Effectiveness of Plant Essential Oils on the Growth of Erwinia amylovora, the Causal Agent of Fire Blight Disease

Blanka Kokošková1 • Roman Pavela2*

1 Department of Bacteriology, Plant Medicine Division, Research Institute of Crop Production, 161 06 Prague 6, Czech Republic
2 Department of Entomology, Plant Medicine Division, Research Institute of Crop Production, 161 06 Prague 6, Czech Republic

Corresponding author: * pavela@vurv.cz

ABSTRACT

Erwinia amylovora [(Burr.) Winslow et al. 1920], the causative agent of fire blight disease, threatens some species of the Rosaceae family. In chemical control, preparations based on copper compounds are most frequently applied, but these can be phytotoxic and not effective enough, hence other alternatives need to be considered. In our experiment, thirty-four essential oils obtained from different plants were tested for their antimicrobial effectiveness against the fire blight pathogen. Screening was conducted in vitro on agar plates contaminated by E. amylovora. The strongest inhibitory effect (i.e. complete bacterial inhibition) was shown by essential oils from Mellisa officinalis, Mentha arvensis, Origamum compactum, O. vulgare and Thymus vulgaris. An inhibitory effect more than 50% higher than the standard was shown by essential oils from Eucalyptus caryophyllata, Mentha pulegium, and Nepeta cataria. An inhibitory effect up to 50% higher than the standard was found in essential oils from Artemisia absinthium, Citrus aurantifolia, Lavandula latifolia, Melaleuca quinquenervia, Mentha citrata, M. spicata, Ocimum basilicum, Pelargonium graveolens, P. roseum, Rosmarinus officinalis, Salvia sclarea, Thuya occidentalis and Tsuga canadensis. An antimicrobial effect comparable to the standard was found in essential oils from Amiyris balsamifera, Citrus limonum, Juniperus communis, J. virginiana, Origamum majorana, Salvia officinalis, Tagetes hipinata and Thymus matschiana. Standard employed was oxychloride-Cu 84% (0.84 µg/ml), it had a weak inhibitory effect. The essential oils from Acorus calamus, Lavandula angustifolia and Zingiber officinalis had a lower inhibitory effect than the standard. The essential oils of two plant extracts from Abies siberica and Pogostemon cablin had no effect on the growth of E. amylovora. Five of the most effective essential oils appear promising for the development of potential bio-pesticides.

Keywords: antimicrobial activity, in vitro tests, botanical pesticides

INTRODUCTION

Erwinia amylovora [(Burrill) Winslow et al. 1920] (Ea), which causes fire blight disease, is registered as an organism in many countries around the world for which very strict quarantine measures are required, and used (OEPP/EPPO 1992; EPPO/CABI 1997). Fire blight is probably the most serious disease affecting fruit and ornamental plants of the Rosaceae family, such as Pyrus spp., Malus spp., Cydonia spp., Crataegus spp., Cotoneaster spp., Sorbus spp. and others (van der Zet and Beer 1995; Sobiczewski et al. 1997; Vaneste 2000).

Present control measures include surveys of presumptive plants from disease infection, laboratory tests, eradication of infected plants, control and regulation of multiplied and cultivated materials (van der Zet and Beer 1995). Bacteria disseminate under humid and warm weather conditions depending on the species, cultivar and planting conditions.

In chemical control, preparations based on copper compounds are most frequently applied, but these can be phytotoxic and not effective enough, hence other alternatives need to be considered. The use of antibiotics such as streptomycin has been disallowed in plant protection in the majority of EU countries, because resistance to them can easily develop in bacterial populations (Iacolellis et al. 2005).

Scortichini and Rossi (1989, 1991) and Mosch et al. (1993, 1996) elaborated studies on the effectiveness of the components from essential oils or plant extracts against E. amylovora. Scortichini and Rossi (1989, 1991), studying the influence of some essential oil constituents on bacterial growth, observed that the terpenoids geraniol and citronellol, out of 20 terpenes and terpenoids tested, exhibited bactericidal activity against E. amylovora. Mosch et al. (1989) reported that 24 out of 131 plant extracts tested exhibited some degree of antibacterial activity against E. amylovora in vitro, the most effective being leaf extracts from Rhus typhina, Juglans nigra, Berberis vulgaris, Mahonia aquifolium and Allium sativum. Mosch et al. (1993) demonstrated that plant extracts from Hedera helix and Viscum album could induce resistance mechanisms in detached leaves of Cotoneaster watereri and Cydonia oblonga, resulting in decreased disease severity.

