
 

 

 
Received: 1 March, 2007. Accepted: 1 May, 2007. Invited Review 

Plant Viruses ©2007 Global Science Books 

 
Potato spindle tuber viroid (PSTVd) 

 
Michael Schmitz • Gerhard Steger* 

                                                                                                    
Institut für Physikalische Biologie, Geb. 26.12.U1, Universitätsstr. 1, Heinrich-Heine-Universität Düsseldorf, Germany 

Corresponding author: * steger@biophys.uni-duesseldorf.de 
                                                                                                    

ABSTRACT 
Potato spindle tuber viroid (PSTVd) is the type strain of the largest viroid family Pospiviroidae. PSTVd is a circular, single-stranded RNA 
molecule with a sequence length of about 359 nt and a rod-like native structure that causes infectious diseases in solanaceous plants. 
PSTVd does not code for any protein but replicates autonomously in the nucleus of infected plants and is systemically transported by host 
proteins using functional motifs encoded in its genome. Here we summarize the present knowledge about these motifs and their functional 
relationship to replication, processing, transport, and cause of symptoms. 
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INTRODUCTION 
 
The name viroid is derived from virus-like; that is, on the 
one hand viroids do behave like plant viruses in certain 
respects, but on the other they differ from viruses in many 
biological features. Mature viroids consist of a covalently 
closed circular RNA that ranges in size from 246 to 
399 bases. Because viroids do not code for any peptide or 
protein, they have to utilize proteins of the host for most 
biological functions like replication, processing or transport. 
Therefore, viroids can be regarded as minimal parasites of 
the host machinery. To do so, viroids have to present to the 
host machinery the appropriate signals that have to be 
based either on the sequence or the structure of viroid RNA. 

Viroids replicate by a rolling circle mechanism using 
either an asymmetric or a symmetric pathway. Different en-
zymes are involved in the different types of the replication 
cycle. In either case replication includes a processing step 
of oligomeric replication intermediates to molecules of unit 
length. This step proceeds either by a viroid-internal ribo-
zyme or by proteinaceous RNAse(s) of the host. According 
to this feature and others, viroids are classified (Flores et al. 

1998) into two families: 
Pospiviroidae do possess a thermodynamically stable 

rod-like secondary structure with a “central conserved re-
gion” (CCR) and do not self-cleave. They replicate via an 
asymmetric rolling circle mechanism and are located in the 
nucleus. According to sequence and structural homology, 
Pospiviroidae may be divided into three subfamilies and 
several genera, which are named according to the respective 
type member: pospiviroids, potato spindle tuber (PSTVd); 
hostuviroids, hop stunt; cocadviroids, coconut cadang ca-
dang; apscaviroids, apple scar skin; and coleviroids, Coleus 
blumei. 

Avsunviroidae are named after avocado sun blotch 
viroid, they do not possess a CCR and self-cleave by a ham-
merhead ribozyme. They replicate in a symmetric rolling 
circle mechanism and are located in the chloroplast. This 
family consists of four members, avocado sunblotch, peach 
latent mosaic, chrysanthemum chlorotic mottle, and egg-
plant latent viroid. 

In the late 1960s Ted Diener (Diener and Raymer 1967, 
1969) discovered the infectious agent as a novel pathogen; 
the name viroid was termed in the early 1970s (Stollar and 
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Diener 1971; Diener 1972). The definition and basic fea-
tures still make viroids exceptional entities, even more so at 
the end of the 1960s when viroids were described first as 
naked pathogens (for a personal view see Diener 2003). 
PSTVd was the first known circular RNA. It is smaller by a 
factor of 10 than the smallest virus. PSTVd was the largest 
RNA sequenced in 1978 by Gross et al. 

For an overview on viroid-related topics see the recent 
reviews and books (Hadidi et al. 2003; Tabler and Tsagris 
2004; Flores et al. 2005; Ding et al. 2005; Daros et al. 
2006; Ding and Itaya 2007). In this review we will concen-
trate on PSTVd. 
 
