ABSTRACT

This article reviews research to establish highly regenerative cell and tissue culture systems in cereals and grasses as a prerequisite for crop improvement using biotechnological methods. The strategies were described in the historical framework of investigations in this field and then new approaches were discussed focussing on the considerable recent progress made using the cotton defoliant thidiazuron (TDZ) for enhancement of morphogenic competence in the Poaceae during the last 15 years. In 1982, TDZ was first described to have cytokinin-like activity and subsequently, numerous studies have characterized this compound as a powerful plant growth regulator for dicots with special emphasis on recalcitrant leguminous and woody species. However, TDZ was evaluated for cereal tissue culture with a remarkable delay. The results summarized clearly showed that TDZ can significantly improve morphogenic response from callus derived from a wide range of explants concerning frequency of shoot formation, number of shoots per explant and the time needed for shoot induction compared to other cytokinins. Moreover, TDZ has been used effectively for establishment of shoot meristematic cultures from model and agronomically important cultivars using shoot apices, shoot meristematic segments as well as nodes and pronounced differences were obtained regarding shortening of the time frame especially for barley and wheat. Besides that, high frequency plant regeneration with long-term retention of morphogenecity in a relatively genotype-independent manner was observed. Nevertheless, in a few cases problems associated with the use of TDZ were noted. The data summarized imply that TDZ is also a potent growth regulator for cereals which (i) further minimizes the recalcitrant nature of the Poaceae and which (ii) extends the application of transformation protocols to elite genotypes and to more readily available explants.

Keywords: genotype dependency, in vitro morphogenesis, long-term regeneration, plant growth regulators, Poaceae, shoot meristematic cultures, transformation

Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; 2iP, 6-γ-γ-(dimethylallylamo)-purine; BAP, benzylaminopurine; IAA, indole-3-acetic acid; Kin, kinetin; NAA, α-naphthaleneacetic acid; TDZ, thidiazuron; Zea, zeatin

CONTENTS

INTRODUCTION.. 64
STRATEGIES TO ESTABLISH REGENERATIVE CULTURE SYSTEMS IN CEREALS ... 65
Search for suitable donor explants... 65
Factors associated with regenerative competence... 66
THE IMPACT OF TDZ IN CEREAL TISSUE CULTURE ... 69
Induction of shoot formation from callus cultures.. 69
Somatic embryogenesis ... 70
Multiple bud and shoot formation .. 70
Mode of multiple shoot clump formation ... 72
Biochemical effects of TDZ exposure .. 72
Application of TDZ-based protocols ... 73
Long-term regeneration ... 73
Problems associated with the use of TDZ ... 74
CONCLUDING REMARKS ... 74
ACKNOWLEDGEMENTS ... 74
REFERENCES.. 74

INTRODUCTION

The first experiments to culture plant cells under in vitro conditions were conducted more than one hundred years ago (Haberlandt 1902). Those experiments had no success since, among others, there was no knowledge about plant growth substances. It took decades until their detection, isolation and subsequently the observation made by Skoog and Miller (1957) on the auxin/cytokinin ratio controlling root and/or shoot formation from tobacco (Nicotiana tabacum) pith tissue cultures in vitro, being a milestone for the development of plant tissue and cell culture. However, more than twenty years after that breakthrough and promising results with dicots, success with monocots, especially with the cereals was rare. The situation was summarized in a lecture delivered to the first Annual Meeting of the French Section, International Association for Plant Tissue Culture by King et al. (1978). From their experience with Zea mays and Sorghum bicolor, and from an extensive examination of the literature, the authors concluded that none of the technology essential for in vitro genetics had yet been satisfactory established with cereal species. Nonetheless, efforts did not
fail due to the high economic features of the cereals.

Genetic improvement of the major cereals such as wheat (*Triticum aestivum*), rice (*Oryza sativa*), maize (*Zea mays*) and barley (*Hordeum vulgare*) but also sorghum (*Sorghum bicolor*), millet (*Pennisetum sp.*), oat (*Avena sativa*) and rye (*Secale cereale*) has been particularly important for plant breeders for decades, since these crops provide more than half of the food consumed by mankind being the major source of plant proteins and carbohydrates (FAO 2007). In addition, these species are the basis for production of animal feed, oils, starch, flour, sugar, processed foods, malt, alcoholic beverages, gluten and renewable energy (Heiermann et al. 2002). The increase in productivity as a result of the “Green Revolution” in combination with intensified crop management, greater inputs of fertiliser and irrigation met the demands until the 1980s (Hedden 2003). Since then, growth rates of yields have slowed down due to declining resources of water and arable land, deteriorating soil conditions as a result of general environmental degradation (Huang 2003) as well as due to limitations in the germplasm pool (McIntosh 1998; Jauhar 2003).