There is a desperate demand for new chemical compounds on the market. A combination of plant extracts or ethereal oils from plants together with copper and other chemical compounds can increase their effectiveness (Zeller 2005) but these still imply the use of environmentally-unfriendly and potentially toxic compounds.

In the past few years, some preparations which have been used to control the fire blight pathogen did not have any bactericidal activity, but interfered with plant metabolism. They influence either triggering the plant defense mechanism leading to systemic acquired resistance (SAR) as Bion* (acibenzolar-S-methyl, 50% of ASM) and Messenger* (Actigard* harpin, protein produced by E. amylovora: 16.5 g/acre) or suppressing the shoot growth and thus lowering the shoot susceptibility to infection as Aposec (prohexadione-calcium; 50 g/acre of P-ca) (Psallidas and Tsianthos 2000). The chemistry of the essential oils from plants used in our study, including monoterpines, sesquiterpenes and phenols is well documented (Guenther 1972-1978; Bruneton 1999). Some of these essential oils proved to have strong antifungal (Daferera et al. 2000; Wang et al.)

Received: 13 July, 2006. Accepted: 2 October, 2006.
2005), insecticidal (Isman 2000; Pavela 2005; Çalışur et al. 2006), and antibacterial activity (Burt 2004; El-Kamali et al. 2003). In the last several decades, biopesticides based on essential oils have been developed for commercial use. These preparations are very promising because of rapid effectiveness and relatively low price (Isman 2006).

The aim of this study was to find essential oils having a potential inhibitory effect against *E. amylovora* in vitro. By identifying the most promising oils in the control against fire blight pathogen *in vitro* would permit us to test them under field conditions in the future.

MATERIALS AND METHODS

Bacteria

Reference culture of *Ea* RICP 8/95 (RICP = Research Institute of Crop Production) was grown on solid nutrient meat-peptone medium and used as a 2-day culture in a concentration corresponding to OD=0.5±0.2 in all tests.

Chemicals

The essential oils used in this study were purchased from the Essential Oil University (Charleston, IN, USA). The essential oils were obtained by steam or hydrodistillation of botanicals (Table 1). As a control we used oxichloride-Cu 84 % (Kuprikol 50, produced by Spolana Neratovice, Czech Republic).

Table 1 The plant material used for isolation the essential oils and the effect of the essential oils on the growth of *Erwinia amylovora.*

<table>
<thead>
<tr>
<th>Plant botanical name</th>
<th>Main compounds (relative area %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eugenia caryophyllata</td>
<td>Eugenol (32.3), β-caryophyllene (6.2), α-humulene (8.6), carvacrol (39.8)</td>
</tr>
<tr>
<td>Melissa officinalis</td>
<td>Citronellol (6.3), citronellol (12.9), neral (24.5), geranial (31.3), β-caryophyllene (3.9)</td>
</tr>
<tr>
<td>Mentha arvensis</td>
<td>Menthol (74.5), menthone (9.2), methyl acetate (2.6)</td>
</tr>
<tr>
<td>Thujia occidentalis</td>
<td>thujone (3.1), p-cymene (10.8), /g533-caryophyllene (6.2), /g302-carvacrol (39.8)</td>
</tr>
</tbody>
</table>

Analysis of essential oils

The chemical composition of seven antimicrobially most potent spice essential oils (Table 2) was determined with gas chromatography-mass spectrometry (GC-MS) analysis (Adams 1995). Essential oils were dissolved in ethyl acetate. The volume of the sample injected was 1 μl. A Hewlett-Packard 5890 combination gas chromatograph-mass spectrometer (Waldbronn, Germany) was used as follows: capillary column HP-5 (30 m by 0.25 mm; phase thickness, 0.25 μl); temperature program 40°C (2 min), raised to 250°C (5 min) at a rate of 10°C/min; and carrier gas helium at a flow rate of 0.5 ml/min. The detector was a mass selective detector (electron impact, 70 eV).

Table 2 Main compounds of selected essential oils tested on *E. amylovora.*

<table>
<thead>
<tr>
<th>Plant botanical name</th>
<th>Main compounds (relative area %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eugenia caryophyllata</td>
<td>Eugenol (32.3), β-caryophyllene (6.2), α-humulene (8.6), carvacrol (39.8)</td>
</tr>
<tr>
<td>Melissa officinalis</td>
<td>Citronellol (6.3), citronellol (12.9), neral (24.5), geranial (31.3), β-caryophyllene (3.9)</td>
</tr>
<tr>
<td>Mentha arvensis</td>
<td>Menthol (74.5), menthone (9.2), methyl acetate (2.6)</td>
</tr>
<tr>
<td>Thujia occidentalis</td>
<td>thujone (3.1), p-cymene (10.8), /g533-caryophyllene (6.2), /g302-carvacrol (39.8)</td>
</tr>
</tbody>
</table>

The chemical composition was determined with gas chromatography-mass spectrometry (GC-MS) analysis (expressed as % w/w composition).
flow rate 0.9 ml/min. The compounds were recognized by the retention times of the chromatogram peaks and by their mass spectra. The identities of the main component peaks were confirmed by comparison of their retention times with those of authentic samples.