HOST RANGE AND SYMPTOMS OF PSTVd 
 
Potato spindle tuber disease was described first in North 
America in the early 1920s (Martin 1922); effects are 
stunted potato plants with elongated tubers. Symptom ex-
pression depends, among other things, on the PSTVd strain 
and on temperature: different strains, named for example 
mild, intermediate, and severe, reduce yields of tubers from 
about 15 up to 100%; high temperatures increase symptoms. 
PSTVd can be transmitted by seed and pollen; efficient 
transmissions are possible mechanically by sap contamina-
tion. There is evidence for heterologous encapsidation of 
PSTVd in particles of potato leafroll virus and transmission 
by aphid vectors (Querci et al. 1997; Syller 2000). Natural 
infections of PSTVd have been reported on pepino (Sola-
num muricatum), avocados (Persea americana) and a range 
of wild Solanum spp.. Most other solanaceous species (f.e. 
Solanum, Nicotiana, Petunia spp.) have been infected under 
experimental conditions. The standard propagation host for 
PSTVd is tomato (Lycopersicon esculentum) cv. ‘Rutgers’, 
which develops symptoms like stunting and epinasty, de-
pending on the severity of the infecting PSTVd strain (Fig. 
1). Other tomato genotypes (f.e. cvs. ‘Harzfeuer’ and 
‘Moneymaker’) are more tolerant to PSTVd infection com-
pared to cv. ‘Rutgers’. Nicotiana benthamiana is referred to 
as a symptomless host but biolistic transfer of lethal strain 
AS1 RNA led to induction of strong stunting (Matouek et al. 
2007). A single nucleotide substitution in the loop E region 
(see below) of PSTVd converted the lethal strain KF440-2 
from a noninfectious to an infectious RNA for Nicotiana 
tabacum (Wassenegger et al. 1996). For further details on 
these topics see Diener (1987), Hadidi et al. (2003) and 
Flores et al. (2005). Unfortunately (for scientific reasons) 
Arabidopsis is not a host for PSTVd or any other viroid 

(Daros and Flores 2004; Matoušek et al. 2004b). According 
to the analysis by Daros and Flores (2004) Arabidopsis has 
the enzymatic machinery for replicating viroid species of 
Pospiviroidae but viroids are unable to move to distant plant 
parts in Arabidopsis. Biolistic infection of Arabidopsis with 
a large pool of PSTVd mutants, generated by thermal stress 
in Nicotiana benthamiana and passaged through Raphanus 
sativa, gave rise to a new mutant progeny, but its level was 
~300 times lower than compared to tomato (Matoušek et al. 
2004b). 
 
PSTVd IS REPLICATED IN AN ASYMMETRIC 
ROLLING-CIRCLE MECHANISM 
 
The circular PSTVd is defined to have (+)polarity. It is the 
template for transcription into oligomeric linear (-)strands 
(Fig. 2). These (-)intermediates are template for the synthe-
sis of oligomeric linear (+)intermediates. They are enzyma-
tically processed by cleavage into molecules of unit length 
and ligated to the mature circles. This transcription process 
excludes circles of (-)polarity (Branch et al. 1988), which 
are present in the symmetric rolling-circle mechanism of 

Fig. 1 Symptoms of different PSTVd strains. Tomato plants (L. 
esculentum cv. ‘Rutgers’) of identical age and duration of infection are 
shown: the first is non-inoculated (mock), the others are inoculated with a 
mild (QFA; Gruner et al. 1995), the type strain “intermediate (Diener)” 
(Gross et al. 1978), and a strong (AS1; Matoušek et al. 2007) symptoms 
producing PSTVd strain. Besides the standard stunted habitus of 
PSTVd-infected tomato plants, PSTVd-AS1 shows symptoms up to 
necrosis of stem and leaves. 

Fig. 2 Replication cycle of PSTVd. Accor-
ding to Branch and Robertson (1984) and 
Branch et al. (1988) the mature circular 
(+)strand (top) is transcribed into oligomeric 
(-)strands (right, bottom). These are template 
for synthesis of oligomeric (+)strands (bot-
tom, left). The latter are enzymatically pro-
cessed to monomers and ligated to circles 
(Baumstark and Riesner 1995; Baumstark 
et al. 1997). Both transcription steps are 
catalyzed by DNA-dependent RNA poly-
merase II (polII) (Mühlbach and Sänger 
1979; Schindler and Mühlbach 1992). 
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Avsunviroidae. Furthermore, an autocatalytic cleavage and 
ligation step – for example by hammerhead ribozymes as 
in Avsunviroidae – could not be shown for PSTVd or any 
member of the Pospiviroidae family (Tsagris et al. 1987); 
for further details on the enzymatic processing see below. 

By inhibition studies with �-amanitin and actinomy-
cin D it was demonstrated that synthesis of (-)- as well as 
(+)-strand intermediates strongly depends on the activity of 
DNA-dependent RNA polymerase II and that RNA poly-
merases I and III are unlikely to be responsible for PSTVd 
replication (Mühlbach and Sänger 1979; Schindler and 
Mühlbach 1992). 

The reason why PSTVd is a template for transcription 
by polII might be based on a structural similarity of GC-
rich regions in PSTVd with GC-rich DNA-promoter re-
gions of house-keeping genes: GC-rich regions in DNA 
can easily form non-B-form double helices (Heinemann 
et al. 1987; Wong et al. 2007), which may act as transcrip-
tion factor binding sites. Details on such GC-rich motifs in 
(+) and (-)PSTVd are given below. 
 
