Cheng et al. 1997; Tingay et al. 1997; Ishida et al. 1996; Arencibia et al. 1998). Agrobacterium-mediated transformation offers several advantages over the other systems, the most important being the ability to deliver a single or low number of intact copies of relatively large segments of foreign DNA.

Recent reports also show that genetic transformation has become possible in Allium (for review: Eady 2002). Klein et al. (1987) were the first to develop a high-velocity microprojectile method and demonstrated that epidermal tissue of onion could take up foreign DNA sequences. Wang (1996) tried to develop transgenic nuclear male sterile leek (Allium porrum L.) as a first step to introduce F₁-pollen into leek. Particle bombardment was used to integrate barnase and barstar genes into the leek genome. It was observed that both genes were present in the genome, however no data on pollen fertility were presented. Transient expression was shown with particle bombardment in garlic (Barandiaran et al. 1998; Ferrer et al. 2000) and Park et al. (2002) and Sawahel (2002) reported that transgenic garlic plants could be generated using this method. Hybrid breeders Agrobacterium-mediated gene transfer, Dommisse et al. (1990) demonstrated that onion is also a host for Agrobacterium as evidenced by tumorigenic responses and opine production inside these tumours. Using Agrobacterium tumefaciens, Eady et al. (2000, 2003a, 2003b, 2005) developed a stable transformation protocol using immature embryos of A. cepa, A. porrum and A. sativum. Kondo et al. (2000) used highly regenerative calli from shoot primordial-like tissues to produce transgenic garlic plants by
ELITE LINE MASS PROPAGATION THROUGH EMBRYOGENIC CELL SUSPENSION CULTURES

Rapid dissemination of new improved garlic varieties is possible depending upon the availability of efficient vegetative mass propagation methods, which will also be useful for virus-free garlic production systems. Indeed, the main constraint in garlic cultivation is the damage caused by virus diseases. Two potyviruses (OYDV and LYSV) and two latent viruses (Allexivirus and Carlavirus) are the major biotic factors affecting garlic clones, reducing plant development and bulb production significantly (Lot et al. 1994). The traditional scheme of a vegetative propagation system usually involves a four year process including the production of virus-free stock material, a mass propagation method, a vegetative propagation system and the distribution of high quality virus-free bulbs. Methods for eliminating viruses and producing virus-free material have been developed in the past 30 years, using meristem-tip culture (Walkey et al. 1987; Chovelon et al. 1990). Mass propagation methods were developed and several protocols of micropropagation were reported (Table 1). However, the multiplication rates of the regenerated garlic material were rather low and costly. Therefore suspension cultures, which are often used in other species with high efficiency and low cost, may provide a solution (Nagasawa and Finer 1988; Aitken-Christie 1991; Barrueto Cid et al. 1994).

Establishment of embryogenic suspension cultures

Young leaf and root explants produce calli on induction medium. Following size increase two distinct types are recognizable, one hyperhydric, translucent and nodular, the other nodular with a yellowish colour. The two types of calli were generally located at leaf edges near a vein or a root section. Clumps of the second type gave rise to somatic embryos, indicating their embryogenic potential (Fereol et al. 2002). Histological sections of these nodular yellowish calli showed globular masses with peripheral meristematic cells and isolated embryogenic cells containing large amounts of storage proteins.

It is well established that high percentage of root segments incubated in 2,4-D developed calli. Furthermore it has been shown that young leaf explants, excised from the three inter-most leaves of the garlic shoot, are more suitable for the development of embryogenic calli. A low level of 2,4-D (0.3 mg/l) resulted in a success rate of 90% callus production (Barandiaran et al. 1999a, 1999b), with over 30% embryogenic calli. Monthly sub-cultured nodular, compact embryogenic calli became friable after 6 months. They mostly consisted of embryogenic and pro-embryos cells at an early developmental stage. Up to 60% of the explants produced this type of embryogenic friable calli.