Experiments

The antimicrobial activity tests were conducted on agar plates contaminated by the bacterium *E. amylovora*. ENA II medium (nutrient agar no. 2 - 6.6 g, glucose - 6.6 g, yeast extract - 0.7 g, agar - 15.0 g, sterile water - 1 L, pH - 6.6) was used for the screening of essential oils (Kokošková 1992). Compounds using for ENA II medium have bought from IMUNA, Sarišské Michalany, Slovakia. TTCL (triphenyltetrazolium chloride) at 0.5% (w/v) was added to the agar in order for the zones to be more distinct. The crude extracts – at a dosage of 1 µl per 6 plant grindings – were dropped on the contaminated agar surface three hours after its preparation. After treatment, Petri dishes were incubated in a thermostat at 25 ± 1°C for three days, and thereafter evaluated. The diameter of the inhibitory zones was measured and the average calculated. The efficiency of the essential oil was directly proportional to the size of the inhibitory zone. Oxy-chloride-Cu 84% was used as a control at 0.84 µg/g for bacterial colony plates (Kokošková 1992). The effectiveness of essential oils was evaluated according to six classifications or degrees of effect: without an inhibitory effect; an effect weaker than the control; an effect equal to the control; an effect up to 50% higher than the control; an effect up to 50% lower than the control; an effect stronger than the control (standard preparation).

A one-way analysis of variance (ANOVA test) was performed for comparing areas of effectiveness of essential oils compared with oxichloride-Cu 84%, followed by a ranking of their averages using Tukey’s test. Differences between means were considered significant when P<0.05.

RESULTS AND DISCUSSION

Out of thirty-four essential oils, thirty-two showed an antibacterial effect against *Erwinia amylovora*. Nevertheless differences among essential oils were found (Table 1; Fig. 1).

Essential oils were divided into several groups according to their effectiveness and type of effect. The other standards such as streptomycin and erythromycin were found to have low effectiveness in preliminary tests.

The strongest inhibitory effect, in which the growth of bacteria was inhibited over the whole tested zone of the Petri dish, was found in five essential oils from *Mellissa officinalis, Mentha arvensis, Origanum vulgare* and *Thymus vulgaris*.

Antimicrobiological activity was significantly higher (P<0.05) compared to the control, standard oxichloride-Cu 84% (more than 50% compared to the standard in essential oils from *Eugenia caryophyllata, Mentha pulegium* and *Nepeta cataria* (Table 1).

Antimicrobiological activity was significantly higher (P<0.05) compared to the controlled standard oxichloride-Cu 84% (up 50% compared to the standard) in essential oils from *Artemisia absinthium*, *Citrus aurantifolia*, *Lavandula latifolia*, *Melaleuca quinquenervia*, *Mentha basilicum*, *Ocimum basilicum*, *Pelargonium graveolens*, *P. roseum*, *Rosmarinus officinalis*, *Salvia sclarea*, *Thuja occidentalis* and *Tsuga canadensis* (Table 1).

Essential oils from *Amyris balsamifera*, *Citrus limonum*, *Juniperus communis*, *J. virginiana*, *Origanum majorana*, *Salvia officinalis*, *Tagetes bipinata* and *Zingiber officinalis* showed the same biological effectiveness as the standard oxichloride-Cu 84%, with the average zone percentage was not significantly higher or lower (Table 1; P>0.05) than control zones.

Essential oils from *Acorus calamus* and *Lavandula angustifolia* showed an inhibitory effect, but statistically lower than the control (standard preparation).

![Fig. 1 The index of antimicrobial effectivity (IAE) of essential oils on the growth inhibition against *Erwinia amylovora*. Percentage variation in inhibit zones compared with control (means ± S.E.)](image)
Essential oils from Abies siberica and Pogostemon cablin had no inhibitory effect on the growth of E. amylovora.

In Fig 1 we show the increase or decrease in biological effectiveness compared to the effectiveness of the control. In Table 1 we can observe that 21 essential oils show a higher effectiveness than the standard used in tests, and from these oils showed an effectiveness of more than 50% that of the control: Melissa officinalis, Mentha arvensis, Origanum compactum, O. vulgare, Thymus vulgaris, Eugenia caryophyllata, Nepeta cataria and Mentha pulegium.

