

Leaf Litter Under Changing Climate: Will Increasing Levels of CO₂ and O₃ Affect Decomposition and Nutrient Cycling Processes?

Anne Kasurinen^{1*} • Petri A. Peltonen^{2,3} • Jarmo K. Holopainen¹ • Elina Vapaavuori² • Toini Holopainen¹

¹ Department of Environmental Science, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland

² Finnish Forest Research Institute, Suonenjoki Research Station, Juntintie 154, FIN-77600 Suonenjoki, Finland

³ Department of Biology, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland

Corresponding author: * Anne Kasurinen@uku.fi

ABSTRACT

In this manuscript we review existing information about CO_2 and O_3 effects on leaf litter as well as discuss the potential impacts of climate change on decomposition processes and tree nutrition. So far field studies show that the average response to elevated CO_2 is increased litter production and increased litter C:N-ratios, the latter response being more prominent in deciduous than in coniferous trees. The few O_3 studies indicate that O_3 stress may decrease some nutrient concentrations, but O_3 effects on carbon-based compounds are more ambiguous. In general, field incubation studies show only some small or inconsistent CO_2 - and O_3 -induced changes in litter mass loss rates. On the other hand, recent long-term studies indicate that there are some CO_2 and O_3 effects on microbial functioning in the soil (e.g. CO_2 stimulates and O_3 dampens it), although the onset of these microbial responses may take years. Nonetheless, at the moment there is no consistent evidence of CO_2 -induced and microbe-mediated progressive nitrogen limitation in temperate forests. Elevated O_3 effects on nutrient cycling are far less studied, and also more information about long-term CO_2 and O_3 effects on decomposition and nutrient cycling in boreal forests is still needed. Furthermore, some results indicate that the combined effects cannot be predicted on the basis of single exposures and therefore, the effects of increasing CO_2 and O_3 on decomposition and nutrient cycling processes must be studied in combination.

Keywords: carbon, carbon dioxide, coniferous trees, deciduous trees, decomposition, leaf litter, lignin, microbial activity, nitrogen, ozone, phenolic compounds, soil food web

Abbreviations: B, boron; C, carbon, Ca, calcium; CO₂, carbon dioxide; Cu, copper; FACE, free-air carbon dioxide enrichment; Fe, iron; K, potassium; LMWP, low-molecular-weight phenolic; Mg, magnesium; Mn, manganese; N, nitrogen; NH⁺⁴, ammonium; NO_x, nitrogen oxides; NUE, nitrogen use efficiency; O₃, ozone, OTC, open-top chamber; P, phosphorus; PNL, progressive nitrogen limitation; ppb, parts per billion, nl l⁻¹; ppm, parts per million, μ l l⁻¹; S, sulphur; SOM, soil organic matter; VOC, volatile organic compound; Zn, zinc

CONTENTS

	59
INTRODUCTION.	
EFFECTS OF ELEVATED CO ₂ ALONE	
Litter quantity and quality responses	60
Decomposition and soil food web responses	62
EFFECTS OF ELEVATED O3 ALONE AND IN COMBINATION WITH CO2	63
Litter quantity and quality responses	63
Decomposition and soil food web responses	64
CONCLUSIONS	65
REFERENCES	66

INTRODUCTION

Before the Industrial Revolution, the atmospheric CO_2 level was around 280 ppm, whereas in 2005 the CO_2 concentrations in the surface layer of atmosphere had reached a level of 379 ppm (IPCC 2007a), which represents a global increase of 35% from the pre-industrial situation. With current climate change mitigation policies, global surface CO_2 levels will continue to grow over the next few decades, and are expected to be doubled from the pre-industrial level by the year 2100 mainly because of burning of fossil fuels and land-use change (Keeling *et al.* 1995; IPCC 2007b). Simultaneously, the annual mean concentrations of O_3 have reached levels of 20 to 50 ppb worldwide (Carter and La Rovere 2001; Vingarzan 2004). This increase of surface levels of O_3 is expected to continue, and some scenarios suggest that the average increase of surface O_3 levels will be 8-10% at the global level during the next decade (Collins *et al.* 2000; Jonson *et al.* 2001; IPCC 2001; Vingarzan 2004). The primary reason behind the increased O_3 levels in the troposphere is the human activity and its effect on ozone precursors (i.e., O_3 is generated from NO_x and VOCs in the presence of sunlight; Fowler *et al.* 1998). In particular global emissions of NO_x have increased due to energy production and transport during the past three decades (Vingarzan 2004; Ashmore 2005).

In the near future forest ecosystems will be increasingly exposed to the joint effects of CO_2 and O_3 . Although there

Fig. 1 Conceptual model of potential CO₂ and O₃ effects on trees and leaf litter, including links to soil food web, decomposition and mineralization processes and net primary productivity (NPP). See text for details.

are already a substantial number of CO₂ and O₃ studies about tree growth and physiology (Andersen 2003; Ainsworth and Long 2005; Grantz et al. 2006), the effects of these two greenhouse gases on decomposition and thereby nutrient cycling is still inadequately understood. The effects of elevated CO₂ and O₃ on decomposition are considered to be mainly indirect (Fig. 1). Hence, neither of these gases penetrates the soil extensively (Turner et al. 1973; Blum and Tingey 1977; Lamborg et al. 1983), but instead both CO₂ and O₃ first affect the tree C assimilation and C allocation within the tree, thereby influencing tree growth, physiology and biochemistry (Andersen 2003; Ainsworth and Long 2005). In theory, CO_2 - and O_3 -induced changes in green foliage are considered to be transmitted to leaf litter quantity and quality, and therefore changes in decomposition and element cycling processes as well as in net primary production (NPP) have been suggested to occur (Strain and Bazzaz 1983; Andersen 2003). However, it has been also suggested that elevated CO₂ and O₃ levels may alter leaf senescence and abscission processes (Norby et al. 2001; Andersen 2003) and thereby alter timing of leaf litter inputs to the soil and nutrient resorption efficiency in the foliage. If nutrient resorption efficiency changes under elevated \overline{CO}_2 and O₃, litter chemistry responses may be masked or partly

differ from those observed in green foliage. On the other hand, CO2 and O3 may affect decomposition via altered soil environment. For instance, CO₂- or O₃-induced changes in NPP can result in changed litter inputs and element fluxes to the soil or altered soil moisture conditions, and thereby affect soil biota functioning and biomass. Soil microbial responses to altered C fluxes may depend on the preexisting soil organic matter pools and nutrient availability (Hu et al. 1999; Zak et al. 2000a, 2000b) in soil. If there are CO₂- and O₃-induced changes in the soil microbial biomass or community composition, these effects may also be propagated through higher levels of the soil food web, as there is a high degree of interdependence among different trophic levels (Coûteaux and Bolger 2000; Andersen 2003). Finally, although beyond the scope of this review, increasing levels of $\overline{\text{CO}_2}$ and $\overline{\text{O}_3}$ in the troposphere are leading to the global warming (IPCC 2007a) and in the future this climate warming may alter the decomposition processes substantially.

Since the CO₂ and O₃ effects on plant growth and physiology have been usually opposite, it has been widely suggested that elevated CO₂ may protect trees from O₃ stress (Volin *et al.* 1998; Podila *et al.* 2001). However, it is difficult to predict ecosystem-level responses because the CO₂ responsiveness and O₃ sensitivity varies widely both within and among tree species (Karnosky *et al.* 2003). Largely based on above-ground tree growth and physiology data, responses to combined exposure are variable and can range from positive to negative or no net effect thus making predicting even more difficult. Because the above-ground responses to CO_2 and O_3 may partly differ in magnitude or direction from those of below-ground, they do not necessarily reliably describe the possible response patterns in the decomposition processes.

In this chapter we review existing literature about elevated CO_2 and O_3 effects on decomposition and nutrient cycling. We focus on leaf litter studies made with various deciduous and coniferous tree species. A majority of the leaf litter studies have been single-factorial studies, i.e., either CO_2 or O_3 studies, and mainly concentrated on leaf litter chemical quality changes and subsequent decomposition after the CO_2 and O_3 exposures. In litter studies the most commonly measured variables include N, C and lignin concentrations, C:N-ratios, and mass loss of leaf litter. However, recently there have been also some published results about leaf litter decomposition under elevated gas levels, and a few studies have included the CO_2 and O_3 effects on soil biota (microbes and soil fauna) or element (C and nutrient) cycling in the soil.

