Renal cell carcinoma (RCC) is the third most common urologic neoplasm and its age-adjusted incidence has been increasing annually. Despite advances in cancer research and current therapy strategies, the effective treatment of advanced RCC remains elusive. Over the past two decades, clinical and genetic studies have shown that kidney cancer is not a single disease entity, rather a spectrum of different forms. This understanding has translated into therapies targeted against specific genetic targets. In this review, we highlight the scientific principles, current applications, and future direction of renal cell cancer gene therapy.

ABSTRACT

Renal cell carcinoma (RCC) is the third most common urologic neoplasm and its age-adjusted incidence has been increasing annually. Despite advances in cancer research and current therapy strategies, the effective treatment of advanced RCC remains elusive. Over the past two decades, clinical and genetic studies have shown that kidney cancer is not a single disease entity, rather a spectrum of different forms. This understanding has translated into therapies targeted against specific genetic targets. In this review, we highlight the scientific principles, current applications, and future direction of renal cell cancer gene therapy.

Keywords: antiangiogenesis, cancer, cytoreduction, kidney, metastases

INTRODUCTION

Renal cell carcinoma (RCC) accounts for 2-3% of worldwide cancer incidence and 100,000 deaths annually. Interestingly, the age-adjusted incidence has been increasing for the past thirty years by 3% annually (Jemal et al. 2007). Conventional treatment for metastatic disease has been relatively poor with approximately 50% and 10% 1 and 5-year survival rates respectively (Motzer et al. 2004). To date the only effective therapy has been immunotherapy with IFN-α or IL-2. Unfortunately, response rates have only been approximately 10-15% (Rosenberg et al. 1987). In addition, RCC has been refractory to chemotherapy and hormonal agents (Yagoda et al. 1995; Motzer et al. 1996). Early stage disease can be treated surgically with radical nephrectomy but 30% of patients will develop future metastases (Elson et al. 1988). These limitations have prompted new investigation into effective novel therapy for advanced RCC (Fig. 1).

The past decade has witnessed dramatic advances in the understanding of molecular and genetic alterations that promote RCC carcinogenesis. Research has highlighted a multitude of these genetic abnormalities which direct initiation, promotion and progression of renal cell carcinoma. Renal cells acquire the ability to resist growth inhibitory signals, evade apoptosis, proliferate in a low-oxygen environment, avoid immunosurveillance, promote angiogenesis, and metastasize to distant sites (Hahn 2002). During this process, renal cells must acquire a vast array of genetic mutations and this is demonstrated in the genetic variance of RCC cell carcinomas (Pavlovich 2004). Also, this genetic heterogeneity helps explain the varied clinical behavior of renal cancer and its different histological subtypes arising from separate regions of the kidney. Each is caused by distinct genetic mutations (Linehan et al. 2004).

This insight has led to therapies that target specific genetic aberrations that alter the neoplastic process. Gene therapy for advanced RCC can be classified as immune-based, cytoreductive, corrective and antiangiogenic (Zisman et al. 2000). The immunomodulatory approach aims to produce a tumor-specific immune response from the host by inducing cytokines, transfection of cytotoxic lymphocytes, or autologous tumor vaccines. Cytoreductive gene therapy creates tumor toxicity by transfecting oncolytic, replication-competent viruses, or inducing suicide and apoptotic genes. Corrective gene therapy seeks to repair the acquired genetic mutations by inactivating oncogenes or replacing tumor suppressor genes. Finally, antiangiogenic gene therapy attempts to target endothelial cells resulting in loss of tumor vasculature and subsequent inhibition of growth. This paper serves as a review of these gene therapy approaches and their current status as therapeutic options for advanced renal cell carcinoma (Table 1).
Advances in Gene, Molecular and Cell Therapy
1(2), 150-160 ©2007 Global Science Books

IMMUNOMODULATORY GENE THERAPY

Over the past 20 years there has been an impressive advancement in the understanding of the interaction between host immune systems and RCC tumors. Renal cell tumors actively evade immunosurveillance through a number of mechanisms, including down-regulation of major histocompatibility complex antigens and secretion of immunoinhibitory cytokines (Radoja 2000). In contrast to direct administration of antitumor cytokines or adoptive immunotherapy, the goal of immune-based gene therapy is to selectively stimulate the host immune system to target tumor cells by the induction of genes encoding antigens, cytokines or growth factors. The tumor cells themselves will produce the cytokine, avoiding the toxicity related to systemic cytokine injection.

Transfection can be accomplished through multiple mechanisms. Viral vectors can deliver the immuno-modulatory gene to the tumor (Palmer 2005). Also, the desired gene or naked DNA can be directly injected into the neoplasm (Saffran et al. 1998). Alternatively, vectors encoding genes can transfect vehicle cells which subsequently target tumors. Genetically altered tumor cells or tumor-related dendritic cells can be used for this purpose. Transfection of vehicle cells can occur in situ or ex vivo. Cells altered ex vivo can be returned to the host for immune system stimulation, creating a tumor vaccine. This approach, a form of active immunotherapy, attempts to induce neoplasm-specific memory T cells as well as the total circulating amount of cytotoxic T cells to control tumor growth and potential recurrence (Kubler 2006).

Tumor cell vaccines

There are a number of clinical trials using tumor-cell based vaccines transfected with a variety of gene products that have demonstrated early potential benefit in treating metastatic RCC. Initial studies have found that granulocyte-macrophage colony-stimulating factor (GM-CSF) is an extremely potent inducer of tumor-specific immunity (Asher et al. 1991). A recent Phase I trial evaluating GM-CSF gene-transduced renal tumor vaccine elicited an objective partial response in one subject and 9 of 13 evaluated patients with Stage III-IV disease had delayed-type hypersensitivity and tumor-specific CD8+ T cell proliferation (Simons et al. 1997). A second Phase I study from Japan demonstrated 1 of 4 patients with stable disease and 1 of 4 with mixed response when treated with GM-CSF-transduced autologous irradiated tumor cells. Similarly this trial displayed a marked immunologic response as 4 of 4 patients had positive delayed-type hypersensitivity and increased tumor-specific T cells (Tani et al. 2004). These early study results provide insight into the role of GM-CSF in promoting eosinophil infiltration, immune recruitment and antitumor activity.