PSTVd IS LOCALIZED IN NUCLEI OF INFECTED 
CELLS 
 
The subnuclear distribution of PSTVd (+)- and (-)-strand 
sequences was analyzed by fractionation of subcellular 
compartments from leaf tissue of tomato plants (Stollar and 
Diener 1971; Schumacher et al. 1983; Hecker et al. 1988) 
and later by in situ hybridization using fluorescence-
labeled PSTVd transcripts as probes (Harders et al. 1989; 
Qi and Ding 2003). The majority of PSTVd molecules of 
both polarities is located in nuclei of infected cells. In 
chloroplasts – where viroids from the Avsunviroidae 
family are located – practically no PSTVd molecules were 
detected. The average number of PSTVd copies per nuc-
leus is about 104; the copy number in individual cells is as 
high as 5·105, because only up to �20% of cells seem to be 
infected. Inside of the nuclei, about equal numbers of (+)-
stranded PSTVd molecules are located in the nucleo-plasm 
and in nucleoli; that is, concentration of (+)PSTVd is 
highest in nucleoli. According to Harders et al. (1989) 
these distributions do hold for PSTVd molecules of both 
polarities; according to Qi and Ding (2003) only (+)strands 
are located in nucleoli whereas (-)strands are exclusively 
located in the nucleoplasm. Both would fit to the replica-
tion cycle of PSTVd and the involvement of polII, which is 
located in the nucleoplasm: circular PSTVd as well as    
(-)intermediates are transcribed in the nucleoplasm and at 
least the mature PSTVd is transported to nucleoli. 
 
INTRA-PLANT TRANSPORT OF PSTVd 
 
After inoculation with an infectious PSTVd strain of a host 
plant by either using Carborundum as abrasive or biolisti-
cally using a gene gun (Matoušek et al. 2004a), PSTVd has 
to infect at least a first cell and then to move through the 
plant for systemic infection. Woo et al. (1999) showed that 
infectious PSTVd transcripts are actively imported from 
cytoplasm into nuclei. In contrast, mRNAs of similar size, 
70 kDa dextran, and two viroids from the Avsunviroidae 
family, which replicate in chloroplasts, remained in the 
cytoplasm. That is, (+)PSTVd has to contain a sequence or 
structure motif that enable its transport into the nucleus 
(Zhao et al. 2001). 

For movement from cell to cell, plant viruses use virus-
encoded ‘movement proteins’, which are not available to 
viroids. By micro-injection of PSTVd transcripts Ding et al. 
(1997) showed that the PSTVd moved in a few minutes 
from the injected cells via plasmodesmata to neighboring 
cells and accumulated in the corresponding nuclei. 
PSTVd cDNA was also able to mediate intracellular trans-
port. 

Long-distance movement of PSTVd parallels in part 
photoassimilation transport (Palukaitis 1987; Hammond 
1994; Stark-Lorenzen et al. 1997); that is, after inoculation 

of a third leaf of a tomato plant, PSTVd replicates and 
moves into the shoot tip and leaves adjacent to the tip and 
then in other leaves between the inoculated leaf and the 
shoot tip as well as in the root, but not into the leaves below 
the inoculated leaf. PSTVd replication takes place in 
companion and phloem parenchyma cells during movement 
through the phloem sieve cells (Zhu et al. 2001). PSTVd is 
either not present or its concentration is below the detection 
limit of in situ hybridization in petals, stamens and ovary of 
tomato flowers (Zhu et al. 2001). This is in conflict with 
reports on the seed transmissability of PSTVd (see Singh 
et al. 2003). 
 
THE NATIVE STRUCTURE OF PSTVd IS ROD-LIKE 
 
Already prior to knowledge of the first PSTVd sequence 
(Gross et al. 1978) it was obvious from biophysical expe-
riments that the native structure of PSTVd had to consist of 
a linear, rod-like arrangement of short helices and loops 
(Fig. 3; Langowski et al. 1978). This was corroborated by 
further biophysical and biochemical analyses like: 
• melting curves (either optically registered or by tempera-

ture-gradient gel electrophoresis; Henco et al. 1977; Ro-
senbaum and Riesner 1987; Schmitz and Steger 1992) 

• chemical and enzymatic mapping (Gross et al. 1978) 
• binding of tRNAs to loops (Wild et al. 1980) 
• UV cross-linking of loop E in vivo (Wang et al. 2007b) 
• dye-binding 
• electron microscopy 
• determination of dimensions and stiffness by analytical 

ultracentrifugation (Riesner et al. 1982) 
• secondary structure prediction (Steger et al. 1984) 
• measurements (Henco et al. 1979) and prediction 

(Schmitz and Steger 1996) of kinetic folding 
including knowledge of the sequence (Riesner et al. 1979). 
“Native” structure means that no structural variation could 
be detected under various salt conditions (from 0 to 10 mM 
Mg), which excluded any tertiary structure (in the sense of 
the L-conformation of tRNA or pseudoknots). In other 
words, the rod-like structure of PSTVd is the structure 
under thermodynamic equilibrium. 

The relatively high stability of circular PSTVd against 
nucleolytic degradation might be based on the missing 
5�/3� ends, which prohibit access for exonucleases, and on 
the mixture of short helices and short loops, which make 
PSTVd a bad substrate for both double and single strand-
specific endonucleases. 
 