Cell suspension cultures can be initiated from friable...
embryogenic calli which are less than 18 months old. When the fresh calli were inoculated in liquid medium they released numerous individual cells and small cell aggregates. The cell density of the suspension continuously increased and for maintaining a better potential for embryonic characteristics: dense cytoplasm, large central nucleus and some starch grains. The initial cell density in the suspension culture and for maintaining a better potential for embryogenetic callus is less than 18 months old. When the fresh calli were inoculated in liquid medium they released numerous individual cells and small cell aggregates. The cell density of the suspension continuously increased and for maintaining a better potential for embryogenic culture significantly affected the packed cell volume (PCV) rate and the potential of embryo production.

Low cell densities proved to be best for mass cell production while high densities are best for embryo differentiation, probably due to the fact that medium composition is being altered by the cultured cells in a way that allows cell differentiation. Below a certain minimum density there are too few cells to affect this response (Ammirato 1983; Hari 1994). Ferocious growth was observed with a 5-7 fold monthly increase (Fereol 1993). Histological examination of the suspension thus initiated revealed many cells with embryogenic characteristics: dense cytoplasm, large central nucleus and some starch grains. The initial cell density in the suspension significantly affected the packed cell volume (PCV) rate and the potential of embryo production.

Table 1 Overview in vitro propagation techniques used in garlic.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Explant</th>
<th>Basal medium</th>
<th>PGR</th>
<th>Sucrose Conc.</th>
<th>Morphogenic pathway</th>
<th>Efficiency</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra White</td>
<td>Stem tips, Bulb leaf</td>
<td>AZ</td>
<td>C: p-CPA/2.4-D/Kin; 10/20.5 μM</td>
<td>2%</td>
<td>Organogenic C</td>
<td>No data presented</td>
<td>Abo El Nil 1977</td>
</tr>
<tr>
<td>Ishuwase, Ishii-gokuwase, Shanhai, Santo, Furano, White-roppen</td>
<td>Meristem</td>
<td>LS</td>
<td>S induct: IAA/BA: 1/1 μM</td>
<td>3%</td>
<td>S proliferation and in vitro bulbule formation</td>
<td>86% of meristems gave shoots 138 shoots from one shoot in 7 months</td>
<td>Nagakubo et al. 1993</td>
</tr>
<tr>
<td>White-roppen</td>
<td>Basal end of bulblets</td>
<td>MS</td>
<td>S induct: NAA/BA: 0.5/0.5 mg/l</td>
<td>2%</td>
<td>Adventitious S</td>
<td>10 shoots/bulb in 8 weeks</td>
<td>Masada et al. 1994</td>
</tr>
<tr>
<td>Chonen</td>
<td>Inner leaves of small bulbs</td>
<td>MS</td>
<td>C: 2,4-D/Picolaram/Kin: 1.1/1/2.1 mg/l</td>
<td>3%</td>
<td>Cell suspension culture</td>
<td>70% expl. gave shoots, 10 shoots/explt. in 1 month</td>
<td>Haque et al. 1997</td>
</tr>
<tr>
<td>White-roppen</td>
<td>Root tip of micropropagated plants</td>