Another study used genetically modified RCC cells to express the co-stimulatory molecule B7-1 (CD80) which is found on antigen presenting cells (APCs). The expression of B7-1, normally absent on tumor cells, strongly stimulates T cell activation. Of the nine patients with resultant metastases, 2 had partial responses and 2 developed stable disease (Antonia et al. 2002). Unfortunately these patients were also given adjuvant IL-2 and these results could be ascribed to the IL-2 administration in such a small trial. Other small stage I trials have produced similar antigenic responses using tumor cells transduced with IL-2 genes and tag7/PGRP-S.
PGRP-5, a novel gene involved in the innate immune response (Pizza et al. 2004; Moiseyenko et al. 2005). Inherent to all mentioned studies was the transfected tumor cells’ ability to elicit delayed-type hypersensitivity reactions at the local tumor site thus recruiting immune activators.

Dendritic cell vaccines

Previous work interestingly suggests that the antigen-presenting cells that are recruited to the tumor locale, not the vaccinated tumor cells, are responsible for creating anti-tumor immunity (Huang et al. 1996). These APCs prime the CD4+ and CD8+ T cells that lead to systemic antitumor response (Huang et al. 1994). This knowledge led to the use of dendritic cells (DCs) as gene therapy vehicles. DCs serve as potent activators of CD4 T cells, CD8 T cells and NK cells, in addition to regulating response to tumor antigens through antibody production and inducing cytokine release (MacPherson et al. 1999). Further, DCs have been found to have defective maturation and function in cancer patients (Serafini et al. 2004). Therefore, immature dendritic cell can be genetically altered ex vivo and returned to the host in hopes of boosting antigen-specific responses (Frankenberger et al. 2005). The DCs are generated by either purification of peripheral blood precursors or culturing CD34+ or CD14 cells and differentiating them into DCs with IL-4 or GM-CSF (Sallusto 1994; Fong 2000). Gene therapy plays an integral role in “loading” the immature dendritic cells for use against RCC. In contrast to exposure to tumor cell lysates, peptides or cytokines directly, DCs can be transfected with a number of different immune stimulators. One study demonstrated tumor-specific T cell response in vitro to primary and metastatic RCC tumors by transfecting DCs with autologous renal cancer tissue RNA (Heiser et al. 2001). This same group subsequently conducted a Phase I trial on 10 study patients (Su et al. 2003). Using autologous dendritic cells transfected with tumor RNA, an unusually low number of patients progressed to lethal disease. Only 3 of 10 subjects died after a mean follow-up of 19.8 months. Unfortunately most patients concurrently received IL-2, surgery, or palliative irradiation, confounding the results.

The use of RNA allows presentation of a variety of tumor antigens which stimulate an aggressive immune response. Further, there may be shared antigens between renal cell carcinomas which are not patient-specific. Geiger et al. elicited T cell stimulation using DC vaccines transfected with RNA from generic RCC-26 cells (Geiger et al. 2005). This group illustrated that tumor-specific antigens from external sources can serve as stimulatory factors. This new approach could overcome tissue amount limitations in autologous vaccines by providing a limitless source of antigens. To take this approach a step further, Bontkes et al. combined dendritic cells transfected with mRNA encoding tumor-associated antigens producing biologically active IL-12 (Bontkes et al. 2007). Their technique allowed IL-12 production for up to five days post-transfection and effectively generated CTLs with tumor specificity.

Several studies have shown that the human telomerase reverse transcriptase gene (hTERT) can produce tumor-specific CTLs (Vonderheide et al. 1999; Minev et al. 2000). Transduction of dendritic cells with hTERT via an adenoviral vector was recently demonstrated to produce CTLs specific to gastric, osteosarcoma and hepatocarcinoma in vitro (Chen et al. 2006). Additionally, these hTERT-transduced CTLs were more sensitive to IFN-γ. Since it has been observed that cancerous renal tissues express hTERT and telomerase activation plays an integral role in the oncogenic process of kidneys, this CTL-stimulating gene epitope could be used in the near future to induce anti-tumor immunity (Fan et al. 2005).

Direct cytokine gene transduction

Currently systemic cytokine administration, most notably IL-2, can result in metastatic tumor toxicity and produce complete and partial responses in patients with advanced metastatic RCC (Rosenberg et al. 1994). Though complete responses to IL-2 tend to be long lasting, significant patient side-effects and low response rates have limited the utility of systemic cytokine administration. Despite encouraging in vitro results, some have suggested that systemic administration fails to achieve adequate intratumoral concentrations (Vonderheide et al. 1996). Direct gene transfer of cytokine-encoding regions into malignant cells has the advantage of providing high local concentration of the desired cytokine without the toxicity. In addition, gene transfer has the potential to overcome deficiencies in T-cell receptor-directed signaling and the lack of co-stimulatory signals (Zier 1996).

Recent pre-clinical cytokine gene therapy trials with demonstrated efficacy include IL-2, IL-4, IL-12, IFN-α, and IFN-β (Hathorn et al. 1994; Bleizinger et al. 1999; Figlin et al. 1999; Hoffman 2000; Nakanishi et al. 2003; Yu et al. 2004). As with vaccine therapy, the common mechanism of tumor inhibition is cytokine activation of CTL response. IL-2 has received the primary focus of cytokine gene therapy in recent years. Leuvecin (Vical Inc, San Diego) is a plasmid DNA expression vector containing the human IL-2 gene complexed with a cationic lipid matrix. Preclinical trials by Saffran et al. demonstrated successful IL-2 expression in an RCC cell line (Saffran et al. 1998). Subsequent Phase I/II studies have illustrated good toleration of therapy and adequate safety (Galanis et al. 1999). Of the 14 RCC patients available for follow-up, two achieved partial responses lasting from 16 to 19 months. An additional two patients had stable disease lasting from 3 to 18 months. Further, serial biopsy specimens showed increased IL-2 expression and improved CTL in the treated tumors.