METASTABLE BRANCHED STRUCTURES ARE 
CRITICAL FOR PSTVd 
 
From equilibrium and kinetic denaturation measurements 
(Henco et al. 1979; Riesner et al. 1979; Steger et al. 1984), 
a detailed mechanism of the reversible denaturation-renatu-
ration was derived for circular PSTVd. Three characteristic 
regions – the premelting regions 1, 2, and 3 (PM1–3; cf. 
Fig. 3) – show lowest stability and denature 5-10°C below 
the main transition (49.5°C in 11 mM or 73°C in 1 M ionic 
strength). During the main transition all base pairs are dis-
rupted and at least two particularly stable hairpins I (nt 79–
87/102–110; fG:C = 0.67) and II (nt 227–236/319–328; 
fG:C = 0.9), which are not part of the native structure, are 
newly formed. At higher temperatures the stable hairpins 
denature according to their individual stabilities. Of course 
such temperatures of structural rearrangements are irrele-
vant to any biological process, but according to kinetic 
analysis the stable hairpins do form as metastable structural 
elements by sequential folding (Boyle et al. 1980; Nussinov 
and Tinoco 1981) during synthesis of (+) as well as (-) 
strands (Schmitz and Steger 1996; Repsilber et al. 1999). 
By structure-specific oligonucleotide-mapping hairpin II-
containing (-)-strand intermediates could be detected in 
vivo (Schröder and Riesner 2002). 

From carefully designed mutants of PSTVd, analysis of 
the mutants’ infectivity, genetic stability and/or time cour-
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ses of reversion to the wild-type sequence, Loss et al. 
(1991) and Qu et al. (1993) concluded (i) that hairpin II is 
a functional element in the (-)-strand replication interme-
diate, generated due to sequential folding during synthesis, 
and that it is essential for template activity of (+)-strand 
synthesis; (ii) that G:U pairs are tolerated transiently in (-)-
strand hairpin II; the lower stability of such a hairpin II is 
compensated by additional mutations outside hairpin II 
which suppress the competition of a rod-like structure; and 
(iii) that the reversions are generated spontaneously during 
(-)-strand synthesis. 
 
STRUCTURAL DOMAINS OF PSTVd 
 
On the basis of sequence homology between seven pospi-
viroids, Keese and Symons (1985) proposed a model of 
five structural and functional domains in the rod-like 
structure (Fig. 3). These are the terminal left (TL) and 
right (TR), the pathogenicity-modulating (PM), central 
conserved (CC), and variable (V) domain. Features of 
these domains will be discussed below. Take note that 
these domains consist of structural elements from the rod-
like PSTVd structure, whereas already hairpin II, described 
in the previous section, depends on sequence regions that 
are not close neighbors in the native structure. 

To obtain results described in the previous and follow-
ing sections, synthetic mutants were used to analyze inter-
dependence of specific sequence positions or structural 
elements with biological features or functions of PSTVd. 
In this context remember that most positions in PSTVd 
serve several functions: base pairing in (+)- and (-)-strand 
equilibrium and metastable structures is critical to present 
sequence and/or structural elements to the host machinery. 
As a consequence most multiple mutations are lethal to 
PSTVd whereas single-site mutants do revert often quite 
easily during the first plant passage. For examples see Loss 
et al. (1991), Owens et al. (1991), Qu et al. (1993), and Hu 
et al. (1997). Two simple strategies do help to get progeny 
from synthetic mutants: the infectivity of circular RNA is 
superior to that of linear molecules (Feldstein et al. 1998) 
and biolistic inoculation with a gene gun has a higher effi-
ciency of inoculation than conventional mechanical inocu-
lation using Carborundum (Matoušek et al. 2004a). A fur-
ther alternative are transgenic plants. For example, Wasse-
negger et al. (1994) agrotransformed Nicotiana tabacum 
plants with a non-infectious PSTVd cDNA with a deletion 

of 9 nt (nt 70–78); in planta a mutant evolved that had a 
9 nt deletion (nt 282–290) opposite in secondary structure 
to the original deletion plus additional five single nucleo-
tide changes. The evolved 341 nt long mutant was infecti-
ous and genetically stable in tomato cv ‘Rentita’. 
 
The TL region contains the start site of (-)strand 
replication intermediates 
 
The TL region of PSTVd contains a repeat of eight nucleo-
tides (nt 15–21 and 352–359; Fig. 4) like most other mem-
bers of Pospiviroidae except the Iresine viroid. This dupli-
cation allows for two alternative structures, an elongated 
and a bifurcated one (Riesner et al. 1979; Gast et al. 1996). 
According to structure prediction, consensus structure 
prediction for viroids of Pospiviroidae, and biophysical 
analysis by temperature-gradient gel electrophoresis, opti-
cal melting curves and nuclear magnetic resonance spec-
troscopy (NMR), the elongated structure is highly favored 
over the bifurcated structure (Dingley et al. 2003). 