EFFECTS OF ELEVATED CO₂ ALONE

Litter quantity and quality responses

Elevated [CO₂] has usually enhanced leaf litter production in trees (Norby et al. 2002; Liu et al. 2005), but there are also results which indicate no CO₂-induced increases (Cotrufo et al. 2005) and species- or genotype-dependent responses to CO_2 in leaf litter production (Finzi *et al.* 2002; Riikonen et al. 2004). Recently Hungate et al. (2006) reported that in a scrub oak stand litterfall production increased initially under elevated CO₂ treatment, but after the fifth exposure season this CO₂ stimulation declined. The authors (Hungate et al. 2006) suggested that the declining trend was due to the accumulation of N in the surface soil organic matter, which caused the apparent restriction of plant available N and reduced the positive litter production response to CO_2 over time. On the other hand, two long-term FACE studies have shown sustained CO₂ stimulation of litter production even after six years of CO2 exposure (Finzi et al. 2006; Norby and Iversen 2006). In a sweetgum stand the CO2-induced litter production was sustained by enhanced N uptake (Norby and Iversen 2006), while in a loblolly pine dominated stand (Finzi et al. 2006), CO₂-exposed trees increased both their N uptake and nitrogen use efficiency and thereby sustained the increased litter production.

So far litter studies have shown either delay, enhancement or no change in leaf senescence or abscission rates (Mcconnaughay et al. 1996; Li et al. 2000; Johnson et al. 2001; Riikonen et al. 2004; Tricker et al. 2004; Cotrufo et al. 2005), and neither there is clear evidence of CO2induced changes in N resorption in trees (Norby et al. 2000; Finzi et al. 2001; Lindroth et al. 2001; Norby et al. 2001; Finzi and Schlesinger 2002; Kasurinen et al. 2006). Thus, the generally seen CO₂-induced decreases in N and thereby increases in C:N-ratio of green foliage should be carried over to the litter quality (Gifford et al. 2000; Norby et al. 2001). Support for this statement comes from several pot and field studies where the average CO_2 response is a decrease in N concentrations and an increase in leaf litter C:N-ratio in various tree species (Cotrufo and Ineson 1996; Cotrufo et al. 1998a; Gifford et al. 2000; Norby et al. 2001; Table 1). When we calculated the average response ratios for tree litter N across individual open-top chamber (OTC) and free-air CO2 enrichment (FACE) experiments, the average CO₂ response for litter N was stronger (12% lower N in CO₂ treatments across the studies, Table 1) than that observed previously in the meta-analysis of Norby et al. 2001 (7% lower N in CO_2 treatments across the studies). The discrepancy between the above results can be explained

by the fact that Norby *et al.* (2001) included data also from experiments where the leaf litter N responses of non-woody species were investigated and did not separate growth chamber and pot seedling studies in the compilation, whereas we used only data from OTC- and FACE-experiments conducted with soil-growing trees.

In the meta-analysis of Norby et al. (2001) the N response in individual studies was rarely statistically significant, whereas in our comparison (Table 1) some individual studies showed clear CO2-induced decreases in litter N concentrations (e.g. De Angelis 2000; King et al. 2001b; Parsons et al. 2004; Cotrufo et al. 2005; Kasurinen et al. 2006). However, sometimes these N reductions were observed only after the first exposure season (Norby *et al.* 2000) or were tree community-dependent (Liu et al. 2005). In our data compilation (Table 1) the average trend is increasing C:N-ratio (19% higher C:N-ratio in elevated CO₂) across various CO₂ studies with soil-growing trees. Earlier Norby et al. (2001) concluded that the change in C:N-ratio in soilgrowing trees may not necessarily be as large and universal as previously predicted on the basis of short-term pot experiments, and also N nutrition status may modify responses to CO₂ (Gifford et al. 2000). For instance, King et al. (2001a) observed a clear CO₂-induced increase in C:Nratios of trembling aspen litter only under low soil N availability, whereas N addition to soil removed the CO₂ effect on litter C:N-ratio. On the other hand, in another study with sugar maple trees (King *et al.* 2001b), the initial litter C:Nratios decreased under high CO_2 + low N and increased under high CO₂+high N treatment (Table 1). In addition, Hättenschwiler and Bretscher (2001) observed that both the soil type and N deposition can modify litter N responses to CO_2 . Thus, at the calcareous soil site high CO_2 resulted in clear decreases in beech leaf N concentration under both high and low soil N, although this negative CO₂ response was somewhat bigger in the low N treatment (Table 1). At the acidic site, instead, high CO₂ clearly decreased beech litter N under high N deposition only, whereas under low N deposition the CO₂ effect on N was negligible (Table 1). A recent meta-analysis of green foliage data also indicates that N response to CO_2 may be more prominent in deciduous than in coniferous trees (Zvereva and Kozlov 2006). In our summary (Table 1), all the significant leaf litter N reductions were also observed in deciduous tree species. However, there is still a lack of OTC- and FACE- experiments where naturally abscised needle litter has been investigated.

In contrast to leaf litter N concentrations (Norby et al. 2001; Table 1), litter P concentrations have generally increased under elevated CO₂. In our data compilation (Table 1) the average P response was +12% across CO₂ studies, but usually these CO₂-induced increases were not statistically significant in the individual experiments (Table 1). Finzi et al. (2001) observed that in a loblolly pine dominated stand the P response to CO₂ differed between the green foliage (no CO₂-induced increase in P) and leaf litter (CO₂-induced increase in P) and especially in red bud trees. However, when Finzi et al. (2001) calculated P resorption proficiency in red bud trees, they noticed that it was only transiently decreased due to CO₂ enrichment (i.e. CO₂ effect on P resorption was significant only after the first exposure season and then disappeared). In our study with soil-growing birch trees the P concentration response to CO₂ was similar between green foliage and leaf litter indicating that the P resorption proficiency was not significantly altered over the three-year CO₂ exposure (Kasurinen et al. 2006; Table 1). The reason for the increased P concentrations both in green foliage and leaf litter (Kasurinen et al. 2006) could be that in contrast to N, plant P requirement for photosynthetic machinery is not necessarily down-regulated (Conroy and Hocking 1993), but instead, the stimulation of photosynthesis may increase the P requirement for the phosphorylated photosynthetic intermediates and intercellular transport under elevated CO₂ (Gifford et al. 2000). Liu et al. (2007) also reported statistically significant increases in litter P concentrations under elevated CO₂ in aspen and aspen-birch

Table 1 Summary of CO₂ effects on leaf litter chemistry. Treatment effect % = (the CO₂ treatment average response minus the control treatment average response divided by the control treatment average response) × 100. Negative values indicate decrease and positive values increase in chemical concentration or C:N-ratios, and 0 denotes for no change. Bolded values indicate an average response to CO₂ treatment across the individual experiments. Symbols: * = a significant CO₂ effect (P \leq 0.1), ** = tree community-dependent CO₂ response, (*) = CO₂ effect transient. Only data from OTC- and FACE-studies with soil-growing trees and naturally abscised leaf litter was included. Abbreviation nd = not determined.

Tree species/community	Ν	Р	C:N-ratio	Lignin	Condensed	Reference
					tannins	
Acer rubrum (ambient temperature)	-18(*)	nd	nd	nd	nd	Norby <i>et al.</i> 2000^1
Acer rubrum (elevated temperature)	-10 ^(*)	nd	nd	nd	nd	Norby <i>et al.</i> 2000^1
A. rubrum	-8	+26	nd	-3	nd	Finzi et al. 2001 ¹
A. rubrum	-4	nd	nd	+2	nd	Finzi and Schlesinger 2002 ¹
A. saccharum (ambient temperature)	-7 ^(*)	nd	nd	nd	nd	Norby <i>et al.</i> 2000^1
A. saccharum (elevated temperature)	-12 ^(*)	nd	nd	nd	nd	Norby <i>et al.</i> 2000^1
A. saccharum (low N)	-10*	nd	-7*	nd	+31*	King et al. 2001b
A. saccharum (high N)	-18*	nd	+26*	nd	+40*	King et al. 2001b
Betula papyrifera	-31*	nd	+44*	+5	+64*	Parsons et al. 2004
B. pendula	-11*	+18*	+12*	+4*	+23*	Kasurinen et al. 2006, 2007 ²
B. papyrifera-Populus tremuloides	-18*	+14*	+20*	+6	+63**	Liu et al. 2005, 2007
Cornus florida	-26	+6	nd	-19	nd	Finzi et al. 2001 ¹
C. florida	-13	nd	nd	0	nd	Finzi and Schlesinger 2002 ¹
Cercis canadensis	0	+38	nd	-6	nd	Finzi et al. 2001 ¹
C. canadensis	-14	nd	nd	+1	nd	Finzi and Schlesinger 2002 ¹
Fagus sylvatica (acidic soil+low N)	-2	nd	nd	+3	nd	Hättenschwiler and Bretscher 2001
F. sylvatica (calcareous soil+low N)	-21*	nd	nd	+4	nd	Hättenschwiler and Bretscher 2001
Fagus sylvatica (acidic soil+high N)	-15*	nd	nd	+8*	nd	Hättenschwiler and Bretscher 2001
F. sylvatica (calcareous soil+high N)	-11*	nd	nd	0	nd	Hättenschwiler and Bretscher 2001
Liquidampar styraciflua	-8	+19	nd	+8	nd	Finzi et al. 2001 ¹
L. styraciflua	-15	nd	nd	+3	nd	Finzi and Schlesinger 2002 ¹
Pinus taeda	+3	+16	nd	-1	nd	Finzi et al. 2001 ¹
P. taeda	0	nd	nd	+5	nd	Finzi and Schlesinger 2002 ¹
P. sylvestris	-7	-11	nd	nd	nd	Kainulainen et al. 2003
Populus alba	-5*	nd	+7*	-7	nd	Cotrufo et al. 2005
P. × euramericana	-36*	nd	+45*	-4	nd	Cotrufo et al. 2005
P. nigra	-23*	nd	+29*	+2	nd	Cotrufo et al. 2005
P. tremuloides	-14*	+5*	+13*	+37	-18**	Liu et al. 2005, 2007
Quercus ilex	-12*	-13	+21*	+19*	nd	de Angelis <i>et al.</i> 2000 ¹
Q. myrtifolia (Exp. 1)	0	nd	+1	-8	+12	Hall et al. 2006
Q. myrtifolia (Exp. 2)	-2	nd	+2	+30*	+2	Hall <i>et al.</i> 2006
Average response (n = 8 - 31)	-12	+12	+18	+4	+27	

communities. They (Liu *et al.* 2007) suggested that the CO_2 -induced increase in P concentrations of leaf litter could be due to a concurrent increase in cuticular wax production (Percy *et al.* 2002), which could have reduced P leaching from the leaves under elevated CO_2 .