A recent report by Galanis et al. has reviewed their cumulative experience in the treatment of metastatic RCC with intratumoral Leuvecin (Galanis et al. 2004). This current study included 31 patients with more extensive follow-up periods. 94% of these individuals had previously undergone nephrectomy and presented with metastatic lesions in multiple anatomic locations. Two patients had partial responses and one other patient had a pathological complete response, yielding an overall rate of 10%. Though this rate is close to the low end of response for systemic IL-2, an additional 23% of patients derived clinical benefit from disease stabilization (Goej et al. 1996). Interestingly, the median survival in the Leuvecin treated group, 11 months, was similar to those reported with systemic IFN-α (8.5-13 months) and IL-2 (12 months) (Negrier et al. 1998). The major advantage to using Leuvecin is the potential to avoid systemic side effects. None of the 31 patients displayed evidence of Grade 3 or 4 toxicities, in contrast to systemic IL-2 administration rates. Though only 10% of patients displayed durable responses, intratumoral injection of the IL-2 gene complexed with liposomes could provide an additional option for patients with metastatic RCC. Further studies are needed to identify patients most likely to benefit from this approach. A potential therapeutic alternative to the direct intratumoral injection of cytokines is the gene transfer of co-stimulatory molecules which amplify the systemic effects of cytokine therapy. A triad of these molecules (TRICOM) has previously been described (Hodge et al. 1999). B7-1, ICAM-1 and LFA-3, designated TRICOM, have been shown to co-stimulate T-cell receptors and subsequent proliferation/signaling. Kudo-Saito and associates have recently reported the use of a replication-defective fowlpox vector encoding the direct to enhance cytosolic immunogenicity in an RCC model (2007). The intratumoral injection of this vector in combination with systemic IL-2, IL-15 or GM-CSF significantly reduces tumor burden, decreases metastasis incidence and extends survival in tumor-bearing mice than either therapy alone. These pre-clinical results confirm the potential of combining existing immunotherapies with novel gene therapy to provide enhances therapeutic effects. Though not reported by Kudo-Saito et al., the simultaneous administration of co-stimulatory molecules...
may allow a reduction in IL-2 dose and subsequently toxicity which has been a limiting factor of this therapy.

CYTOREDUCTIVE GENE THERAPY

Cytotoxic gene therapy strategies selectively kill tumor cells by employing two approaches: transduction of suicide or apoptosis-inducing genes, and replication-competent oncolytic virus infection. In post-transplant minimal tumor volumes, suicide genes encode for enzymes which convert benign pro-drugs into cytotoxic substances or encode protein products with direct tumor cytotoxicity. By administering the previously benign agent, high concentrations of this cytotoxic agent will accumulate in the tumor producing significant anti-tumor effects without systemic toxicity. A promising technique combines the delivery of the suicidal herpes-simplex thymidine kinase gene (HSV-TK) along with systemic ganciclovir (GCV), a purine analog. Only transfected tumor cells expressing HSV-TK are able to phosphorylate GCV into a monophosphate form. Subsequent conversion by cellular kinases yields GCV triphosphate, a false base. This product leads to tumor cell death by competitive inhibition of DNA polymerase and DNA synthesis. Success with other malignancies has led to attempts with renal cancer. An early animal model treated RCC tumors with either retrovirus-mediated ex vivo HSV-TK gene transfer or direct intratumoral adenovirus-mediated HSV-TK transfer (Pulkkanen et al. 2001). Though transduction efficiency was low at 22%, significant tumor regression was achieved with direct intratumoral adenovirus-mediated transduction, followed by intraperitoneal GCV. Additionally, increased apoptosis, macrophage tumor infiltration, reduced proliferation and significant survival prolongation was achieved with Adeno-HSV-TK and GCV treated mice.

Alternatively, cytosine deaminase (CD) plus 5-fluorocytosine (5-FC) has been applied to pre-clinical models of human RCC as a form of toxic gene therapy. In a similar approach as HSV-TK and GCV, adenovirus-mediated transfer of the CD gene into RCC tumors and the systemic delivery of 5-FC disrupts both cellular DNA and RNA synthesis, leading to tumor cell death. Both of these approaches have been compared in a recent study (Shirakawa et al. 1999). This group constructed adenoviral vectors containing the Rous sarcoma virus promoter driving CD (Ad-RSV-CD) or TK (Ad-RSV-TK). As compared to RSV-TK plus acyclovir, RSV-CD plus 5-FC demonstrated superior cell killing in both cell culture and animal models. Observed in both these forms of toxic gene therapy has been the “by-stander effect.” Although gene delivery does not have high efficiency in vitro, animal trials have had successful tumor toxicity. A suggested mechanism is that a portion of target cells are therapeutically transduced and their subsequent gene products diffuse to neighboring cells (Diller et al. 1997). This spread depends largely on gap junctions, cell-cell interactions, soluble factors and apoptotic vesicles (Elshami et al. 1996; Hoganson et al. 1996; Mesnil et al. 1996).

Finally, a more recent adaptation for cytotoxic gene therapy with HSV-TK is the use of a hypoxia-inducible factor as a promoter. Much has been written concerning the loss of the von Hippel Lindau (VHL) gene in RCC and the resultant accumulation of hypoxia factors leading to tumor angiogenesis. Several published studies have shown that vector systems targeting hypoxic regions with solid tumors can regulate the expression of therapeutic genes (Dachs et al. 1997; Ruan et al. 2001). Based on these early results, the dysregulation of VHL and the upregulation of hypoxia factors in RCC appeared to be a potential target of this strategy. Its therapeutic potential was recently tested by combining the hypoxia-responsive promoter with a vector expressing HSV-TK (Ogura et al. 2005). In vitro and in vivo results indicate this approach has therapeutic efficacy. Xenografts treated with the cytotoxic gene therapy displayed marked regression without evidence of systemic toxicity indicating the desired specificity. In conclusion, this hypoxia-inducible vector system may have therapeutic potential for RCC with VHL mutations.