Kolonko et al. (2006) describe an in vitro system for  
(-)-strand PSTVd synthesis in a nuclear extract from a non-
infected cell culture of the host plant Solanum tuberosum. 
(-)strands, which were synthesized after addition of circu-
lar PSTVd as template, were purified by affinity chromato-
graphy. Primer-extension analysis of the de novo-synthe-
sized (-)strands revealed a single start site located in the TL 
hairpin loop at either U359 or C1. This fits to the earlier 
observation of Goodman et al. (1984) that wheat germ 
pol II binds to the terminal loops of PSTVd. A differentia-
tion between the two positions was not possible due to low 
resolution of the sequencing gels. A mutant C1G was less 
infectious than the wild-type sequence but this mutant as 
well as mutant C1U (Owens et al. 1991) were genetically 
stable. A mutant U359G reverted to wild type within the 
first plant passage. This finding suggests that U359 is the 
start site of transcription and that the nucleotide identity of 
this first position is essential for transcription initiation; 
such a dependence is known from other polymerases. Loc-
ated nearby to the start site is a GC-rich region (marked as 
GC-box in Fig. 3), which may act to facilitate initiation 
(Fels et al. 2001) similar to the GC-rich hairpin II in the (-)-
strand intermediate. 

The start site of (+)strands from (-) to (+)transcription 
is not known. 
 

Fig. 3 Native secondary structure of PSTVd. The size of dots connecting base pairs is based on thermodynamic prediction of a consensus structure for 
45 PSTVd variants; the sequence is given for the PSTVd variant intermediate (Gross et al. 1978). Nucleotides that are part of the extrastable hairpins I 
and II are in bold face. GC-rich regions are boxed. The five domains of pospiviroids are marked as proposed by Keese and Symons (1985). The two 
shaded 5�-AGG/CUUCC-5� motifs in the TR domain are involved in Virp1 binding (Gozmanova et al. 2003). 

Fig. 4 PSTVd’s TL region 
in rod-like and bifurcated 
conformation. Nucleotides 
in bold-face highlight the 
two repeat units that give 
rise to the structural alter-
natives. Size of dots con-
necting base pairs is pro-
portional to their predicted 
pairing probability. 
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Pathogenicity-modulating region 
 
In 2007 at least 100 natural and synthetic sequence variants 
of PSTVd are known (Rocheleau and Pelchat 2006). Most 
variants differ by only a few mutations. In many cases 
small sequence variations in the PM region lead to varia-
tions in symptoms of infected tomato cv. ‘Rutgers’. 
Schnölzer et al. (1985) determined the sequences of three 
such pathogenicity variants called “mild” (KF6), “severe”, 
and “lethal” (KF440). The name “lethal” was chosen to 
depict the increased symptoms in comparison to the variant 
“severe”, but the lethal variants lead not to death of the 
host. Including the standard strain “intermediate (DI)” the 
important sequence differences were located in the 
“virulence-modulating” (VM) region (Fig. 3). This region 
includes the “pre-melting loop 1” (Steger et al. 1984) and 
all four variants fitted to a model in which thermodynamic 
stability of the VM region decreased with increasing symp-
toms. This hypothesis pointed to a PSTVd/nucleic acid 
interaction as the primary trigger for symptom production. 

The thermodynamic model of a pathogenicity trigger 
was obsoleted by an increasing number of PSTVd variants 
with a stability of the VM, PM or P region that did not fit 
to their symptoms. At first an interdependence between 
pathogenicity and replicability was shown (Gruner et al. 
1995); that is, more severe PSTVd variants do overgrow 
milder variants. It has been shown, however, that severity 
of symptoms is not a direct consequence of PSTVd titers 
(Góra et al. 1996; Owens et al. 1996). From three-dimen-
sional structure prediction for 12 PSTVd variants produ-
cing different symptoms (Owens et al. 1996) and gel-elec-
trophoretic determination of degree of bending and flexi-
bility in the VM region of six out of these 12 PSTVd vari-
ants (Schmitz and Riesner 1998) a model was put forward 
that mild variants possess a straight and rigid VM region 
whereas the angle of bending increases monotonically with 
the pathogenicity of the variant. This model favors protein-
binding to the VM region as the primary pathogenic event. 

In the mean time a further PSTVd variant was found 
(AS1; Matoušek et al. 2007) that does produce more severe 
symptoms than the other “lethal” strains but its sequence 
does not fit to either of the above models. 

