Evaluation of Nitric Oxide Synthase Status During Disease Progression in Resistant and Susceptible Varieties of *Sesamum indicum* Against *Macrophomina phaseolina*

Rupa Acharya • Krishnendu Acharya*

Molecular and Applied Mycology and Plant Pathology Lab., Department of Botany, University of Calcutta, Kolkata- 700 019, India

ABSTRACT

Nitric oxide (NO) is an important molecule in animal and plant system which is produced from L-arginine catalyzed by the enzyme nitric oxide synthase (NOS). NO in plants has been implicated to perform a significant role in several biological systems including defense. The earliest event in the pathogenic recognition is rapid accumulation of reactive oxygen species (ROS) and NO in animals. Likewise, resistant plant pathogen interaction is followed by induction of ROS and reactive nitrogen species like NO. NO has been shown to induce programmed cell death (PCD), although the versatility of NO action in plants is still to be well defined. In the present study we selected a resistant and susceptible variety of *Sesamum indicum*, Rama and Tilittoma, respectively that were challenged with *Macrophomina phaseolina* (Tassi) Goid. NOS activity of the treated and healthy plants was estimated at every 3 days interval. In the susceptible treated plants a positive correlation was observed between symptom severity and decreased NOS activity whereas a reverse relation was shown by the resistant plants. In the susceptible plants NOS activity decreased up to 55% whereas in resistant plants it was increased up to 11% over the control. In our earlier study it was found that in different compatible host-pathogen combination of fungal bacterial and viral component, pathogenesis-related NOS activity was cytosolic and according to kinetics the NOS activity was blocked competitively during diseased condition. We conclude that NOS activity is an important component of resistance or susceptibility of a plant against a pathogen, using sesame as a new model plant.

Keywords: disease protection, plant defense, sesame, susceptibility, systemic acquired resistance

INTRODUCTION

The past few years have seen a dramatic change in our understanding of molecular principles of disease resistance (Zeidler et al. 2004). Principles of plant defense mechanism like hypersensitive reaction (Delledonne et al. 1998), programmed cell death (Greenberg 1996), production of different signal molecules like salicylate, jasmonate, ethylene (Klessig et al. 2000; Marcos et al. 2003) and establishment of systemic acquired resistance (Durrant and Dong 2004) have been followed by a new group of researchers to explain these phenomena in the light of nitric oxide synthase (NOS) activity. Nitric oxide (NO), catalyzed by NOS from L-arginine is well studied in animal systems as a key molecule in various physiologic and pathologic conditions (Sallen 1996). Some basic analogies at the molecular level regarding signal transduction of NO in animal to that of plants are being unveiling gradually (Durner et al. 1998;). The involvement of NOS in plant systems is a recent field of work (Ninnemann and Maier 1996) and is expanding rapidly. The importance of this molecule has been found to be pertinent in regulation of growth and hormonal signaling (Leshtm 1996), root growth (Gouvea et al. 1997), phytoalexin accumulation (Noritake 1996), stimulation of seed germination, de-etiolation and inhibition of hypocotyl elongation (Beligni and Lamattina 2000). NO has now been shown to mediate defense responses of plants against pathogens (Delledonne et al. 1998; Zeidler et al. 2004; Teixeira da Silva 2006).

In this study, the nature of NOS activity has been investigated during disease progression in the resistant variety (var. Rama) and susceptible variety (var. Tilottoma) of *Sesamum indicum* L. when challenged with stem rot-causing pathogen *Macrophomina phaseolina* (Tassi.) Goid.

MATERIALS AND METHODS

Plant material

Seeds of resistant and susceptible varieties of sesame plants were collected from Pulses and Oil Seeds Research Station, Baharampur, West Bengal, India and planted in our laboratory garden. After 2 weeks, the emerged seedlings were transferred to plastic pots containing 3 kg of silt loam soil and were grown at a temperature of 30 ± 2°C for further experiments.

Fungal material

The fungal pathogen (*Macrophomina phaseolina* (Tassi.) Goid.) was obtained from the culture collection of Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta.

Chemicals

Chemicals were of analytical grade and purchased from Merck, Mumbai, India.

Inoculation

One-month-old plants of resistant and susceptible varieties were soil inoculated with pathogen using a talc-based formulation. Inoc-
Determination of NO formation

Activity of NOS was detected by measuring the amount of nitric oxide produced by this enzyme based on the method described by Jia et al. (1996) by using scanning Hitachi 330 spectrophotometer. Here, NO was quantified spectrophotometrically based on the principle of conversion of oxyhemoglobin to methemoglobin which shows a change in absorbance at 575 nm. 60 ± 5 mg of intact leaf tissue was incubated in a reaction mixture containing L-arginine (10 μM), hemoglobin (30 μM) in a total volume of 2 ml of 10 mM phosphate buffer (pH 7.4) at 37°C. After incubation NO content in the reaction mixture was assayed. Tissues taken from the non-treated plants served as the control set. Results obtained from the treated plants were compared with their respective control sets.