Induction of apoptosis is another approach towards producing tumor regression. While there are many agents which induce apoptosis, the best characterized to date has been the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL has been shown in its soluble form to induce apoptosis in a variety of tumor cell types, while its membrane form elicits a more selective cell death (Ruan et al. 1997; Griffith et al. 1998; Griffith 1998). A recent study has demonstrated that there is in fact TRAIL receptor expression in human RCC cell lines in variable amounts (Griffith et al. 2002). Interestingly, incubation with actinomycin D increased the expression of TRAIL receptors and decreased the inhibitory actions of survivin, thus improving TRAIL’s usefulness as a therapeutic agent. Gene therapy provides significant potential in eliciting TRAIL’s anti-tumor activity against renal cell carcinoma while eliminating the need for continuous administration of soluble TRAIL. Matsubara et al. have been able to introduce TRAIL plasmid into RCC cells via electroporation to produce potent in vivo effects (Matsubara et al. 2006). Further, concurrent systemic injection of 5-fluorouracil enhanced TRAIL-induced apoptosis. Another approach has been to use adenovirus-mediated TRAIL encoding viruses. Adenovirus encoding TRAIL(Ad-TRAIL) alone was unable to induce apoptosis in two RCC cell lines in a recent study, tumor cell apoptosis occurred when Ad-TRAIL was combined with histone deacetylase inhibitors (HDAC) (van Osten et al. 2006). Because of their anti-proliferative effects, HDACs have themselves been proposed as anti-tumor agents. Significantly, they enhance recombinant adenovirus transgene expression and subsequently alter RCC sensitivity to Ad-TRAIL mediated apoptosis (Yamano et al. 2000). More recently, a lentivirus vector encoding TRAIL has been used to induce apoptosis (Wenger et al. 2007). This group observed direct toxicity problems with their vector but suggest TRAIL may be suited for ex vivo applications such as tumor cell vaccines mentioned above. An important conclusion from these studies is that combination therapy with chemotherapeutics plays a significant role in apoptosis-induction gene therapy. In the future, ionizing radiation may be used to augment TRAIL’s apoptosis.

Other candidates for pro-apoptotic gene therapy are Apoptin and E4orf4. These genes, of viral origin, are capable of inducing apoptosis selectively in tumor cells. Their action is accomplished independently of caspase, p53 or Bcl-2 (Danen-van Oorschot et al. 2003). Recently, both genes were transduced via electroporation into RCC cells demonstrating anti-tumor activity against renal tumors (Mitrus et al. 2005). In animals with established tumors, gene transduction of Apoptin and E4orf4 produced growth inhibition, though no tumors completely regressed. These early results suggest promise as potential cytoreductive therapy for RCC and further investigation is warranted.

The second approach to cytoreductive gene therapy utilizes replication-competent oncolytic viruses. These tumor-targeting viruses are genetically engineered and their intra-cellular replication is directly toxic to tumor cells. One possible candidate for this approach is ONYX-015 adenovirus. Replicating preferentially in p53-mutated cells, consistent efficacy and safety in phase I and II trials has been demonstrated with hepatocellular carcinoma and sarcoma metastatic sites (Makower et al. 2003; Galanis et al. 2005). Although RCC tumors manifest p53 mutations and may be a candidate for this form of gene therapy, ONYX-015 has not been applied to renal cell carcinoma. Other potential oncolytic viruses used in bladder and prostate cancers have included the herpes simplex viruses G207 and NV1020, and the adenovirus Ad-BSP-E1A. These viruses are promoter driven and as of yet, there has not been a RCC promoter discovered to produce the tissue specificity needed for cytotoxic gene therapy. Recent work with MN/carbonic anhydrase antigen has illustrated its potential as an RCC promoter. MN is a tumor-associated antigen found on many tumor cells in-
including human cervical, ovarian and renal cell carcinomas (Zavada et al. 1993; McKiernan et al. 1997). A 554 base pair MN promoter has been cloned into reporter vectors and activity successfully confirmed in multiple RCC cell lines (Ou et al. 2005). These early results suggest that the MN promoter can drive an adenoaviral or retroviral vector carrying a drug-sensitivity gene, cytotoxic gene such as HSV-TK or other mentioned toxic gene therapies. Further profiling is warranted.

CORRECTIVE GENE THERAPY

Much has been learned over the past decade regarding the tumorigenic pathways of RCC. Most of these genetic alterations are characterized as the overexpression of an oncogene or the inactivation of a tumor suppressor gene by mutation. The goal of corrective gene therapy is to inhibit this aberrant oncogene expression or reintroduce normal tumor suppressor genes into malignant cells through vector transfection. Thus, normal cellular control mechanisms of cell cycle progression, apoptosis, DNA repair and transcriptional activity are re-established.

Oncogene suppression

Oncogenes represent mutated genes encoding for normal cell cycle regulation. Suppressive gene therapy attempts to arrest oncogene expression at the DNA, RNA or protein level. Four strategies have been described: anti-sense oligonucleotides (ASONs), ribozymes, dominant negative mutants and RNA interference. ASOs are short segments of DNA or RNA which bind to and prevent transcription or translation of particular oncogenes (Kausch 2002). Ribozymes are small segments of RNA which catalyze specific sequences of oncogene mRNA. Dominant negative mutants are altered oncogenes which produce large amounts of defective proteins. These non-functional products sequester or competitively inhibit critical targets in the normal oncogene function. RNA interference is a gene silencing approach where short segments of RNA inhibit homologous genes by degrading target mRNA. This final technique has advantages that these inhibitory RNA sequences can target multiple genes involving numerous pathways.

Anti-sense oligonucleotides represent the most common strategy employed in oncogene suppression of RCC. Over the past decade, a range of oncogenes and gene products have been targeted in pre-clinical studies. C-myc, an oncogene initially discovered in a retrovirus, has been shown to participate in most aspects of cellular function. Many oncogenes, including RCC, have been demonstrated to have amplification and over-expression of this gene (Nesbit et al. 1999). Subsequent c-myc ASON treatment of renal carcinoma cells in vitro has demonstrated significant susceptibility to lysis by lymphocytes and natural killer cells (Mizutani et al. 1995). Further, c-myc anti-sense oligonucleotide-treated RCC cells were also more susceptible to TNF-alpha mediated lysis.