RNA interference may provide a different explanation 
for PSTVd pathogenicity. The low molecular weight RNA 
fraction of the cytoplasm from tomato plants inoculated 
with PSTVd contains a population of 22 and 23 nt long 
PSTVd-specific RNAs of both polarities (Itaya et al. 2001; 
Papaefthimiou et al. 2001; Denti et al. 2004). Such RNAs 
are characteristic of post-transcriptional gene silencing; 
that is, PSTVd might trigger RNA silencing. The levels of 
small PSTVd-specific RNAs were enhanced in symptoma-
tic tomato plants after biolistic infection with PSTVd vari-
ant AS1 in comparison to the mild QFA variant (Matoušek 
et al. 2007). According to Itaya et al. (2007) the small 
RNAs are mostly derived from single-stranded PSTVd 
(Fig. 5C), and PSTVd replication was resistant to RNA 
silencing presumably to its stable secondary structure. That 
is, PSTVd behaves more like a pri- or pre-miRNA (Wang 
et al. 2007a) than giving rise to siRNAs via a double-stran-
ded replication intermediate, which could never be identi-
fied for PSTVd. 

The small PSTVd-specific RNAs, isolated, cloned and 
sequenced by Itaya et al. (2007), were derived mainly from 
(+)PSTVd and there particularly from the upper part of TL 
and V domains and from the lower part of TR domain (Fig. 
5C). 

A computational approach to search for potential tar-
gets of PSTVd-derived small RNAs proceeded as follows 
(Teune, Junge, Steger, unpublished): The 359 nt long 
PSTVd sequences of variants KF5 (mild) and RG1 
(“lethal”) was cut into 359 overlapping fragments of length 
23 nt; these were searched for in the genome of Arabi-
dopsis thaliana. As matches were counted complementary 
fragments with one mismatch, one insertion and/or one 
deletion. In total 108 matches were found for KF5 and 206 

for RG1, respectively (Fig. 5A, 5B). In the Arabidopsis ge-
nome about 50% of matches are located in regions an-
notated as protein-coding. In the PSTVd sequences 90% of 
matches are located in the upper TL to upper P regions and 
in the lower P region; these are marked by black arrows in 
the secondary structure of PSTVd (Fig. 5C). A statistical 
significance of this result is not easy to evaluate due to the 
nucleotide bias of the P region, which contains an oligo-
purine stretch in the upper and an oligo-pyrimidine stretch 
in the lower part. 

Host proteins that might be affected by the PSTVd-
derived small RNAs are presently unknown. During disease 
development of a PSTVd-infected host many protein con-
centration alterations are found. An example is a “patho-
genesis-related” protein of 14 kDa that is drastically 
increased in concentration; its induction, however, is not 
viroid-specific because it is also accumulating after viral 
and fungal infections (Camacho Henriquez and Sänger 
1984). Itaya et al. (2002) analyzed the altered gene expres-
sion in tomato cv. ‘Rutgers’ after infection with either a 
mild or a severe PSTVd strain. Genes with altered expres-
sion encode products involved in defense/stress response, 
cell wall structure, chloroplast function, protein metabolism, 
and other diverse functions; the expression of some of these 
genes was also altered by TMV infection. 
 
The central conserved region is involved in 
processing of (+)intermediates 
 
From sequence comparison among the early available 
viroid sequences, the presence of a highly conserved region 
has been described in both the upper and the lower central 
domain of PSTVd and related viroids (Gross et al. 1982; 
Diener 1983; Keese and Symons 1985). In PSTVd, the up-
per conserved region contains the sequence that forms hair-
pin I during the main melting transition (Henco et al. 1979; 
Steger et al. 1984). The same hairpin is also prominently 
observed in simulations of the kinetically controlled folding 
as well as sequential folding of PSTVd (Schmitz and Steger 
1996). 

The C region contains a structure motif that has been 
described in a variety of RNAs, especially eukaryotic 5 
S rRNA, the large subunit rRNAs from all kingdoms of life, 
and the hairpin ribozyme. This so-called loop E motif (Fig. 
6) consists of five and six nucleotides in the two strands 
forming the loop, which is enclosed by Watson-Crick base 
pairs. All eleven loop nucleotides are involved in non-
Watson-Crick base pairs and stacking interactions. The 
loop E motif in PSTVd was proposed from sequence 
similarity to the loop E motif from eukaryotic 5S rRNA and 
the sarcin-ricin loop motif from the large subunit rRNAs. 
High structural similarity to these motifs was verified by 
UV-induced cross-linking between nucleotides G98 and 
U260 residing on opposite strands of the internal loop motif 
(Branch et al. 1985). This cross link arises from the parti-
cular cross-strand purine stack conformation of nucleotides 
G98-A99 and U260-A261, which appears preserved in 
PSTVd although the stabilizing base triple formed by the 
bulged nucleotide 259 and the A99:U260 pair is absent in 
PSTVd. The structural similarity between known loop E 
motifs and the PSTVd loop E has been confirmed by che-
mical modification studies (Owens and Baumstark 2007). 
Replacement of the bulged nucleotide C259 by G results in 
a marked stabilization of the loop motif (Schrader et al. 
2003), which is in excellent agreement with data obtained 
on the sarcin-ricin loop motif (Seggerson and Moore 1998). 