The impact of CO₂ enrichment on other nutrients than N and P are far less studied. Cotrufo et al. (1998a) reviewed pot seedling and growth chamber studies and did not find any clear CO₂ responses in tree litter K, Ca, Mg, Mn and Fe concentrations. The few field experiments with soil-growing trees have not either been able to provide evidence of strong or consistent CO₂ effects on other nutrients. For instance, Kainulainen et al. (2003) did not find any CO₂ treatment effect on K, Ca and Mg concentrations of Scots pine needle litter after a three-year CO₂ exposure. In our study with two silver birch clones S concentration decreased under elevated CO₂ levels, but the other analysed nutrients (Ca, Mg, Mn, Fe, Zn, Cu, B) did not show any consistent change or the CO₂-induced changes were largely genotypedependent (e.g. decrease in K concentrations) (Kasurinen et al. 2006). Liu et al. (2007) observed that elevated CO₂ marginally significantly increased litter K and S concentrations and significantly decreased B concentrations in both aspen and aspen-birch communities while litter Mn responses to CO₂ were community-dependent.

In addition to CO_2 -induced changes in the amount of total C entering the soil, the changes in litter C compound composition (i.e. changes in C quality) may also play a significant role in the subsequent decomposition processes (Horner *et al.* 1988; Zak *et al.* 1993; Hättenschwiler and Vitousek 2000; Zak *et al.* 2000a, 2000b). The carbon-nutrient hypothesis (Bryant *et al.* 1983) and its extension, the growth-differentiation balance hypothesis (Herms and Matt-

son 1992), predict that changes in source-sink relationship could lead to variations in the relative partitioning of carbon to growth, total non-structural carbohydrates and carbonbased secondary and structural compounds. Thus, under elevated [CO₂] carbon source may be higher than carbon sink, and excess carbon could lead to the over-investment of non-structural carbohydrates and secondary or structural C compounds (Koricheva et al. 1998; Peñuelas and Estiarte 1998; Peltonen et al. 2005), especially under low soil N conditions (Lambers 1993). However, the magnitude of this CO_2 response has been observed to vary between different exposure systems (Norby *et al.* 2001) and C compound groups (Zvereva and Kozlov 2006). For instance, in pot seedling studies leaf litter lignin concentrations usually clearly increased under elevated CO₂, but OTC- or FACEstudies with soil-growing trees do not uniformly support these early findings (Norby et al. 2001, Table 1). In fact, only a few OTC studies have reported statistically significant increases in lignin concentrations under elevated CO₂ (DeAngelis et al. 2000; Hall et al. 2006; Kasurinen et al. 2006). When we summarized condensed tannin data across the ÓTC- and FACE-experiments (only tree litter results were used), we observed that in contrast to lignin, the average CO₂ response was relatively high (27% increase on average) and that in most individual studies this CO₂ effect was also statistically significant (Table 1). Furthermore, our OTC experiment indicated that elevated CO₂ has the potential to increase total phenolics and cellulose concentrations in silver birch litter (Kasurinen et al. 2006, 2007), while other studies with various tree species show no CO₂-induced increases in phenolics (Kainulainen et al. 2003) or cellulose concentrations (Liu et al. 2005; Hall et al. 2006). Of less studied terpene compounds, α - and β -pinene has been observed to increase due to CO_2 enrichment, whereas total monoterpenes have not shown any clear CO_2 -induced increase in Scots pine litter (Kainulainen *et al.* 2003).

Decomposition and soil food web responses

Results to date from litter decomposition studies have been variable and inconclusive (O'Neill and Norby 1996; Cotrufo et al. 1998a, 1998b; Coûteaux et al. 1999; Norby et al. 2001; Table 2). Laboratory studies with CO₂-exposed material have shown substantial rate retarding effects of CO₂ on the subsequent litter decomposition, but field litter incubations usually have not been able to confirm these early findings (O'Neill and Norby 1996; Norby et al. 2001). Thus, with few exceptions, a majority of the field incubation studies conducted under ambient CO₂ conditions have not detected any significant or consistent CO₂-induced changes in the decomposition rates (O'Neill and Norby 1996; Norby et al. 2001; Table 2). In our three-year study with silver birch, the negative CO₂ effect on decomposition was genotype-dependent and transient as elevated CO₂ decreased the subsequent decomposition in one birch clone only after the first and second exposure season (Kasurinen et al. 2006). On the other hand, some field incubation studies indicate that the CO₂ environment itself may modify the leaf litter decomposition responses significantly (Table 2). Parsons et al. (2004) reported that under ambient CO_2 plots, paper birch leaf litter produced in high CO₂ treatments decomposed slower than that produced in ambient CO₂ treatments, whereas in elevated CO₂ plots, the CO₂ enrichment itself during the decomposition process reinforced the negative effects of CO₂ on mass loss even further. Hall et al. (2006) observed that high CO2 environment itself enhanced scrub oak litter decomposition, but the litter origin (i.e. whether it was produced under ambient or elevated CO₂ level) did not affect the decomposition rates in ambient or elevated CO₂ environment. Cotrufo et al. (2005) found that independent of the poplar species, litter generated under elevated CO₂ had slightly lower mass loss rates than litter produced under ambient CO₂, whereas in high CO₂ environment the decomposition rates of leaf litter of two poplar species were enhanced regardless of the litter origin (i.e. whether it was from ambient or elevated CO_2 plot). Thus, basically Cotrufo et al. (2005) observed that under

ambient CO_2 environment CO_2 -induced changes in leaf litter quality governed the decomposition rates, whereas in elevated CO_2 plots the CO_2 -induced changes in soil environment itself may have controlled the litter disappearance. However, the authors (Cotrufo *et al.* 2005) did not give any specific causative mechanism for the latter observation, e.g., whether the increased decomposition in CO_2 plots was due to enhanced microbial activity or some other factor. In a loblolly pine-dominated stand, leaf litter decomposition of five different tree species (**Table 2**) was not significantly affected by the CO_2 exposure during the litter decomposition (Finzi *et al.* 2001; Finzi and Schelesinger 2002).

The role of soil animals in the actual decomposition process is secondary compared to soil microbes in temperate and boreal vegetation zones (Berg and Laskowski 2006). However, soil fauna can have an important role in soil formation and nutrient cycling by mixing the leaf litter into deeper soil layers and releasing nutrients by grazing both the leaf litter and litter-associated microbes (Lavelle and Spain 2001; Hättenschwiler and Gasser 2005). Soil fauna also interacts with soil and litter-associated microbes meaning that animals and microbes can stimulate each other's activity during the decomposition process (Coûteaux et al. 1991, 1996; Lavelle and Spain 2001; Hättenschwiler and Gasser 2005). At present, information about littermediated CO₂ effects on litter-feeding soil animals is scarce, inconsistent, and mainly limited to woodlice (i.e. terrestrial isopods, important detritivores in the temperate forests). For instance, leaf litter consumption by woodlice has been observed to decrease (Hättenschwiler et al. 1999), increase (Cotrufo et al. 1998b) or not to change (Hättenschwiler and Bretscher 2001), although all of these studies have reported significant leaf litter quality changes (e.g. clear decrease in N) due to elevated CO₂. In our microcosm study (Kasurinen et al. 2007), the leaf litter consumption rates by woodlice were poorly related to the measured chemical components, and only a marginally significant and transient decrease in consumption rates were observed when animals were fed with N-poor and phenolic-rich CO₂ litter.