Another oncogene target for ASON therapy is pax-2. Functional experiments have established that pax-2 is an early activated gene and plays a role in a number morphogenetic processes of the developing kidney (Gruss 1992). Failure to down-regulate pax-2 leads to severe kidney abnormalities including oncogenesis (Dressler et al. 1993). ASONs directed against the pax-2 gene induced significant growth inhibition in a number of RCC-derived cell lines (Gnerra 1995). This data indicates that pax-2 is required for cellular proliferation and differentiation and could be used as a novel therapy for RCC. More recent investigation has demonstrated that pax-2 inactivation with ASOs sensitizes RCC cells to cisplatin-induced apoptosis (Hueber et al. 2006). Approximately 50-60% of previously cisplatin-resistant ACHN and Caki-1 cells were killed, suggesting that pax-2 overexpression confers cisplatin resistance. Considering these findings, in vivo inactivation of pax-2 may improve the efficacy of conventional chemotherapy against RCC.

Protein Kinase A (PK-A) has long been suggested as a target of anticancer treatment. PK-A plays an important role in cellular growth, differentiation and maintenance of malignant tumors (Gordge et al. 1996). It has further been shown to have higher activity in malignant versus normal tissue. Dose limiting toxicities restricted the utility of ASON treatment against PK-A in a phase I study including patients with RCC (Chen et al. 1999). Interestingly, this group has investigated the effect of an anti-epidermal growth factor monoclonal antibody along with PK-A ASONs on RCC growth (Ciardiello et al. 1998). This group observed marked growth inhibition and increased apoptosis induction in RCC cells in vitro as well as athymic mouse xenografts subjected to these agents in combination.

Bcl-2 is another oncogene which acts to promote tumorigenesis through suppression of apoptosis and programmed cell death. Increased expression of bcl-2 is directly involved in the progression of many tumor types (Gautschi et al. 2001). Recent work has demonstrated that downregulation of bcl-2 using ASONs has been shown to have effects on various cancers in phase I-III trials (Manion 2003). Initial application of this therapy was reported by Uchida et al. (2001). ASOs targeting the bcl-2 oncogene were demonstrated to have significant inhibitory effects on in vitro proliferation of five RCC cell lines and growth of human RCC xenografts in athymic nude mice. Their results were dose dependent and associated with the induction of apoptosis. Bcl-2 has also been shown to participate in the development of chemoresistance (Bettaieb et al. 2003). RCC has proven highly resistant to chemotherapy in the past. A more recent study investigated whether down-regulation of bcl-2 using ASONs may increase the chemo-sensitivity of human RCC tumors (Kausch et al. 2005). Though in this study transfection of RCC cells with bcl-2 ASONs did not affect cell viability, combination therapy with cisplatin produced an 8-fold increase in apoptosis. These promising results indicate that for those patients with high tumor bcl-2 expression, there may be advantage to combining ASON treatment with standard chemotherapy.

A further target of anti-sense therapy is Ki-67. This protein is only present in proliferating cell nuclei. This antigen is known to be an effective tumor marker and indicator of tumor grade in RCC (Visapaa et al. 2003). Only actively proliferating cell nuclei express Ki-67, thus inhibition of this protein could represent a promising anti-cancer therapy. Incubation of RCC cell lines with anti-Ki-67 ASONs resulted in Ki-67 protein reduction, inhibition of cell growth and increased apoptotic cell death in monolayer and spheroid cultures (Nestler et al. 2005). Additionally, systemic application of these ASONs significantly decreased tumor burden in SCID mouse xenografts. Though this study did not demonstrate an anti-angiogenic effect, the results suggest Ki-67 represents a potential target of therapy and ASONs could be used as anti-proliferative agents. These effects have been shown in other genito-urinary tumors and recently a phase I clinical trial has been started using intravesical Ki-67 ASON treatment for transitional cell carcinoma. This antigen could prove to be a potent RCC treatment in the future.

Two additional oncogenes have been identified which play an integral role in RCC growth and proliferation, TMSNB and PAR2. TMSNB directly inhibits actin polymerization and subsequent cytoskeleton formation. In addition, it has been implicated in apoptosis inhibition and angiogenesis (Kiuchi et al. 1999). PAR2 is the G-protein coupled receptor shown to promote angiogenesis and cancer metastasis (Richard et al. 2001). A recent microarray gene profiling of RCC cell lines implicated these genes in the tumorigenesis of RCC (Abdulrahman et al. 2007). This group found that overexpression of TMSNB and PAR2 by direct gene transfer led to increased growth of RCC lines, cell cycle progression and hypoxia-independent growth. To further confirm their potential role as oncogenes, silencing of TMSNB and PAR2 was achieved using siRNA. SKRC-18
cell transfected with siRNA demonstrated a statistically significant decrease in colony formation, growth rate and cellular motility. These results suggest that TMSNB and PAR2 play a role in RCC tumorigenesis and could serve as potential therapeutic targets in the future.

While corrective gene therapy has not been studied in phase I clinical trials, numerous in vitro and in vivo animal studies have shown significant potential. The specific targeting of oncogene expression by these techniques provides significant anti-tumor effects and warrant further investigation. A theme from these pre-clinical studies is the synergism exhibited by combining suppressive gene therapy with other approaches such as chemotherapy. The potential role of multimodal treatment highlights the utility of oncogene suppression in renal cell carcinoma.

Tumor suppressor gene induction

Tumor suppressor genes regulate a cell’s ability to proliferate by controlling cell-cycle progression, DNA repair, transcription and apoptosis. Alteration of these important genes can lead to malignant transformation. The goal of corrective gene therapy in this regard is to transfect wild-type tumor suppressor genes into cancerous cells, thus re-creating normal cellular control mechanisms and preventing tumor regression. The most recognized tumor suppressor gene in RCC literature is the VHL gene. It has been shown that the VHL gene, located on chromosome 3, is mutated in 60% of both inherited and sporadic forms of clear cell renal carcinoma (Whaley et al. 1994). Additionally, those patients with von Hippel-Lindau disease harbor an in-activating mutation in one VHL allele predisposing them to other tumors besides RCC, including pheochromocytomas, hemangioblastomas, pancreatic tumors, among others (Lonser et al. 2003). The VHL protein suppresses tumor formation by binding subunits of hypoxia-inducible factors (HIFs) responsible for downstream signaling of angiogenesis and promoting their ubiquitination and degradation. The upregulation of HIFs by the loss of VHL’s regulatory control results in transcriptional activation of vascular endothelial growth factor (VEGF) gene and platelet-derived growth factor (PDGF) gene, further leading to vascular proliferation (Giacca et al. 2004). Therefore the VHL gene serves as a potential target for corrective therapy.