<td>B5</td>
<td>S induct: NAA/BA: 1.1/0.5 μM</td>
<td>3%</td>
<td>Direct S regeneration</td>
<td>70% expl. gave shoots, 10 shoots/explt. in 1 month</td>
<td>Haque et al. 1997</td>
</tr>
<tr>
<td>DDR7099, PB83819, Picenza</td>
<td>Roots segments</td>
<td>B5</td>
<td>C: 2,4-D 4.5 μM then Picloram/2iP: 4.7/0.49 μM</td>
<td>3%</td>
<td>Somatic emb.</td>
<td>85% cal. regenerated</td>
<td>Myers and Simon 1998</td>
</tr>
<tr>
<td>Fukuchi-White</td>
<td>Stem disc 1 mm thick</td>
<td>LS</td>
<td>Hormone free</td>
<td></td>
<td></td>
<td>S proliferation</td>
<td>Ayabe and Sumi 1998</td>
</tr>
<tr>
<td>20 cvs., different physiological groups</td>
<td>Root tip of micropropagated plants</td>
<td>B5</td>
<td>C: 2,4-D/2iP: 0.3/0.5 ppm</td>
<td>3%</td>
<td>Organogenic callus</td>
<td>170 S/g C in 4 months</td>
<td>Barandiaran et al. 1999</td>
</tr>
<tr>
<td>Aben, GT96-1</td>
<td>Root tip of micropropagated plants</td>
<td>N6 or MS</td>
<td>C: 2,4-D: 4.5/4.6 μM</td>
<td>87.6 mM</td>
<td>Organogenic callus</td>
<td>33 to 46 bulbils induced per inflorescence</td>
<td>Robledo Pas et al. 2000</td>
</tr>
<tr>
<td>Uru-b, Fe</td>
<td>Immature inflorescence bulbils</td>
<td>MS</td>
<td>S induct: NAA: 5.4 μM</td>
<td>3%</td>
<td>Development of bulbils</td>
<td>33 to 46 bulbils induced per inflorescence</td>
<td>Ebi et al. 2000</td>
</tr>
<tr>
<td>Malepur</td>
<td>Basal tissue of clove</td>
<td>White's</td>
<td>Direct emb.: 2,4-D/kin: 1/0.5 mg/l</td>
<td>2%</td>
<td>Direct somatic emb.</td>
<td>60% explt. gave 20-25 embryos/explt.</td>
<td>Sata et al. 2002</td>
</tr>
<tr>
<td>Rouge Reunion</td>
<td>Young leaves Root sections</td>
<td>B5</td>
<td>C: 2,4-D/IAA/NAA/Kin: 0.5/0.2/6%</td>
<td>3%</td>
<td>Somatic emb.</td>
<td>37 embryos per 150 mg of C</td>
<td>Fereol et al. 2002</td>
</tr>
<tr>
<td>Danyang</td>
<td>Leaf bases 2-3 mm</td>
<td>MS</td>
<td>R: Kin: 6 mg/l</td>
<td></td>
<td></td>
<td>Somatic emb.</td>
<td>70% embryogenic C</td>
</tr>
<tr>
<td>Messidrome, Merodna, Morasar, Printanor</td>
<td>Shoot of micropropagated plants 1cm</td>
<td>MS</td>
<td>B: NAA: 0.1 mg/l</td>
<td></td>
<td></td>
<td>Shoot proliferation in liquid medium</td>
<td>15 shoots/explt. in 3 weeks</td>
</tr>
<tr>
<td>Danyang</td>
<td>Shoot</td>
<td>MS</td>
<td>S prolif: 2iP: 0.5 mg/l</td>
<td>2%</td>
<td>Organogenic callus</td>
<td>C: 34% explt. R: 47% C</td>
<td>Zheng et al. 2003</td>
</tr>
<tr>
<td>Rouge Reunion, Morasar, Printanor</td>
<td>Young leaves</td>
<td>N6</td>
<td>Liq. Med.: 2,4-D/BAP: 0.3/0.1</td>
<td>4.5%</td>
<td>Cell suspension culture</td>
<td>10^11 embryos annually from 1 clove</td>
<td>Fereol et al. 2005b</td>
</tr>
</tbody>
</table>

Usually, for all these techniques the other in vitro culture conditions are as follows: temperature 23-28°C, photoperiod 16 h of light, light intensity 50 μmol m−2 s−1; bulbs were used 3-4 months after harvest and maintained 3 weeks at 5°C in order to break the dormancy before the actual experiment took place.