Chemical analysis (GC-MS) of these six essential oils has shown that the majority of compounds identified in tested essential oils are phenolic monoterpenes, notably carvacrol, thymol or eugenol, monoterpenic hydrocarbons such as p-cymene or γ-terpinene, and aldehydes such as geranial or citronellal (Table 2). The composition of the essential oils changes depending on the plant cultivar, the time and method of harvesting, manner of storage and extraction, and therefore we can only grossly compare whether results are in harmony with those of other authors.

For example, similar results were also reported by other authors who tested the effect of essential oils against other bacteria (Charai et al. 1996; Sivropoulou et al. 1996; Iacobellis et al. 2005). Essential oils from some plant species (e.g. Origanum sp. and Thymus sp.) are rich in phenolic compounds, which are believed to be responsible for their marked antimicrobial activity (Zaika and Kissinger 1981). Phenolic compounds are capable of dissolving within the bacterial membrane and thus penetrating inside the cell, where they interact with cellular metabolic mechanism (Judis 1963; Juven et al. 1972; Oussalah et al. 2006).

The weak antimicrobial efficiency of Origanum majorana essential oils tested in this study contrasts with results obtained by Vagi et al. (2005). The antimicrobial potential of many essential oils is related to their high phenolic contents (Sivropoulou et al. 1996) These differences may be caused by differences in the percentage availability of chemical compounds and in some of their antagonist and/or synergistic effects (Hummelbrunner and Isman 2001).

The components with phenolic structures, such as carvacrol, eugenol and thymol are highly active against the test microorganisms. In oregano and thyme, the major antimicrobial constituents have been identified as carvacrol (62-79%), and thymol (42%) respectively (Farag et al. 1989; Sivropoulou et al. 1996).

The growth of Clavibacter michiganensis subsp. michiganensis was completely inhibited by oregano, thyme, dictamnus and majoram essential oils even when applied at relatively low concentrations (Dafiera et al. 1993), in harmony with the results of our experiments, in which the essential oils from O. compactum, O. vulare and T. vulgaris were among the most effective against E. amylovora; the essential oil of the dictamnus and majorkom, which were considered to be effective by Dafiera et al. (2003) were not tested in our study. In support of the results of our studies, other authors such as Dorman and Deans (2000), demonstrated that in the volatile oils, the compounds with the widest spectrum of activity were thymol from T. vulgaris, followed by carvacrol from O. vulgare spp. hirtum. Essential oils from O. compactum and T. vulgaris have also shown strong antimicrobial activity against Pseudomonas putida (Oussalah et al. 2006). All these results indicate their potentially high effectiveness against all gram-negative and gram-positive bacteria. Vanneste (1996) reported that some plant extracts and some essential oils could inhibit E. amylovora in vitro, in particular thyme oil, which also corresponds with our results.

However, comparison of the data obtained in this study with previously published results is not easy, considering that the composition of plant oils and extracts vary according to environmental conditions and plant species, the harvesting method and other factors. All these factors influence the chemical composition and relative proportions of the individual constituents in the essential oils of the plants (Oussalah et al. 2006).

Essential oils obtained by some plants have a promising potential for being incorporated into various pesticide products in which antimicrobial and insecticidal activity is of great importance. These oils might further have a role in the protection against bacteria in greenhouses. Further large-scale experiments are required to establish the real application of essential oils against plant pathogenic bacteria while ensuring a non-phytotoxic. Thirty four essential oils from different plants were tested in our experiments, from which five oils (Melissa officinalis, Mentha arvensis, Origanum compactum, O. vulgare and Thymus vulgaris) appear promising for the development of potential bio-pesticides. The other tests with these oils are necessary to be conducted for finding their biological effectiveness and plant phytotoxicity effect.

ACKNOWLEDGEMENTS

The work was supported by the Ministry of Agriculture of CR, project No. MZE0002700603.

REFERENCES

Judif J (1963) Studies on the mechanism of action of phenolic disinfectants: II. Patterns of release of radioactivity from Escherichia coli labeled by growth on various compounds. Journal of Pharmacological Sciences 52, 261-264

(1989; P≤0.05) than the standard (oxichloride-Cu 84%).

Vaneste JL (1996) Honey bees and epiphytic bacteria to control fire blight, a bacterial disease of apple and pears. Biocontrol News and Information 17, 67N-78N

Wang SW, Chen PF, Chang ST (2005) Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technology 96, 813-818