Initial studies have demonstrated that correction of this gene with vectors encoding wild-type VHL leads to growth suppression in vitro (Chen et al. 1995; Lieubeau-Teillet et al. 1998). With preliminary work establishing feasibility, subsequent efforts have shown in animal models sufficient growth suppression in vivo. Most notably, transduction of the VHL gene (Li et al. 2003) resulted in regression of VHL-deficient RCC xenografts, this approach may prove effective in RCC xenograft models. This agent acts by depleting methyltransferase activity, resulting in generalization demethylation. More recent investigations have noted a synergistic reactivation of RASSF1 when a histone deacetylase inhibitor, Trichostatin A, was added to 5-Aza-dC (Ibanez de Caceres et al. 2006). Further, Int6 protein knockdown induced overproduction of VEGF, angiopoietin and basic fibroblast growth factor. Importantly this upregulation of angiogenic factors occurred under normoxic conditions and appeared VHL-independent. These early results suggest that Int6 is a critical factor in RCC angiogenesis and sRNA transfer of Int6 could become an effective therapeutic strategy in the future.

Another commonly mutated gene on chromosome 3 which appears to have tumor suppressor function for renal cell carcinoma is RASSF1. The hyper-methylation of promoter regions has been established as a method of inactivating tumor suppressor genes. The RASSF1 gene is hyper-methylated in up to 56% of primary RCC tumors (Morrissy et al. 2001). Reversal of this inactivation can be accomplished by demethylating the tumor suppressor gene. Early work with RCC 786-O cell lines determined that RASSF1 transcription can be reactivated after incubation with a DNA methylation inhibitor 5-Aza-dC (Dreijerink et al. 2001). This agent acts by depleting methyltransferase activity, resulting in generalization demethylation. More recent investigations have noted a synergistic reactivation of RASSF1 when a histone deacetylase inhibitor, Trichostatin A, was added to 5-Aza-dC (Ibanez de Caceres et al. 2006). This additional agent can help re-express silenced genes by reversing the formation of transcription-inhibiting structures. Other synergistic approaches have been attempted with 5-Aza-dC to reactivate RASSF1. To reverse silencing, selective inhibition of DNA methyltransferase by antisense oligonucleotides was employed in vitro on RCC cells (Reu et al. 2006). RASSF1 was reactivated in multiple cell lines, leading to improved interferon-mediated apoptosis. A second major approach to reversing RASSF1 inactivation is transfection of RCC cells with functional RASSF1 genes using lentiviral, adenoviral, or plasmid vectors (Li et al. 2004; Ibanez de Caceres et al. 2006; Reu et al. 2006). In vivo animal studies indicated that re-expression of RASSF1 in tumors led to significant growth suppression and tumor regression. To date no clinical trials have been performed but these promising results suggest that the RASSF1 tumor suppressor gene plays a similar role as VHL in controlling cell-cycle progression and serves as an ideal target of corrective therapy.

In addition to VHL and RASSF1, many other tumor suppressor and cancer genes central to renal tumorigenesis are currently being identified. The Birt Hogg Dube gene appears to have the characteristics of a tumor suppressor gene in chromophobe renal carcinoma (Khoob et al. 2003). Also, the gene encoding the Krebs cycle enzyme fumarate hydratase appears to function as a suppressor in papillary renal carcinoma (Toro et al. 2003). An adenovirus expressing p75 was shown to induce cell cycle arrest and apoptosis induction in RCC cells (Katner et al. 2002). Further, the connexin 32 gene appears to be a promising tumor suppressor gene relating to the early stage of renal carcinogenesis (Yano et al. 2001). Furthermore, the connexin 32 gene exhibits a synergistic reactivation with the xenograft model with a combination of 5-Aza-dC and histone deacetylase inhibitor, Trichostatin A, was added to 5-Aza-dC (Ibanez de Caceres et al. 2006). This additional agent can help re-express silenced genes by reversing the formation of transcription-inhibiting structures. Other synergistic approaches have been attempted with 5-Aza-dC to reactivate RASSF1. To reverse silencing, selective inhibition of DNA methyltransferase by antisense oligonucleotides was employed in vitro on RCC cells (Reu et al. 2006). RASSF1 was reactivated in multiple cell lines, leading to improved interferon-mediated apoptosis. A second major approach to reversing RASSF1 inactivation is transfection of RCC cells with functional RASSF1 genes using lentiviral, adenoviral, or plasmid vectors (Li et al. 2004; Ibanez de Caceres et al. 2006; Reu et al. 2006). In vivo animal studies indicated that re-expression of RASSF1 in tumors led to significant growth suppression and tumor regression. To date no clinical trials have been performed but these promising results suggest that the RASSF1 tumor suppressor gene plays a similar role as VHL in controlling cell-cycle progression and serves as an ideal target of corrective therapy.