Ad: adenine; B: bulbing; C: callus; Conc: concentration; Emb: embryogenesis; Expplt: explant; Ind.: induction; Liq Med: liquid medium P: plant; PGR: plant growth regulator; R: regeneration; S: shoot

BA: 6-benzyladenine; BAP: 6-benzylaminopurine; IAA: 3- indole acetic acid; Kin: Kinetin; NAA: α-naphthalene acetic acid; Picloram: 4-amino-3,5,6-trichloropicolinic acid; p-CPA: p-chloro-phenoxy acetic acid; 2,4D: 2,4-dichlorophenoxy acetic acid; 2iP: 6-(1γ534-/γ534-dimethylallylamino)-purine

AZ: Abo El Nil and Zettler (1976); LS: Linsmaier and Skoog (1965); MS: Murashige and Skoog (1962), B5: Gamborg et al. (1968); N6: Chu et al. (1975); White’s: White (1963).
were optimal for cell propagation and also for the further regeneration of embryos. 2,4-D concentrations in the suspension medium affected significantly the PCV rate and the potential for production of embryos. Similar to the results of Barandiaran et al. (1999a), Fereol et al. (2005a) found that at low concentration (0.3 mg/l) cell propagation was fastest and a high potential for further cell differentiation and regeneration capacity was maintained. Throughout culture development, and up to 14 months, growth rate of the cell suspension was on average rather similar, increasing at about 4.5 to 6 fold every 28 days period. However, in the first seven months the growth rate of the culture fluctuated widely (4.2-6.2), indicating some instability. Thereafter, growth rate fluctuation was much smaller, pointing at a more stable culture.

Plant regeneration

Aliquots of cell suspension, plated on semi-solid embryo production medium, produce numerous somatic embryos in eight weeks. The first pro-embryos differentiated 3 weeks after plating, being large globular structures (1-2 mm) covered with a smooth epidermis surface. They further developed into mature epidermis coated embryos expressing a bipolar structure with shoot and root apices connected to a haustorium-like structure by vascular bundles. These embryos were generated from the cell suspension cultures for longer than 16 months, thus 1 ml PCV, has the potential of producing 3,000 to 7,800 mature embryos.

Histological studies showed that individual cells underwent numerous internal cell divisions thus resulting in formation of pro-embryos, which differ of each other, in single aggregates. This compartmentalization indicates the unicellular origin of these pro-embryos. They further developed into mature embryos with two poles, a root and a shoot apex (Fig. 4). After culture on germination medium, they form a complete plantlet within 4 weeks. Those that failed to germinate within this period of time turned brown and died. The percentage of conversion into plantlets ranged between 36 and 51%. Germinated plantlets cultivated in vitro can produce bulblets within eight weeks (Kahane et al. 1992). Analyses of plants after acclimatization and transfer to the field under insect-proof nets revealed some genotypes with an abnormal ploidy level. About 4% tetraploids were detected by flow cytometry. Such polyploidization might be a serious drawback for propagating plants at a standard quality.

CONCLUDING REMARKS

Garlic improvement has been focussed until present on selection in existing landraces and yield has been a major selection criterium (Table 2). Garlic breeding has been hampered by the absence of adequate methods to generate variation in the existing germplasm. Furthermore the absence of efficient vegetative propagation methods added to the problem of efficient development of new garlic cultivars. In the current review the introduction of sexual hybridization into garlic was described and the ways it can be successfully implemented both via genetic and environmental methods. Another route to improve garlic is via genetic transformation. Both Agrobacterium and biolistic gene transfer systems were developed in the last years and the first transgenics have already been produced. Because of this the next step in the introduction of garlic GMOs into agriculture will be comprehensive safety assessments (Dale and Kinderlerer 1995) and providing answers to questions like: a) does the introduced gene changes the modified crop, b) is there evidence of an increased risk of toxicity and/or allergenicity, c) are effects visible on organisms in the environment, if transgenic garlic induces weediness or invasiveness in natural habitats or if gene flow between the transgenic and wild relatives is to be expected. When these questions have been answered satisfactorily then there is a possibility to introduce the novel transgenic garlic. However providing answers to these questions is costly for companies wanting to introduce transgenics therefore it remains to be seen if transgenic garlic will become a reality in the near future. Last but not least the recent successful developments in garlic embryogenic cell suspensions have been described. All in all, these developments in garlic breeding system innovation show that there are good opportunities for the production of improved garlic cultivars which are better suited for the market. Furthermore the review indicates that also on the fundamental level (e.g. garlic florogenesis, genome organization, genetic transformation and embryogenic cell suspension development) large steps forward have been made, but it is also clear that there are still large gaps present in our knowledge.