The complexity of the soil food web itself can be an important factor for modifying the CO_2 effects on the subsequent decomposition (Coûteaux *et al.* 1991; Coûteaux and Bolger 2000). For instance, the decomposition rates of CO_2 -enriched sweet chestnut litter exposed to simple food webs

Table 2 Summary of CO₂ effects on subsequent leaf litter decomposition (absolute mass loss). Symbols: \leftrightarrow = no change, \downarrow = decrease, (\downarrow) = slight decrease, \uparrow = increase, * = CO₂ environment enhances the negative litter-mediated CO₂ effect, ** = genotype-dependent CO₂ response, (*) = CO₂ environment effect on mass loss same regardless of the litter origin. Only data from OTC- and FACE-studies with soil-growing trees and naturally abscised leaf litter was included. Abbreviation: nd = not determined.

Tree species/community	Ma	ass loss	Reference	
	Decomposition environment		—	
	Ambient CO ₂	Elevated CO ₂		
Acer rubrum	\leftrightarrow	\leftrightarrow	Finzi et al. 2001	
A. rubrum	\leftrightarrow	\leftrightarrow	Finzi and Schlesinger 2002	
Betula papyrifera (Native placement + Common garden)	\downarrow	↓*	Parsons et al. 2004	
B. papyrifera (Common substrate)	\leftrightarrow	\leftrightarrow	Parsons et al. 2004	
<i>B. pendula</i> (Exp. 1)	↓**	nd	Kasurinen et al. 2006	
<i>B. pendula</i> (Exp. 2)	↓**	nd	Kasurinen et al. 2006	
B. pendula (Exp. 3)	\leftrightarrow	nd	Kasurinen et al. 2006	
Cornus florida	\leftrightarrow	\leftrightarrow	Finzi et al. 2001	
C. florida	\leftrightarrow	\leftrightarrow	Finzi and Schlesinger 2002	
Cercis canadensis	\leftrightarrow	\leftrightarrow	Finzi et al. 2001	
C. canadensis	\leftrightarrow	\leftrightarrow	Finzi and Schlesinger 2002	
Liquidampar styraciflua	\leftrightarrow	\leftrightarrow	Finzi et al. 2001	
L. styraciflua	\leftrightarrow	\leftrightarrow	Finzi and Schlesinger 2002	
Pinus taeda	\leftrightarrow	\leftrightarrow	Finzi et al. 2001	
P. taeda	\leftrightarrow	\leftrightarrow	Finzi and Schlesinger 2002	
P. sylvestris	\leftrightarrow	nd	Kainulainen et al. 2003	
Populus alba	(\downarrow)	\leftrightarrow	Cotrufo et al. 2005	
P. × euramericana	(\downarrow)	↑	Cotrufo et al. 2005	
P. nigra	(\downarrow)	1	Cotrufo et al. 2005	
Quercus ilex	nd	\downarrow	de Angelis et al. 2000	
Q. myrtifolia (Exp. 1)	\leftrightarrow	nd	Hall et al. 2006	
Q. myrtifolia (Exp. 2)	\leftrightarrow	$\uparrow^{(*)}$	Hall et al. 2006	

(microflora+Protozoa) were lower than that of control litter, whereas exposure to more complex foodwebs (microflora + Protozoa + higher soil fauna including nematodes, springtails and woodlice) led to higher decomposition rates of the CO₂-enriched litter when compared to control litter (Coûteaux et al. 1991; Coûteaux and Bolger 2000). In a recent FACE study with paper birch, trembling aspen and sugar maple, elevated $\hat{CO_2}$ increased the total tree productivity but simultaneously decreased the abundance of total soil fauna, springtails and mites after a four-year-exposure period (Loranger et al. 2004). At the same time, Parsons et al. (2004) observed a decrease in the subsequent decomposition of birch leaves in the same CO2 plots. Both results (Loranger et al. 2004; Parsons et al. 2004) indicate that the CO₂-induced changes in litter quality of both above- and below-ground compartments can be manifested in the soil food web and in its functioning in the deciduous tree stands. In a FACE study with loblolly pine trees, Hansen et al. (2001) noticed a consistent trend toward lower microarthropod abundance in elevated CO₂, but in this case the driving mechanim was suggested to be some change in the microbial resource base or habitat (i.e., non-litter CO₂ effects), as this negative animal response was observed early after the onset of the CO2 treatment and before any CO2-induced quality changes in leaf litter was even possible to detect. In contrast, Haimi et al. (2005) found only minor CO2-induced changes in decomposer fauna at the Scots pine stand after six years of CO₂ exposure (i.e., densities of one mite suborder and one springtail species decreased), but since they did not study litter quality it is not possible to state whether there was also a lack of litter response to elevated CO₂.

The few available studies indicate that CO₂-induced decreases in litter N concentrations may be maintained at the initial stages of decomposition (Coûteaux et al. 1991, 1996; Parsons et al. 2004; Cotrufo et al. 2005). Although the lower N concentrations at the early stages of decomposition may decrease decomposition rates, the effect of N concentration is reversed during the later stages of decomposition (Berg and Laskowski 2006). Thus, the CO₂-induced changes in N concentrations of leaf litter could in fact lead to more complete decomposition (i.e., humus formation decreases), although it must be kept in mind that N is not the only nutrient controlling the litter disappearance rates at the later stages of decomposition (Berg and Laskowski 2006). For instance, Coûteaux et al. (1991) showed in their microcosm study that the early stage of decomposition of CO₂-enriched sweet chestnut litter was always lower than that of more N-rich control litter, but during the later stages the decomposition rate of N-poor and CO₂-exposed litter in fact enhanced. In another incubation study with sweet chestnut litter (Coûteaux et al. 1996), lignin decay started earlier in N-poor CO₂ litter than in more N-rich control litter, whereas Parsons et al. (2004) did not observe any significant change in lignin decomposition rates of birch litter both produced and incubated under elevated CO₂. Although a laboratory study (King et al. 2001b) indicated that initial CO₂ treatment effects on condensed tannins (i.e. CO₂-induced increase) in sugar maple leaf litter may quickly disappear, a longer field incubation experiment in high CO₂ environment (Parsons et al. 2004) indicated that the initial CO₂-induced increases in the concentrations of condensed tannins in paper birch leaves are not necessarily immediately neutralized by microbes or physical effects such as leaching. Elevated CO_2 has not been found to affect the subsequent disappearance rates of condensed tannins in trembling aspen leaves (King et al. 2001a) or total phenolics and monoterpenes in Scots pine needles (Kainulainen et al. 2003).

According to the concept of progressive N limitation, declining N mineralization (i.e. microbial N release from litter and SOM) is one of the indicators of incipient PNL in N-limited ecosystems (Luo *et al.* 2004). So far the results of CO_2 enrichment experiments have been ambiguous and there is no clear support for either positive (Zak *et al.* 1993) or negative feedback (Diaz *et al.* 1993) on soil N cycling as

various studies have reported either increases, decreases or no change in the rate of N immobilization and mineralization under elevated CO₂ (Finzi and Schlesinger 2003; Holmes et al. 2003; Zak et al. 2003; Cotrufo et al. 2005; Holmes et al. 2006). However, the CO₂-response of microbial functioning may change over time, as Holmes et al. (2003) first observed no change in N transformations beneath CO2exposed trees, but later they measured increased gross N mineralization rates and $\rm NH_4^+$ immobilization from the same experimental plots (Holmes et al. 2006). In the same FACE experiment with trembling aspen, paper birch and sugar maple also soil microbial activity involved with the degradation of plant cell wall components was stimulated (Larson et al. 2002; Phillips et al. 2002; Chung et al. 2006). Hence, N turnover by microbes was increased, but there was no proof of altered soil N cycling (Holmes et al. 2006). In a loblolly pine dominated forest microbial-N immobilization was not increased under elevated CO₂ and although the rate of net N mineralization declined over the first six years of experiment, this decline was not significantly more rapid under elevated CO₂ (Finzi *et al.* 2006). Previously Zak *et al.* (2000a) concluded that only in systems where the CO₂-induced increase in plant litter production clearly overcomes the pre-existing SOM pools, soil N cycling may be changed. In some ecosystems the direction and magnitude of N and C cycling response may depend more on changes in belowground litter inputs than in above-ground litter inputs (Zak et al. 2000b; Matamala et al. 2003; de Graaff et al. 2006). Taken together, although some decomposition and element cycling processes in soil may be altered due to elevated \dot{CO}_2 , at the moment there is no consistent evidence of CO_2 induced and microbe-mediated PNL in temperate forests. Thus, more long-term studies (>7 years) including both above- and below-ground litter sources and with more complex soil food webs are needed to get an overall picture of the decomposition and element cycling processes.