In addition to VHL and RASSF1, many other tumor suppressor and cancer genes central to renal tumorigenesis are currently being identified. The Birt Hogg Dube gene appears to have the characteristics of a tumor suppressor gene in chromophobe renal carcinoma (Khoob et al. 2003). Also, the gene encoding the Krebs cycle enzyme fumarate hydratase appears to function as a suppressor in papillary renal carcinoma (Toro et al. 2003). An adenovirus expressing p75 was shown to induce cell cycle arrest and apoptosis induction in RCC cells (Katner et al. 2002). Further, the connexin 32 gene appears to be a promising tumor suppressor gene relating to the early stage of renal carcinogenesis (Yano et al. 2001). Furthermore, the connexin 32 gene exhibits a synergistic reactivation with the xenograft model with a combination of 5-Aza-dC and histone deacetylase inhibitor, Trichostatin A, was added to 5-Aza-dC (Ibanez de Caceres et al. 2006). This additional agent can help re-express silenced genes by reversing the formation of transcription-inhibiting structures. Other synergistic approaches have been attempted with 5-Aza-dC to reactivate RASSF1. To reverse silencing, selective inhibition of DNA methyltransferase by antisense oligonucleotides was employed in vitro on RCC cells (Reu et al. 2006). RASSF1 was reactivated in multiple cell lines, leading to improved interferon-mediated apoptosis. A second major approach to reversing RASSF1 inactivation is transfection of RCC cells with functional RASSF1 genes using lentiviral, adenoviral, or plasmid vectors (Li et al. 2004; Ibanez de Caceres et al. 2006; Reu et al. 2006). In vivo animal studies indicated that re-expression of RASSF1 in tumors led to significant growth suppression and tumor regression. To date no clinical trials have been performed but these promising results suggest that the RASSF1 tumor suppressor gene plays a similar role as VHL in controlling cell-cycle progression and serves as an ideal target of corrective therapy.

In addition to VHL and RASSF1, many other tumor suppressor and cancer genes central to renal tumorigenesis are currently being identified. The Birt Hogg Dube gene appears to have the characteristics of a tumor suppressor gene in chromophobe renal carcinoma (Khoob et al. 2003). Also, the gene encoding the Krebs cycle enzyme fumarate hydratase appears to function as a suppressor in papillary renal carcinoma (Toro et al. 2003). An adenovirus expressing p75 was shown to induce cell cycle arrest and apoptosis induction in RCC cells (Katner et al. 2002). Further, the connexin 32 gene appears to be a promising tumor suppressor gene relating to the early stage of renal carcinogenesis (Yano et al. 2001). Furthermore, the connexin 32 gene exhibits a synergistic reactivation with the xenograft model with a combination of 5-Aza-dC and histone deacetylase inhibitor, Trichostatin A, was added to 5-Aza-dC (Ibanez de Caceres et al. 2006). This additional agent can help re-express silenced genes by reversing the formation of transcription-inhibiting structures. Other synergistic approaches have been attempted with 5-Aza-dC to reactivate RASSF1. To reverse silencing, selective inhibition of DNA methyltransferase by antisense oligonucleotides was employed in vitro on RCC cells (Reu et al. 2006). RASSF1 was reactivated in multiple cell lines, leading to improved interferon-mediated apoptosis. A second major approach to reversing RASSF1 inactivation is transfection of RCC cells with functional RASSF1 genes using lentiviral, adenoviral, or plasmid vectors (Li et al. 2004; Ibanez de Caceres et al. 2006; Reu et al. 2006). In vivo animal studies indicated that re-expression of RASSF1 in tumors led to significant growth suppression and tumor regression. To date no clinical trials have been performed but these promising results suggest that the RASSF1 tumor suppressor gene plays a similar role as VHL in controlling cell-cycle progression and serves as an ideal target of corrective therapy.

Anti-angiogenic gene therapy

Many patients with unresectable RCC or metastatic disease at time of diagnosis remain refractory to standard systemic therapy. Anti-angiogenic therapy aims to inhibit the development of tumor blood vessels and represents a potential
treatment for this group of patients. This strategy targets endothelial cells rather than cancer cells themselves, resulting in loss of tumor vasculature and nutrient supply (Bergers et al. 1999). Tumor suppression is obtained by the resulting growth inhibition and apoptosis induction. There have been numerous endogenous angiogenesis inhibitors identified and ongoing clinical trials with systemic administration of these are demonstrating their efficacy against a range of malignant tumor types. Though these agents have not demonstrated limiting side effects, the majority of angiogenesis inhibitors are not cytotoxic and long-term potentiation of their effects would require chronic administration. Gene therapy allows potential long-term delivery of therapy without multiple administrations. Also, the cost of gene therapy vector production is less than purification of recombinant antiangiogenic proteins. Further, the peak/trough pharmacokinetics of chronic bolus administration of recombinant proteins may not be optimal for an antiangiogenic effect as compared to continuously elevated levels of antiangiogenic agents with gene therapy (Hahnfeldt et al. 1999). The major approach of antiangiogenic gene therapy suggested by Folkman is to administer agents systemically rather than selecting vectors which selectively target tumor cells (Folkman 1998). Because antiangiogenic agents lack direct cytotoxicity, systemic application would allow normal tissue production of antiangiogenic proteins for use against tumors.

Angiostatin is an internal fragment of plasminogen with demonstrated antiangiogenic and antitumor properties (O’Reilly 1997). Recent gene therapy attempts to produce this endogenous inhibitor have yielded promising results for RCC. In vitro studies have demonstrated that supernatant fluid from tumor cells transduced with the angiostatin gene inhibit endothelial cell proliferation (Nguyen et al. 1998). Numerous transfection vehicles have proven effective including adeno-associated viruses, adenoviruses, cDNA, retroviruses and liposomes. Fukumori et al. transfected RCC cell lines with angiostatin cDNA and subsequently established subcutaneous tumors (Fukumori et al. 2002). Three weeks after implantation the mean volume of angiostatin-transduced tumors was significantly less than controls suggesting that gene therapy expression of angiostatin can suppress RCC tumor growth. Additional work by Weiss et al. observed in a RENCA model that cell transfection of the angiostatin gene with nonviral electroporation significantly delayed and reduced primary tumor formation in nude mice (Weiss et al. 2004). Further, no metastases were detected in the lungs of mice that received angiostatin-transfected cells.

Endostatin, a fragment of type XVIII collagen, is a second endogenous anti-angiogenic protein. Specifically, it inhibits proliferation and migration of endothelial cells and induces their apoptosis (O’Reilly et al. 1997; Dhanabal et al. 1999). This agent also appears to have utility in the treatment of renal cancer. Szary and colleagues were able to intra-tumorally administer plasmid DNA containing the endostatin gene into mice RCC tumors (Szary 2001). Though in vitro growth is unaffected, in vivo tumors demonstrated slower growth. Additionally, a concurrent animal trial administering systemic endostatin plasmid further confirmed endostatin’s ability to inhibit systemic RCC tumor angiogenesis (Blezinger et al. 1999). The intramuscular delivery of this antiangiogenic gene resulted in the inhibition of not only primary RCC tumors but also the development of metastatic lung and liver lesions. These results indicate that indeed normal tissues can be used to produce antiangiogenic proteins, in effect creating a “bioreactor”.