Table 2 Yield (tons/ha) of commercially grown garlic cultivars in France.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germidour</td>
<td>7.6</td>
</tr>
<tr>
<td>Messidrome</td>
<td>7.7</td>
</tr>
<tr>
<td>Printanor</td>
<td>9.1</td>
</tr>
<tr>
<td>Thermidrome</td>
<td>7.6</td>
</tr>
<tr>
<td>Morado</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Garlic cultivars California Late and California Early have the same yield as Printanor and Thermidrome, respectively (V. Chovelon, pers. comm., 2007).
REFERENCES

cka R., Kahanthe health theme coordinator R. Gebhardt).

ACKNOWLEDGEMENTS

This research was partially financed by an EU FP 5 grant in the area of key action 1 (QLK1-CT-1999-498; www.plant.wur.nl/) projects/garlicandhealth; overall project coordinator C. Kik, plant theme coordinator R. Kahanthe health theme coordinator R. Gebhardt).

REFERENCES

Allium sativum L.) resistance to white rot and storability using gamma irradiation induced mutations. Journal of Genetics and Breeding 54, 175-181

Kamenetsky R, London Shafir I, Baizerman M, Khassanov F, Kik C, Rab-

st ballpark compounds among garlic from Central Asia. Biodiversity and Con-
servation 14, 281-295

tlet proliferation of garlic (Allium sativum L.) using root segments from shoot tip-derived plantlets. Tissue and Organ Culture 73, 144-149

Konoivka OF (1973) The question of obtaining garlic seed (In Russian). Sad i Ogrodn. 83, 84-80 (in Russian)

Konoivka O (1973) Die Ursachen der Sterilität von Allium sativum L. Biologia Plantarum (Praha), 1, 197-202

Sata SJ, Bagatharia SB, Thaker VS (2001) Induction of direct somatic em-

tion mutagen dose for garlic (Allium sativum L.). Biohe 33, 95-99

Walkey D, Webb M, Bolland C, Miller A (1987) Production of virus-free gar-
llic (Allium sativum L.) and shallot (A. ascalonicum L.) by meristem tip cul-
ture. Journal of Horticultural Science 52, 228-234

kap among molecular markers and morphological traits in garlic (Allium sativum L.). Journal of the American Society for Horticultural Science 130, 569-574

Zheng SJ, Henken B, Sofiari E, Jacobsen E, Krens FA, Kik C (1998b) Fac-
tors influencing induction, propagation and regeneration of mature zygo-
tic shoot-derived callus from Allium cepa L. Plant Cell, Tissue and Organ Cul-
ture 53, 99-105

term culture and suspension cultures of Allium cepa L. Euphytica 108, 83-90

Zheng SJ, Henken B, Sofiari E, Jacobsen E, Krens FA, Kik C (2001b) Mol-
ecular characterization of transgenic shallots (Allium cepa L.) by adapter liga-
tion PCR (AL-PCR) and sequencing of genomic DNA flanking T-DNA bor-
cists. Transgenic Research 10, 237-245

cient cultivar independent plant regeneration system from callus derived from both apical and non-apical root segments of garlic (Allium sativum L.). In: Vitro Cellular and Developmental Biology – Plant 39, 288-292

Garlic breeding systems. Zheng et al.