The central conserved region of PSTVd, including the 
loop E motif plays an important role in the processing 
reaction that converts multimeric, linear (+)polarity viroid 
transcripts into monomeric, infectious circular progeny 
(Steger et al. 1986; Candresse et al. 1990; Steger et al. 
1992). The following model (Fig. 7) was proposed by 
Baumstark (1995, 1997), and mutational analysis (Schrader 
et al. 2003) has been instrumental in highlighting the im-
portance of the involved motifs for correct processing. An 
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alternative conformation of the upper strand of loop E in a 
longer-than-unit length PSTVd (+)intermediate, forming a 
hairpin capped by a GAAA tetraloop is recognized by a 
host enzyme (Klümper 2002) in the first step of cleaving 
the 5� end of the primary transcript (Fig. 7A). The hairpin 
stem is destabilized by this cleavage, and the structure of 
the C region rearranges to form the loop E motif (Fig. 7B). 
This rearrangement is driven by the stability inherent in the 
compact loop E structure. The second step of processing 
results in cleaving off the 3� portion of the primary trans-
cript, resulting in a monomeric linear RNA (Fig. 7C). This 
second cleavage step occurs at a distance from the loop E 
motif that is similar to the distance between the �-sarcin 
cleavage position and the loop E motif in the sarcin-ricin 
loop. The subsequent ligation reaction is catalyzed by an 
enzyme that has been characterized as similar to a tRNA 

synthetase (Klümper 2002). This step is inhibited by the 
presence of a stable base triple between G259 and A99: 
U260 in a mutant (Schrader et al. 2003). 

A number of mutations have been reported that influ-
ence infectivity and levels of replication of PSTVd in both 
host and non-host plants (Wassenegger et al. 1996; Qi and 
Ding 2002). All naturally occurring mutants preserve the 
key structural features of the loop E motif, most notably the 
cross-strand purine stack and the absence of a base triple 
involving position 259 (as concluded from different ther-
modynamic stabilities between C259G and all other mu-
tants). Based on assumptions on isosteric replacement of 
non-canonical base pairs (Leontis et al. 2002), a model for 
the non-canonical pairings in PSTVd loop E has been pro-
posed (Zhong et al. 2006). This model is not entirely free 
from contradiction to experimental data. It does not take 

Fig. 5 Complementarity of PSTVd 
fragments and the Arabidopsis thaliana 
genome. The locations of fragments com-
plementary to the Arabidopsis genome 
are shown in (A) for PSTVd variant KF5 
(mild) and in (B) for PSTVd variant RG1 
(“lethal”); take note of the scalings of the 
y axis in both graphs. The two regions 
with most hits are marked by black ar-
rows in the secondary structure of PSTVd 
(C). By black and grey lines are marked 
viroid-specific small RNAs with (+) and 
(-)sequence, respectively, identified in 
PSTVd-intermediate-infected tomato cv. 
Rutgers (Itaya et al. 2007). For labeling 
of PSTVd structural regions compare 
Fig. 3. 

A 

C 

B 
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into account the fact that mutant A100G does not preserve 
the UV cross link, hence does not support the loop E struc-
ture (Schrader et al. 2003). A G100:A258 that is ‘near-
isosteric’ to A100:A258 evidently is not sufficiently simi-
lar to support loop E structure formation. Nonetheless, 
analysis of the mutation data from a base pair isostericity 
point of view results in a picture of this crucial structure 
element of PSTVd that is consistent with most experimen-
tal data, and opens the question of functional differences 
caused by mutations that have a strictly conservative effect 
on structure. On this background, the role of key positions 
like C259 and U257 may be in protein interaction rather 
than loop structure. 
 
The variable domain 
 
The name of this domain stems from its low degree of 
sequence conservation between otherwise closely related 

pospiviroids (Keese and Symons 1985). It includes premel-
ting loop 3 (PM3), the 5� part of highly conserved hairpin II, 
and a GC-box. Hu et al. (1996) designed a series of single- 
and double-site mutations in PM3 and analyzed infectivity 
at 26 and 32°C, and thermodynamic stability of the original 
mutants and additional, in planta successively appearing 
mutants. In general PSTVd accumulates to higher concen-
trations at higher temperatures, and the higher temperature 
allows for appearance, replication, and selection of other-
wise inhibitory mutants (Gruner et al. 1995; Matoušek et al. 
2004b). During these plant passages, some of the original 
mutations were retained but additional, spontaneous muta-
tions appeared that obviously had to compensate for some 
defects of the original mutants. Remember that an increased 
stability of PM3, and thus an increased stability of the equi-
librium structures of complete (+) as well as (-)strands, 
leads to decreasing possibility for formation of hairpin II. 
Hu et al. (1996) concluded that selective pressures arising 
from the interaction of assay temperature and structural 
stability in vivo appear capable of moving PSTVd popula-
tions between peaks of relatively high fitness, and that 
selection may occur at the level of either the (+) or the    
(-)strand, depending on the exact nature and location of the 
mutation. 
 