Another theme of RCC gene therapy has been multimodal approach by combining multiple therapies acting by different mechanisms. Recently, Pulkkonen and colleagues have combined previously-mentioned HSV-TK with endostatin gene transfer to eradicate orthotopic RCC tumors in nude mice (Pulkkonen et al. 2002). This combination of cytotoxic and antiangiogenic gene therapy both improved

Fig. 2 Antiangiogenic gene therapy with Ad-hEndoAngio results in significant growth inhibition of injected and distant RCC subcutaneous tumors. Three replication-deficient adenoviral vectors were injected into flank-induced renal cell carcinoma tumors. Growth inhibition was compared to the saline and viral (Ad-GFP) control groups. Tumors treated with EndoAngio, GFP + EndoAngio, and EndoAngio + Tie2 demonstrated 82%, 83% and 87% growth reduction respectively (p<0.001). Neither Tie2 nor GFP + Tie2 resulted in significant inhibition of tumor growth.
the primary antitumor response as well prolonging survival time. Remarkably, complete tumor eradication occurred in 57% of the mice when combined therapy was used. This “choke and kill” strategy may prove effective long-term and could be used as an additional treatment option for RCC. Further, the inhibitors endostatin and angioptatin individually restrict angiogenesis effectively and could demonstrate synergism when applied together. Our laboratory has developed an adenoviral vector expressing the VEGF receptor, endostatin-angioptatin, to develop this principle (Fig. 2). Recently, this gene therapy approach was applied to RCC (Mellon et al. 2008). This adeno virus encoding endostatin-angioptatin produced 82% growth reduction compared to mock-treated groups. Additionally, in vivo imaging illustrated a reduction in blood vessel diameter and number.

Drugs targeting the vascular endothelial growth factor (VEGF) pathway have increasingly been used to treat metastatic renal cell carcinoma in recent years (Fig. 1). Strategies to inhibit VEGF include binding the VEGF protein and targeting its tyrosine kinase receptor. Both approaches are currently under investigation and the preliminary results from Phase I-III trials are encouraging. An alternative to using antibodies or small molecule inhibitors is gene therapy to express the human VEGF receptor as a means of inhibition tumor development and metastases propagation. Lin et al. examined the effects of a soluble VEGF receptor encoded by an adeno-associated virus (Lin et al. 2005). The results of this study indicate that stable expression of this product successfully inhibits tumor-associated lymphangio genesis, tumor development and regional lymph node metastases in a RCC model. As expected, the effective blockade of metastases is directly dependent on the amount of VEGF inhibitor produced. A second investigation of this technique was performed by Ichikura (Ichikura et al. 2006). An adenovirus expressing the extracellular domain of the VEGF receptor was intramuscularly injected into athymic mice distant to established RCC tumors. The application of this vector significantly suppressed the growth of the tumors, suggesting the gene-therapy expression of the soluble VEGF receptor can be effective in theory against RCC. Alternatively, plasmids containing the genes for IL-2 and a soluble VEGF receptor respectively have been locally injected into subcutaneous tumors (Yockman et al. 2007). Local tumors as well as metastatic lesions were significantly reduced using a combination of these two agents. The IL-2/VEGF treatment reduced metastases by 56% over single agent therapy and prolonged survival by 50% in a murine model. Moreover, tumor-infiltrating lymphocytes were increased in tumor microenvironment. This study further illustrates the potential of multi-modal gene therapy approach to RCC treatment.

To date, no clinical trials have been initiated but these early results are promising. Many of the pre-clinical antiangiogenic gene therapy studies indicate vector protein expression is most successful during early stages of vessel development, suggesting the best use might be as prevention therapy following surgery.

CONCLUSION

Renal cell carcinoma is associated with a poor prognosis and continues to remain refractory to traditional treatment options. New techniques and therapies are continually being discovered. One promising modality is gene therapy. The outlined approaches in this review have great potential as isolated therapy to transform RCC into a treatable condition or in combination with available conventional agents could provide curative options with decreased morbidity. Corrective, cytotoxic, immunomodulatory and antiangiogenic gene therapies directed against RCC have all demonstrated efficacy in vitro and in vivo in pre-clinical studies. While few clinical trials are available defining the role of gene therapy in renal cell carcinoma, it does appear that these approaches represent significant promise. As further understanding of the genetic mutations and immune dysregulations in RCC become available, it is apparent that gene therapy will continue to offer effective options in the management of this disease in the future.

ACKNOWLEDGMENTS

This review was supported by NIH T32 CA111198 (MMJ).

REFERENCES

Dilber MS, Abedi MR, Christensson B, Bjorkstrand B, Kidder GM, Naus...

Dreijerink K, Braga E, Kuzmin I, Geil L, Duh FM, Angeloni D, Zbar B, Dressler GR, Wilkinson JE, Rothenpieler UW, Patterson LT, Williams-

Geiger C, Regn S, Weinzierl A, Noessner E, Schendel DJ

Goey SH, Verweij J, Stoter G

Gnarra JR, Dressler GR

Franken K, Geiger C, Noessner E, Falk CS, Pohl H, Javo

Fronczek R, Geiger C, Regn S, Weinzierl A, Noessner E, Schendel DJ

Kubler H, Vie

Hochberg DK, Batra RK, Okerlund MD, Rothenpieler UW (1994) Comparison of the effects of three different toxin genes and their levels of expression on cell growth and bystander effect in lung adenocarcinoma. Cancer Research 56, 1315-1323

Kubler H, Vie

Szary J, Szała S (2001) Intratumoral administration of naked plasmid DNA encoding mouse endostatin inhibits renal carcinoma growth. *International Journal...

Yu SJ, Kim HS, Cho SW, Sohn J (2004) IL-4 inhibits proliferation of renal carcinoma cells by increasing the expression of p21WAF1 and IRF-1. Experimental and Molecular Medicine 36, 372-379