EFFECTS OF ELEVATED O₃ ALONE AND IN COMBINATION WITH CO₂

Litter quantity and quality responses

Since the average effect of O_3 on tree growth is negative (Grantz *et al.* 2006), it can be assumed that in the future O_3 will decrease the leaf litter inputs to the soil, if some other environmental factor (e.g. elevated CO₂) does not counteract this negative effect. There are only a few O_3 and $CO_2 \times$ O₃ interaction studies where the actual leaf litter production has been reported. In most recent studies, Liu et al. (2005) reported clear O₃-induced decreases in leaf litter masses in the FACE experiment with trembling aspen and paper birch trees, whereas in our OTC study no clear O₃ effects on silver birch leaf litter mass were found over a three-yearexposure period (Riikonen et al. 2004). In the above FACE study, the negative O₃ effect on leaf litter production was detected mainly under ambient CO₂ levels, although elevated O₃ had also a tendency to diminish the positive effect of CO₂ on leaf production in the combination treatment (Liu et al. 2005). O₃ stress has also been observed to accelerate foliar senescence and abscission (Findlay et al. 1996; Andersen 2001, 2003; Riikonen et al. 2004), but based on scarce data it seems that this O₃ effect is mainly observed under ambient CO₂ conditions (Riikonen et al. 2004).

If leaf senescence is accelerated due to O_3 stress and N resorption from leaves is not complete at the time of leaf abscission this could lead to leaf litter with increased N levels (Findlay and Jones 1990; Uddling *et al.* 2005). So far O_3 effects on N resorption or leaf litter N have been highly variable (Scherzer *et al.* 1998; Lindroth *et al.* 2001; Uddling *et al.* 2005). Previously Lindroth *et al.* (2001) have also reported that the elevated O_3 responses were modified by the tree species and prevailing CO_2 levels. First of all, O_3 stress decreased both the N resorption efficiency and C:N-ratios in paper birch leaves, but not in trembling aspen, and secondly, under the combination treatment, the negative O_3

Table 3 Summary of O₃ effects on leaf litter chemistry. Treatment effect $\% = (\text{the O}_3 \text{ treatment average response minus the control treatment average response divided by the control treatment average response) × 100. Negative values indicate decrease and positive values increase in chemical concentration or C:N-ratios, and 0 denotes for no change. Symbols: * = a significant O₃ effect (P ≤ 0.1) and ** = tree community-dependent O₃ response. Only data from OTC- and FACE-studies with soil-growing trees and naturally abscised leaf litter was included. Abbreviation: nd = not determined.$

		0 0				
Tree species/community	Ν	Р	C:N-ratio	Lignin	Condensed	Reference
					tannins	
Betula papyrifera	0	nd	+3	-12	+4	Parsons et al. 2004
B. pendula	-6	-15*	+8	+1	+5	Kasurinen et al. 2006, 2007 ¹
B. papyrifera-Populus tremuloides	-18*	-27*	+23**	-5	+94*	Liu et al. 2005, 2007
Pinus sylvestris	-2	-3	nd	nd	nd	Kainulainen et al. 2003
Populus tremuloides	-7*	-19*	+7**	+26	+79*	Liu et al. 2005, 2007
Average response (n =4-5)	-7	-16	+10	+3	+46	

¹ data averaged over three experiment years

effect on N resorption efficiency in birch leaves was cancelled due to elevated CO₂, whereas the C:N-ratios of birch leaves were increased even more than in the single CO₂ treatment (Lindroth et al. 2001). In our small O₃ data compilation with soil-growing trees and naturally abscised litter (Table 3), only one study (Liu et al. 2005) reported marginally significant O₃ effects on aspen and aspen-birch litter N concentrations (decrease) and C:N-ratios (increase) while other studies showed no clear O₃ response patterns in litter N and C:N-ratios. In addition, Kasurinen et al. (2006) or Parsons et al. (2004) did not either observe any significant $CO_2 \times O_3$ effects on leaf N concentrations or C:N-ratios in two different birch species. In fact, in both studies the negative CO₂ effect on leaf litter N concentrations and C:Nratios were seen regardless of prevailing O3 levels, as elevated CO₂ decreased N concentrations and increased C:Nratios in the CO₂+O₃ treatment also (Parsons et al. 2004; Kasurinen et al. 2006). Although in the study of Liu et al. (2005) both elevated CO_2 alone and O_3 alone decreased litter N concentrations, the combination treatment did not show additive response (e.g. either CO_2 or O_3 did not exacerbate each other's influence).

Table 3 shows that all the significant O_3 -induced decreases in litter P concentrations have been observed in birch or aspen experiments. In both studies the O₃-induced decrease in P concentrations was observed mainly under ambient CO₂ (Kasurinen et al. 2006; Liu et al. 2007). In addition, Kasurinen et al. (2006) observed that in silver birch O₃ reduced the concentrations of Mn, Zn and B in both green foliage and leaf litter, and that these O₃-induced decreases in nutrients were detected also under elevated CO_2 (Kasurinen *et al.* 2006). Since the leaf litter mass was not significantly altered by O3 treatments (Riikonen et al. 2004), fluxes of some of these nutrients to the soil (e.g. B and Mn) were somewhat decreased (Kasurinen et al., personal data). Liu et al. (2007) reported O3-induced decreases in aspen and aspen-birch litter S, Ca and Zn concentrations. In contrast to our study (Kasurinen et al. 2006), the negative O₃ effect on Zn was seen only under ambient CO₂ (Liu et al. 2007). Because of decreased litter production, elevated O₃ decreased statistically significantly the fluxes of N, P, S, K, Ca, Mg, Cu, Cu and Zn, and marginally statistically significantly the flux of Mn to the soil (Liu et al. 2007). Based on this limited data, it seems that O₃ is capable of inducing some changes in leaf litter nutrient composition, but these responses are less consistent than those induced by elevated CO₂, and under combined exposure situation elevated CO₂ may either dominate over (Parsons *et al.* 2004; Kasurinen *et al.* 2006) or totally cancel the O₃ responses (Lindroth et al. 2001; Liu et al. 2007).

Ozone is a phytotoxic gas, and under O_3 stress trees may reduce their C assimilation and photosynthate production. On the other hand, O_3 is known to activate phenylpropanoid metabolism regardless of the potentially decreased photosynthesis (Kangasjärvi *et al.* 1994; Koricheva *et al.* 1998; Dizengremel 2001; Podila *et al.* 2001). Although some greenhouse studies have shown O_3 -induced increases in leaf litter total phenolics (Findlay *et al.* 1996), long-term field experiments have not usually revealed any clear O_3 - induced changes in phenolics (Kainulainen et al. 2003; Kasurinen et al. 2007; but see Liu et al. 2005). The discrepancy between the greenhouse and field studies is probably partly due to the differences in the O_3 exposures used. For instance, Findlay and Jones (1990) used high levels of O₃ for a short exposure period (i.e. O₃ level of 200 ppb for 5 hours), whereas in recent field studies O_3 exposure levels have been usually only about two times the ambient levels (e.g., approximately 60 ppb) and exposure has continued for several consecutive growing seasons (Kainulainen et al. 2003; Kasurinen et al. 2007). However, in our OTC study with birch some O₃ effects on individual phenolic compound groups manifested gradually towards the end of the experiment (Kasurinen et al. 2007), this result thus emphasizing a need for long-term (3 years or more) studies in order to properly assess chronic O₃ stress effects on tree leaf litter quality. Liu et al. (2005) reported increased condensed tannin concentrations under O₃ exposure (Table 3) and interestingly, this stimulating effect of O₃ was most apparent in the combined CO_2+O_3 treatment. However, other studies show that O3 does not significantly affect the condensed tannins (Lindroth et al. 2001; Table 3), and under the combination treatment the CO₂ effect seems to dominate over the O₃ effect (Parsons et al. 2004; Kasurinen et al. 2007). Of other C-based compounds, high O₃ levels (100 ppb) seem to induce stress lignin production in foliage (Cabané et al. 2004), but when O₃ stress is milder, the O₃ response of lignin (Table 3) and other cell wall components has ranged from no change to slight decrease or increase, the first response pattern being the most commonly observed one (Boerner and Rebbeck 1995; Kim et al. 1998; Table 3). As with total phenolics, under the combination treatment the O_3 effect is usually dominated over by the CO_2 effect and therefore the combination treatment effects on cell wall chemistry are largely similar as the effect of elevated CO₂ alone (Parsons et al. 2004; Kasurinen et al. 2006). Limited data also indicates that monoterpene concentrations do not change due to O₃ stress either under ambient or elevated CO₂ levels (Kainulainen et al. 2003).

Decomposition and soil food web responses

A few studies indicate significant O₃-induced decreases in the subsequent decomposition rates in ambient O₃ environment (Findlay and Jones 1990; Findlay et al. 1996), but other studies report no change (Boerner and Rebbeck 1995; Scherzer et al. 1998; Table 4) or genotype-dependent slow down in the decomposition rates, but only after several exposure seasons (Table 4). Interestingly, Parsons et al. (2004) did not observe any changes in the absolute mass loss of O₃ exposed leaf litter when paper birch litter was incubated in its original plot (elevated O_3 plot) or common garden (ambient air) or when leaf litter from control trees were incubated in high O₃ plots (Table 4). However, when leaf litter from control trees was incubated in high O₃+ambient CO₂ plots, the relative mass loss rates (k-values) were significantly accelerated leading to shortened maximum residence times (time-to-95%-loss) (Parsons et al. 2004). The effects of combination treatment on the absolute mass

Table 4 Summary of O_3 effects on subsequent leaf litter decomposition (absolute mass loss). Symbols: \leftrightarrow = no change, \downarrow = decrease, ****** = genotypedependent O_3 response. Only data from OTC- and FACE-studies with soil-growing trees and naturally abscised leaf litter was included. Abbreviation nd = not determined.