The terminal right domain 
 
By mutations in the terminal hairpin loop, Hammond 
(1994) identified this element as critical for trafficking: 
after Agrobacterium-mediated inoculations the PSTVd mu-
tant was restricted to the gall and root tissues of the plant. 

Using a phage-based screening system (Sägesser et al. 
1997), Martínez de Alba et al. (2003) identified a “viroid 
binding protein” (Virp1) from tomato that interacts in vivo 
and in vitro with PSTVd. Virp1 contains a nuclear localiza-
tion signal and a bromodomain, which is found in a variety 
of proteins thought to play a role in dynamic chromatin; a 
host function of Virp1 is not known (Kociaska et al. 2005). 
Gozmanova et al. (2003) identified a 5�-AGG-3�/3�-CUU 
CC-5� motif and the neighboring asymmetric internal loop 
close to the right hairpin loop as critical for Virp1-binding 
to PSTVd (Fig. 3); a similar motif closer to the variable 
region also contributes to binding. Mutations in any of both 
motifs abolished infectivity of PSTVd mutants. 
 
SUMMARY 
 
PSTVd consists of overlapping sequence and structural do-
mains which are necessary for PSTVd to parasite on the 
host system. The knowledge about the interacting partners 
of the host is low; this might be due to the problem that 
these envisaged interactions have not to be of the high spe-
cificity as for the co-evolved interactions between RNAs 
and proteins of the host. Furthermore, the high concentra-

Fig. 6 Loop E motif in the CCR of PSTVd. 
On the left is shown schematically the structure; 
on the right are named the proposed pairing 
interactions. Arrows point to mutations des-
cribed in the text. The central base triple, which 
is G�A:U in the ricin-sarcin loop motif, does not 
form due the C259. For an overview on non-
Watson-Crick base pairs see f.e. Leontis et al. 
(2002). 

 
 

Fig. 7 PSTVd processing: a switch from cleavage to ligation is driven 
by a change from a tetraloop to a loop E conformation. The central 
section of the rod-like PSTVd structure is shown schematically. Sequence 
regions belonging to the CCR are shown in grey; those forming loop E in 
the native structure by stippled lines; the hollow triangle points to the 
cleavage sites. For further details see text. 
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tion of PSTVd in nucleoli (up to a few hundred μM) does 
not force very high binding constants. Despite this problem 
a few proteins are known to interact with PSTVd (Fig. 8): 
• polII is responsible for transcription; 
• a (unidentified) RNAse is responsible for 5� cleavage and 
• a further (unidentified) RNAse for 3� cleavage of (+)oli-

gomeric replication intermediates to unit-length mole-
cules (Klümper 2002), 

• a ligase for closure of the unit-length molecules to the 
mature circles, 

• and Virp1 might be involved in trafficking. 
These interactions and the capability of PSTVd to ar-

range into thermodynamically stable as well as metastable 
structures led to the hypothesis that the replication cycle of 
PSTVd (and other viroids) is not only a cycle of sequences 
of both polarities – as shown in Fig. 2 – but a cycle of dif-
ferent structures (Fig. 8) which increases the number of 
structural elements available for interactions with the host 
machinery. 

Several host RNAs were proposed as partners interac-
ting with PSTVd (for examples see Gross et al. 1982; 
Dinter-Gottlieb 1986; Haas et al. 1988; Meduski and Velten 
1990); the interactions were shown, however, by computer 
predictions and in vitro experiments with partial sequences, 
but do not hold for full sequences. For example, denatura-
tion plus renaturation of PSTVd in the presence of tomato 
7S RNA did not give rise to any PSTVd/7S RNA com-
plexes (Gruner 1992). Neither processing of ribosomal 
RNA nor assembly of ribosomes is influenced by PSTVd 
infection of tomato cv. ‘Rutgers’, and PSTVd does not co-
sediment with ribosomes from infected tomato plants (Thiel 
1999). One remaining host RNA is 5 S rRNA which might 
be involved in intercellular transport of PSTVd (Ascher-
mann 2001). 

PSTVd is not only of interest as a special pathogen but 
played also a significant role during development of RNA 
technology during the last 25 years: the need for large and 
pure amounts of PSTVd for biophysical analyses forced 
development of anion exchange columns (Colpan et al. 
1983) that led to founding of the company Qiagen, the cir-
cular PSTVd with its structural alternatives forced develop-
ment of bioinformatic tools for structure prediction for cir-
cular RNAs, for suboptimal structures (Steger et al. 1984) 
and for kinetic structure formation (Schmitz and Steger 
1996), structural analysis of co-existing structures of 
PSTVd and in crude extracts asked for development of tem-
perature-gradient gel electrophoresis (Rosenbaum and Ries-
ner 1987), and NMR analysis of PSTVd’s large TL region 
led to detection of magnetic coupling through hydrogen 

bonds (Dingley and Grzesiek 1998). The complexity of 
PSTVd, however, begs for further techniques and advance-
ment of knowledge in related plant processes. 
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