Statistical analyses

Results are presented as the mean ± SD (Standard deviation) of at least 5 experiments each with 3 replicates. Data were analyzed by the Student’s t-test following one-way ANOVA and P<0.01 was considered significant.

RESULTS AND DISCUSSION

The NOS activity which was estimated by quantification of NO produced by this enzyme was performed at a regular interval of 3 days throughout the experimental period. Resistant and susceptible plants were grouped into treated and control sets. Intact tissues from all the sets were used as the source of NOS enzyme. Activity of this enzyme was measured as described in the materials and methods section and compared with control set (Fig. 1).

It is clear from Fig. 1 that there was no significant difference between the basal NO activity of resistant and susceptible varieties of S. indicum during their healthy condition. NO activity remained within the range of 8-9 pmol/g tissue/h and maintained a relatively steady state throughout the experimental period. But when they were challenged with pathogen, NO activity increased in resistant plants and decreased in susceptible plants in relation to basal levels (Fig. 1). NOS activity increased up to 11% more than the control in treated resistant plants and decreased up to 55% less than the control in treated susceptible plants.

It is well established that the recognition of a pathogen by the host is followed by production of reactive oxygen species (ROS). But severe oxidative stress provokes damage to almost every cellular component causing unprogrammed cell death (Heath 1987). On the other hand, resistant plant-pathogen combination very often leads to the induction of hypersensitive reaction (HR). There are evidences that NO plays a key role during HR (Daledonne et al. 1998; Durner et al. 1998). HR via NO is a typical example of programmed cell death (PCD) (Arsimovicz and Floryszak-Wieczorek 2007). Our result correlates these facts as it has been found that challenge of pathogen in the resistant plant aggravated NOS activity and thus increased production of NO up to a certain limit. This might be leading to PCD and thus provide resistance. The reverse happens in the case of susceptible plants where NO activity is significantly blocked and the host might select unprogrammed cell death. This result finds hypothetical similarities with other studies regarding NO’s function in biotic stress. Reports reveal that in Arabidopsis suspension cells, exogenous NO-induced cell death occur at concentrations similar to those generated by cells challenged by avirulent bacteria (Clarke et al. 2000). NO protects potato (Solanum tuberosum) plants against thenoxious effect of pathogen (Phytophthora infestans) infection (Laxalt et al. 1997) and has been designated as an antioxidant molecule which could protect plants against several biotic and abiotic stresses (Belgini and Paternina 2002). Earlier, we reported that in a different host-pathogen combination of Brassica campestris L. var. Sarson Prain, Citrus aurantifolia Swingle and Ammomum subulatum Roxburg vs. Alternaria brassicae (Bark.) Sace., Xanthomonas citri Hasse. and chirke (mosaic streak) virus respectively showed similar kind of NO kinetics having a competitive nature of inhibition (Acharya et al. 2005). In these cases, insufficient production of this antipathogenic molecule, i.e. NO, made the plants vulnerable to susceptibility. Another study strengthened this work where a symptomological field experiment of different common cultivated crop plants like Lagenaria siceraria (Molina) Standl., Carica papaya L., Solanum melongena L., Trichosanthes angulina L., Abelmoschus esculentus Moen., Luffa acutangula (L.) Roxb., Piper betle L., Oryza sativa var. patnai or masuri, Colocasia esculenta (L.) Schott. and Raphanus sativus L. showed a correlation between NO activity and disease severity (Acharya 2007). In addition, we found that administration of sodium nitroprusside (SNP) by foliar spray 20 hrs before pathogen inoculation protected Brassica campestris and Citrus aurantifolia against fungal and bacte-
rrial disease up to 72% and 65%, respectively (Acharya et al. 2005). So, cumulative findings of our study indicate that the status of NOS activity of a plant is directly related to its resistance or susceptibility. Further investigation is ongoing to assess how the level of NOS activity could be used as an indicator for detection of resistance and susceptibility of plants.

ACKNOWLEDGEMENTS

The authors are thankful to the Department of Science and Technology, New Delhi, India for financial aid of the project as a WOS-A scheme. Thanks also extend to Dr. Arunava Bhattacharya, Scientist, Pluses and Oil Seeds research Station, Baharampore, and W.B. India.

REFERENCES

Laxalt AN, Beligni NV, Lamattina L (1997) Nitric oxide preserves the level of chlorophyll in the potato leaves infected by *Phytophthora infestans*. *European Journal of Plant Pathology* 73, 643-651

Leshem YY (1996) Nitric oxide in biological systems. *Plant Growth Regulation* 18, 155-159