Tree species/community		Mass loss	Reference
	Decomp	osition environment	
	Ambient O ₃	Elevated O ₃	
Betula papyrifera (Native placement + Common garden)	\leftrightarrow	\leftrightarrow	Parsons et al. 2004
B. papyrifera (Common substrate)	\leftrightarrow	\leftrightarrow	Parsons et al. 2004
<i>B. pendula</i> (Exp. 1)	\leftrightarrow	nd	Kasurinen et al. 2006
<i>B. pendula</i> (Exp. 2)	\leftrightarrow	nd	Kasurinen et al. 2006
<i>B. pendula</i> (Exp. 3)	↓**	nd	Kasurinen et al. 2006
Pinus sylvestris	\leftrightarrow	nd	Kainulainen et al. 2003

loss were similar to that of CO2 alone meaning that elevated O_3 did not modify the negative CO_2 effects on leaf litter decomposition in the original or common garden placement, and that the stimulating effect of elevated O₃ environment itself on k-values of common substrate was not manifested under elevated CO_2 (Parsons *et al.* 2004). On the other hand, Kim *et al.* (1998) observed that elevated O_3 concentrations both during the litter production (quality effects) and decomposition (environment effects) slowed down the mass loss rates of broomsedge-blackberry litter mixture. The authors (Kim et al. 1998) suggested that the reduced decomposition rates of litter collected from O₃ exposure were related to increased lignin concentrations in blackberry leaves, whereas the possible explanations for the retarded overall decomposition in high O3 environment could be decreased microbial activity (Larson et al. 2002; Phillips et al. 2002) or altered fungal community composition (Chung et al. 2006) in soil. Furthermore, FACE studies show that under the combination exposure elevated O₃ can suppress the CO₂-induced enhancement of soil microbial activity and thereby C compound decomposition (Larson et al. 2002; Phillips et al. 2002).

Soil fauna responses to elevated O_3 are less studied and more variable. Kasurinen *et al.* (2007) observed that leaf litter exposed to elevated O_3 alone and in combination with CO_2 did not consistently alter woodlice leaf litter consumption rates in a laboratory study. In contrast, Loranger *et al.* (2004) have demonstrated that elevated O_3 exposure as an individual treatment can decrease the abundance of microbial-feeding mites (Acari) in the experimental plots, but that under combination treatment both O_3 and CO_2 effects are negated and result is no net change in the total soil fauna abundance.

Boerner and Rebbeck (1995) reported that in their OTC experiment more N was mineralized from leaf litter of vellow-poplar produced under ambient and doubled O₃ air than from that produced under O₃-filtered air, but there was no significant difference between the ambient and doubled O₃ treatments. In a study with single and combination treatments, Parsons et al. (2004) did not find any clear O₃ effect on N dynamics in decomposing leaf litter while in the combination treatment elevated CO₂ effect dominated over the O_3 effect so that N dynamics were similar to that in single exposure of CO₂. Kainulainen et al. (2003) and Parsons et al. (2004) did not either find any significant O_3 or CO_2+O_3 treatment effects on the C-based secondary compounds during their field litter incubations. On the other hand, in a FACE study with three temperate deciduous species (trembling aspen, paper birch and sugar maple), elevated O_3 has been observed to decrease gross N mineralization rates (Holmes et al. 2003), especially in combination with elevated CO_2 (Holmes *et al.* 2006). Although the above result is not universally applicable, it suggests that O₃ may have a negative feedback on N cycling in some temperate forest ecosystems and this feedback may be enhanced by the simultaneous increase in atmospheric CO₂.

CONCLUSIONS

Elevated CO_2 increases leaf litter quantity entering the soil, and at the moment FACE studies indicate that this CO_2 stimulation of litter production may be maintained over several years through increased N uptake or NUE. However, if N redistribution in soils occurs (i.e. plant available N decreases), positive effects of elevated CO_2 on forest NPP and litter production may be declined over time. Elevated O_3 alone can decrease leaf litter quantity and increase leaf abscission rates, but due to a paucity of data an average trend in the combined exposure cannot be stated yet. However, a majority of the current CO_2 and O_3 litter studies have been conducted with young trees. Since tree responsiveness (e.g. growth responses) to CO_2 and O_3 may be partially dependent on tree developmental stage or age, more litter and NPP studies with mature trees or non-expanding forests are still needed.

Both elevated CO_2 and O_3 have the potential to alter leaf litter quality, especially in deciduous trees. However, the effects of CO_2 and O_3 on litter chemistry are inherently more difficult to detect than those on green foliage mainly because both gases can also affect leaf senescence processes and thereby increase variability. Elevated CO₂ can especially change the C:N-ratio as both the N and phenolic compound concentrations are usually altered (concentrations of N decreases and e.g. that of condensed tannins increases), whereas N resorption efficiency is not affected by the CO₂ enrichment. Based on recent studies, elevated O₃ effects are mainly seen in litter nutrient concentrations (e.g. P concentrations and some micronutrient concentrations may decrease), whereas O₃ stress effects on leaf litter non-structural and structural C compounds are less apparent or became only apparent, when O_3 concentration is higher than 100 ppb. Under the combined exposure, the CO_2 effect usually dominates over the O₃ effect, and leaf litter quality is usually similar although not necessarily identical to that observed in elevated CO₂ alone.

A majority of the field incubation studies have not found any significant CO₂- or O₃-induced reductions in the subsequent decomposition rates (i.e. mass loss, C and N dynamics). The lack of responses in litter decomposition studies is probably partly due to the low sensitivity of the techniques used such as litter bag studies. However, there are some exceptions, as recent longer-term exposure studies with soil-growing deciduous trees have revealed that both elevated CO_2 and O_3 effects on the subsequent decomposition rates can be negative or that high CO_2 or O_3 environment itself can also modify decomposition rates. Some CO₂ effects on initial leaf litter quality (e.g. decreased N concentrations, increased condensed tannin concentrations) may persist throughout the decomposition, whereas elevated O₃ effects on N and C dynamics in the decomposing leaf litter have been negligible. Under combined exposure no general decomposition response pattern has yet emerged although some studies indicate that under the combination treatment the N dynamics seems to be similar as that in elevated CO₂ alone.

Interestingly, recent FACE experiments also show that especially the functioning of primary decomposers (microbes) may be affected by the increasing CO_2 and O_3 levels. The few available studies show that elevated CO_2 can stimulate microbial activity, whereas O_3 dampens it, and under combined exposure, O_3 can suppress the CO_2 -induced enhancement of soil microbial activity. However, recent FACE studies do not show consistent evidence of microbemediated progressive nitrogen limitation in temperate forests due to CO_2 increment. There is also a paucity of data regarding the O_3 effects alone and in combination with CO_2 on soil N cycling especially in boreal forests.

Taken together, the experiments represented here show that there are some combined effects that cannot be predicted on the basis of single exposures and therefore, in order to study realistically climate change effects on decomposition and nutrient cycling processes in the forests, effects of increasing CO_2 and O_3 must be studied in combination. In addition, in the future the ongoing global climatic warming may modify the CO_2 and O_3 responses in forests. For instance, temperature rise can increase soil drought and thereby either enhance or control over the effects of CO_2 and O_3 on decomposition and nutrient cycling processes.

REFERENCES

- Ainsworth EA, Long SP (2005) What have we learned from 15 years of freeair CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. New Phytologist 165, 351-372
- Andersen CP (2001) Understanding the role of ozone stress in altering belowground processes. In: Huttunen S, Heikkilä H, Bucher J, Sundberg B, Jarvis P, Matyssek R (Eds) *Trends in European Forest Tree Physiology Research*, Kluwer Academic Publishers, The Netherlands, pp 65-79
- Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytologist 157, 213-228
- Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant, Cell and Environment 28, 949-964
- Berg B, Laskowski R (2006) Litter decomposition: A guide to carbon and nutrient turnover. Advances in Ecological Research 38, 423 pp
- Blum U, Tingey DT (1977) A study of the potential ways in which ozone could reduce root growth and nodulation of soybean. *Atmospheric Environment* **11**, 737-739
- Boerner REJ, Rebbeck J (1995) Decomposition and nitrogen release from leaves of three hardwood species grown under elevated O₃ and/or CO₂. *Plant* and Soil 170, 149-157
- Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. *Oikos* 40, 357-368
- Cabané M, Pireaux J-C, Léger E, Weber E, Dizengremel P, Pollet B, Lapierre C (2004) Condensed lignins are synthesized in poplar leaves exposed to ozone. *Plant Physiology* **134**, 586-594
- Carter TR, La Rovere EL (2001) Developing and applying scenarios: In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (Eds) Climate Change 2001. Impacts, Adaptation, and Vulnerability, Cambridge University Press, USA, pp 145-190
- Chung H, Zak DR, Lilleskov EA (2006) Fungal community composition and metabolism under elevated CO₂ and O₃. *Oecologia* **147**, 143-154
- **Collins WJ, Stevenson DS, Johnson CE, Derwent RG** (2000) The European regional ozone distribution and its links with the global scale for the years 1992 and 2015. *Atmospheric Environment* **34**, 225-267
- Conroy J, Hocking P (1993) Nitrogen nutrition of C3 plants at elevated CO₂ concentrations. *Physiologia Plantarum* 89, 570-576
- Cotrufo FM, Berg B, Kratz W (1998a) Increased atmospheric CO₂ and litter quality. *Environmental Reviews* 6, 1-12
- **Cotrufo FM, Briones MJI, Ineson P** (1998b) Elevated CO₂ affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. *Soil Biology and Biochemistry* **30**, 1565-1571
- **Cotrufo FM, de Angelis P, Polle A** (2005) Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free-air CO₂ enrichment (POPFACE). *Global Change Biology* **11**, 1-12
- **Cotrufo FM, Ineson P** (1996) Elevated CO₂ reduces field decomposition rates of *Betula pendula* (Roth.) leaf litter. *Oecologia* **106**, 525-530
- **Coûteaux M-M, Bolger T** (2000) Interactions between atmospheric CO₂ enrichment and soil fauna. *Plant and Soil* **224**, 123-134
- Coûteaux M-M, Kurz C, Bottner P, Raschi A (1999) Influence of increased atmospheric CO₂ concentration on quality of plant material and litter decomposition. *Tree Physiology* 19, 301-311
- Coûteaux M-M, Monrozier LJ, Bottner P (1996) Increased atmospheric CO₂: chemical changes in decomposing chestnut (*Castanea sativa*) leaf litter incubated in microcosms under increasing food web complexity. *Oikos* 76, 553-563
- Coûteaux M-M, Mousseau M, Célérier M-L, Bottner P (1991) Increased atmospheric CO₂ and litter quality: decomposition of sweet chestnut leaf lit-

ter with animal food webs of different complexities. Oikos 61, 54-64

- de Angelis P, Chigwerewe KS, Mugnozza GES (2000) Litter quality and decomposition in a CO₂-enriched Mediterranean forest ecosystem. *Plant and Soil* 224, 31-41
- de Graaff M-A, van Groenigen K-J, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO₂: a meta-analysis. *Global Change Biology* **12**, 2077-2091
- Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. *Nature* 364, 616-617
- Dizengremel P (2001) Effects of ozone on the carbon metabolism of forest trees. *Plant Physiology and Biochemistry* **39**, 729-742
- Findlay S, Jones CG (1990) Exposure of cottonwood plants to ozone alters subsequent leaf decomposition. *Oecologia* 82, 248-250
- Findlay S, Carreiro M, Krischik V, Jones CG (1996) Effects of damage to living plants on leaf litter quality. *Ecological Applications* 6, 269-275
- Finzi AC, Allen AS, DeLucia EH, Ellsworth DS, Schlesinger WH (2001) Forest litter production, chemistry, and decomposition following two years of free-air CO₂ enrichment. *Ecology* 82, 470-484
- Finzi AC, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH (2002) The nitrogen budget of a pine forest under free-air CO₂ enrichment. *Oecolo*gia 132, 567-578
- Finzi AC, Moore DJP, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim H-S, Matamala R, McCarthy HR, Oren R, Pippen JS, Schlesinger WH (2006) Progressive nitrogen limitation of ecosystem processes under elevated CO₂ in a warm-temperate forest. *Ecology* 87, 15-25
- Finzi AC, Schlesinger WH (2002) Species control variation in litter decomposition in a pine forest exposed to elevated CO₂. Global Change Biology 8, 1217-1229
- Finzi AC, Schlesinger WH (2003) Soil-nitrogen cycling in a pine forest exposed to 5 years of elevated carbon dioxide. *Ecosystems* 6, 444-456
- Fowler D, Flechard C, Skiba U, Coyle M, Cape JN (1998) The atmospheric budget of oxidized nitrogen and its role in ozone formation and deposition. *New Phytologist* 139, 11-23
- **Gifford RM, Barrett DJ, Lutze JL** (2000) The effects of elevated [CO₂] on the C:N and C:P mass ratio of plant tissues. *Plant and Soil* **224**, 1-14
- Grantz DA, Gunn S, Vu HB (2006) O₃ impacts on plant development: a metaanalysis of root/shoot allocation and growth. *Plant Cell and Environment* 29, 1193-1209
- Haimi J, Laamanen J, Penttinen R, Räty M, Koponen S, Kellomäki S, Niemelä P (2005) Impacts of elevated CO₂ and temperature on the soil fauna of boreal forests. *Applied Soil Ecology* **30**, 104-112
- Hall MC, Stiling P, Moon DC, Drakes BG, Hunter MD (2006) Elevated CO₂ increases the long-term decomposition rate of *Quercus myrtifolia* leaf litter. *Global Change Biology* 12, 568-577
- Hansen RA, Williams RS, Degenhart DC, Lincoln DE (2001) Non-litter effects of CO₂ on forest floor microarthropod abundances. *Plant and Soil* 236, 139-144
- Hättenschwiler S, Bretscher D (2001) Isopod effects on decomposition of litter produced under elevated CO₂, N deposition and different soil types. *Global Change Biology* 7, 565-579
- Hättenschwiler S, Bühler S, Körner C (1999) Quality, decomposition and isopod consumption of tree litter produced under elevated CO₂. Oikos 85, 271-281
- Hättenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences USA 102, 1519-1524
- Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. *Trends in Ecology and Evolution* 15, 238-243
- Herms DA, Matsson WJ (1992) The dilemma of plants: to grow or to defend. The Quarterly Review of Biology 67, 283-335
- Holmes WE, Zak DR, Pregitzer KS, King JS (2003) Soil nitrogen transformations under *Populus tremuloides*, *Betula papyrifera* and *Acer saccharum* following 3 years exposure to elevated CO₂ and O₃. *Global Change Biology* 9, 1743-1750
- Holmes WE, Zak DR, Pregitzer KS, King JS (2006) Elevated CO₂ and O₃ alter soil nitrogen transformations beneath trembling aspen, paper birch, and sugar maple. *Ecosystems* **9**, 1354-1363
- Horner JD, Gosz JR, Cates RG (1988) The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. *The American Naturalist* 132, 869-883
- Hu S, Firestone MK, Chapin FS (1999) Soil microbial feedbacks to atmospheric CO₂ enrichment. *Trends in Ecology and Evolution* 14, 433-437
- Hungate BA, Johnson DW, Dijkstra P, Hymus G, Stiling P, Megonigal JP, Pagel AL, Moan JL, Day F, Li Jiahong, Hinkle CR, Drake BG (2006) Nitrogen cycling during seven years of atmospheric CO₂ enrichment in a scrub oak woodland. *Ecology* 87, 26-40
- IPCC (International Panel on Climate Change) (2001) Third Assessment Report (TAR). Climate Change 2001: The Scientific Basis. Technical Summary, 63 pp. Available online: http://www.ipcc.ch/
- IPCC (International Panel on Climate Change) (2007a) Fourth Assessment Report (AR4). Climate Change 2007. The Physical Science Basis. Summary for Policymakers, 18 pp. Available online: http://www.ipcc.ch/
- IPCC (International Panel on Climate Change) (2007b) Fourth Assessment

Report (AR4). Climate Change 2007. Mitigation of Climate Change. Summary for Policymakers, 35 pp. Available online: http://www.ipcc.ch/

- Johnson DW, Norby RJ, Hungate BA (2001) Effects of elevated CO₂ on nutrient cycling in forests. In: Karnosky DF, Ceulemans R, Scarascia-Mugnozza GE, Innes IL (Eds) *The Impact of Carbon Dioxide and Other Greenhouse Gases on Forest Ecosystems*, CABI Publishing, UK, pp 237-267
- Jonson JE, Sunder JK, Tarrasón L (2001) Model calculations of present and future levels of ozone and ozone precursors with global and a regional model. *Atmospheric Environment* **35**, 525-537
- Kainulainen P, Holopainen T, Holopainen JK (2003) Decomposition of secondary compounds from needle litter of Scots pine grown under elevated CO₂ and O₃. *Global Change Biology* 9, 295-304
- Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. *Plant, Cell and Environment* 17, 783-794
- Karnosky DF, Zak DR, Pregitzer KS, Awmack CS, Bockheim JG, Dickson RE, Hendrey GR, Host GE, King JS, Kopper BJ, Kruger EL, Kubiske ME, Lindroth RL, Mattson WJ, McDonald EP, Noormets A, Oksanen E, Parsons WFJ, Percy KE, Podila GK, Riemenschneider DE, Sharma P, Thakur R, Sôber A, Sôber J, Jones WS, Anttonen S, Vapaavuori E, Mankowska B, Heilman W, Isebrands JG (2003) Tropospheric O₃ moderates responses of temperate hardwood forests to elevated CO₂: a synthesis of molecular to ecosystem results from the Aspen FACE project. *Functional Ecology* 17, 289-304
- Kasurinen A, Riikonen J, Oksanen E, Vapaavuori E, Holopainen T (2006) Chemical composition and decomposition of silver birch leaf litter produced under elevated CO₂ and O₃. *Plant and Soil* **282**, 261-280
- Kasurinen A, Peltonen PA, Julkunen-Tiitto R, Vapaavuori E, Nuutinen V, Holopainen T, Holopainen JK (2007) Effects of elevated CO₂ and O₃ on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. *Plant and Soil* **292**, 25-43
- Keeling CD, Whort TP, Wahlen M, vander Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. *Nature* 375, 666-670
- Kim JS, Chappelka AH, Miller-Goodman MS (1998) Decomposition of blackberry and broomsedge bluestem as influenced by ozone. *Journal of Environmental Quality* 27, 953-960
- King JS, Pregitzer KS, Zak DS, Kubiske ME, Ashby JA, Holmes WE (2001a) Chemistry and decomposition of litter from *Populus tremuloides* Michaux grown at elevated atmospheric CO₂ and varying N availability. *Global Change Biology* 7, 65-74
- King JS, Pregitzer KS, Zak DS, Kubiske ME, Holmes WE (2001b) Correlation of foliage and litter chemistry of sugar maple, *Acer saccharum*, as affected by elevated CO₂ and varying N availability, and effects on decomposition. *Oikos* 94, 403-416
- Koricheva J, Larsson S, Haukioja E, Keinänen M (1998) Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. *Oikos* 83, 212-226
- Lambers H (1993) Rising CO₂, secondary plant metabolism, plant-herbivore interactions and litter decomposition. *Vegetatio* 104/105, 263-271
- Lamborg MR, Hardy RWF, Paul EA (1983) Microbial effects. In: Lemon ER (Ed) Carbon Dioxide and Plants: The Response of Plants to Rising Levels of Atmospheric CO₂, American Association of Advancement of Science Symposium, Washington DC, USA, pp 131-176
- Larson JL, Zak DR, Sinsabaugh RL (2002) Extracellular enzyme activity beneath temperature trees growing under elevated carbon dioxide and ozone. *Soil Science Society of America Journal* **66**, 1848-1856
- Lavelle P, Spain AV (2001) Soil Ecology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 654 pp
- Li J-H, Dijkstra P, Hymus GJ, Wheeler RM, Piastuch WC, Hinkle CR, Drakes BG (2000) Leaf senescence of *Quercus myrtifolia* as affected by long-term CO₂ enrichment in its native environment. *Global Change Biology* 6, 727-733
- Lindroth RL, Kopper BJ, Parsons WFJ, Bockheim JG, Karnosky DF, Hendrey GR, Pregitzer KS, Isebrands JG, Sober J (2001) Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (*Populus tremuloides*) and paper birch (*Betula papyrifera*). Environmental Pollution 115, 395-404
- Liu L, King JS, Giardina CP (2005) Effects of elevated concentrations of atmospheric CO₂ and tropospheric O₃ on leaf litter production and chemistry in trembling aspen and paper birch communities. *Tree Physiology* 25, 1511-1522
- Liu L, King JS, Giardina CP (2007) Effects of elevated atmospheric CO₂ and tropospheric O₃ on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities. *Plant and Soil* **299**, 65-82
- **Loranger GI, Pregitzer KS, King JS** (2004) Elevated CO₂ and O_{3t} concentrations differentially affect selected groups of the fauna in temperate forest soils. *Soil Biology and Biochemistry* **36**, 1521-1524
- Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw RE, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. *BioScience* 54, 731-739
- Matamala R, Gonzàlez-Meler M, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. *Science* **302**, 1385-1387

- Mcconnaughay KDM, Bassow SL, Berntson GM, Bazzaz FA (1996) Leaf senescence and decline of end-of-season gas exchange in five temperate deciduous tree species grown in elevated CO₂ concentrations. *Global Change Biology* 2, 25-33
- Norby RJ, Cotrufo FM, Ineson P, O'Neill EG, Canadell JG (2001) Elevated CO₂, litter chemistry, and decomposition: a synthesis. *Oecologia* 127, 153-165
- Norby RJ, Hanson PJ, O'Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng W, Wullschleger SD, Gunderson CA, Edwards NT, Johnson DW (2002) Net primary productivity of a CO₂-enriched deciduous forest and the applications for carbon storage. *Ecological Applications* **12**, 1261-1266
- **Norby RJ, Iversen CM** (2006) Nitrogen uptake, distribution, turnover, and efficiency of use in a CO₂-enriched sweetgum forest. *Ecology* **87**, 5-14
- Norby RJ, Long TM, Hartz-Rubin JS, O'Neill EG (2000) Nitrogen resorption in senescing tree leaves in a warmer, CO₂-enriched atmosphere. *Plant* and Soil 224, 15-29
- O'Neill EG, Norby RJ (1996) Litter quality and decomposition rates of foliar litter produced under CO₂ enrichment. In: Koch GW, Mooney HA (Eds) Carbon Dioxide and Terrestrial Ecosystems, Academic Press, USA, pp 87-103
- Parsons WF, Lindroth RL, Bockheim JG (2004) Decomposition of *Betula papyrifera* leaf litter under the independent and interactive effects of elevated CO₂ and O₃. *Global Change Biology* 10, 1666-1677
- Peltonen PA, Vapaavuori E, Julkunen-Tiitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated cabon dioxide and ozone. *Global Change Biology* 11, 1305-1324
- Peñuelas J, Estiarte M (1998) Can elevated CO₂ affect secondary metabolism and ecosystem function? *Trends in Ecology and Evolution* **13**, 20-24
- Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002) Altered performance of forest pests under atmospheres enriched by CO₂ and O₃. *Nature* **6914**, 403-407
- Phillips RL, Zak DR, Holmes WE, White DC (2002) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. *Oecologia* 131, 236-244
- Podila GK, Paolacci AR, Badiani M (2001) The impact of greenhouse gases on antioxidants and foliar defence compounds. In: Karnosky DF, Ceulemans R, Scarascia-Mugnozza G, Innes J (Eds) *The Impact of Carbon Dioxide and* other Greenhouse Gases on Forest Ecosystems, CABI Publishing, UK, pp 57-125
- Riikonen J, Lindsberg M-M, Holopainen T, Oksanen E, Lappi J, Peltonen P, Vapaavuori E (2004) Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. *Tree Physiology* 24, 1227-1237
- Scherzer AJ, Rebbeck J, Boerner REJ (1998) Foliar nitrogen dynamics and decomposition of yellow-poplar and eastern white pine during four seasons of exposure to elevated ozone and carbon dioxide. *Forest Ecology and Management* 109, 355-366
- Strain BR, Bazzaz FA (1983) Terrestrial plant communities. In: Lemon EH (Ed) Carbon Dioxide and Plants: The Response of Plants to Rising Levels of Atmospheric CO₂, American Association of Advancement of Science Symposium, Washington DC, USA, pp 117-222
- Tricker PJ, Calfapietra C, Kuzminsky E, Puleggi R, Ferris R, Nathoo M, Pleasants LJ, Alston V, de Angelis P, Taylor G (2004) Long-term acclimation of leaf production, development, longevity and quality following 3 years exposure to free-air CO₂ enrichment during canopy closure in *Populus. New Phytologist* 162, 413-426
- Turner NC, Rich S, Waggoner PE (1973) Removal of ozone by soil. Journal of Environmental Quality 2, 259-264
- Uddling J, Karlsson PE, Glorviken A, Selldén G (2005) Ozone impairs autumnal resorption of nitrogen from birch (*Betula pendula*) leaves, causing an increase in whole-tree nitrogen loss through litter fall. *Tree Physiology* 26, 113-120
- Vingarzan R (2004) A review of surface ozone background levels and trends. *Atmospheric Environment* 38, 3431-3442
- Volin JC, Reich PB, Givnish TJ (1998) Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. *New Phytologist* 138, 315-325
- Zak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger WH (2003) Soil nitrogen cycling under elevated CO₂: a synthesis of forest FACE experiments. *Ecological Applications* 13, 1508-1514
- Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett D (1993) Elevated atmospheric CO₂ and feedback between carbon and nitrogen cycles. *Plant and Soil* 151, 105-117
- Zak DR, Pregitzer KS, Curtis PS, Holmes WE (2000a) Atmospheric CO₂ and the composition and function of soil microbial communities. *Ecological Applications* **10**, 47-59
- Zak DR, Pregitzer KS, King JS, Holmes WE (2000b) Elevated atmospheric CO₂, fine roots and the response of soil microorganisms: a review and hypothesis. *New Phytologist* 147, 201-222
- Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. *Global Change Biology* 12, 27-41