To ensure the world’s food supply for the future with a continued population growth up to 8 billion people in 2025 will demand for cereals to increase by 41% between 1993 and 2020 to reach 2.490 million metric tons (Dyson 1999; Pininski 2007). In addition, these species are the basis for production of animal feed, oils, starch, flour, sugar, processed foods, malt, alcoholic beverages, gluten and renewable energy.

To meet that dramatic increase in cereal demand worldwide, new approaches and technologies also for generating new varieties are necessary. The rapidly developed methods of molecular and genetic engineering provide powerful and novel means to supplement and complement the traditional methods of plant improvement (Kishore and Shewmake 1999; Sairam and Prakash 2008). Nowadays, nearly thirty years after the above mentioned frustrating statement of King et al. (1978), not only were transgenic cereals generated (Shewry and Jones 2005; Bajaj and Mohanty 2005; Shrawat and Lörz 2006; Dahleen and Manoharan 2007; Vasal 2007), several of which are in field tests (e.g. Horvath et al. 2001; Barro et al. 2003; Shewry et al. 2006) while genetically engineered maize was grown on 108.5 million hectares in 13 countries in 2006 (Clive 2006). This enormous success is based on rapidly developed methods in plant biotechnology, a discipline requiring both cell and molecular biology. While techniques for gene isolation, DNA delivery, availability of reporter and selectable genes, strategies to enhance gene expression e.g. by the use of introns, analysis of integration and expression displayed a dramatic development in the last 25 years (Birch 1997; Kohli et al. 2003), in comparison advances in plant and cell culture of the cereals were moderate due to limitations like genotype, explant type and short regeneration ability. In spite of the molecular advances, transformation efficiency is low due to the bottleneck represented by the tissue culture performance (Janakiraman et al. 2002; Shrawat et al. 2003) which is reflected by a vast amount of literature concerning optimisation of regeneration protocols also in very narrow time frames.

This review focuses on new developments in cereal tissue culture with special emphasis on barley and wheat allowing now high efficient regeneration of plants in a genotype- and explant-independent manner through the use of the potent cytokinin-like substance thidiazuron (TDZ). Exactly 50 years after the breakthrough made by Skoog and Miller (1957) much was achieved and the often mentioned recalcitrance of cereals and grasses in tissue culture was further reduced.

STRATEGIES TO ESTABLISH REGENERATIVE CULTURE SYSTEMS IN CEREALS

Search for suitable donor explants

In the first investigations to establish tissue culture systems from cereals, mature seeds, isolated mature embryos and tissues derived from young seedlings were evaluated. Whereas in dicot species leaves from *in vitro* grown plants are the most common source for callus initiation and subsequent plant regeneration, the use of these easily available explants was found not to be successful for cereals in early reports. Callus formation from segments of young leaves and leaf base, respectively, was described but regeneration of plants failed or was very rare (O’Hara and Street 1978; Saalbach and Kobitz 1978). However, growth of leaf apices occurred at the expense of high mitotic activity typical for meristematic regions. The expected ability of young leaf tissues of graminaceous species to express morphogenic capacity could be demonstrated first for sorghum (Wernnicke and Brettell 1980; Wernnicke et al. 1982), napier grass (*Pennisetum purpureum*) (Haydu and Vasil 1981), guinea grass (*Panicum maximum*) (Lu and Vasil 1981), orchard grass (*Dactylis glomerata*) (Hanning and Conger 1982) but also for rice (*Wernnicke et al. 1981*) and wheat (*Ahuja et al. 1982*; Zamora and Scott 1983). However, a strong basipetal gradient in wheat leaves was observed concerning response to 2,4-dichlorophenoxyacetic acid (2,4-D) and plant regeneration was only achieved in a few genotypes out of 21 tested and only from very immature tissue (Wernicke and Milkovits 1984). Another easily available tissue analysed was the shoot apical meristem which contains the dome of actively dividing cells thus being promising for establishing morphogenetic cultures. The suitability of these explants was already demonstrated in 1975 by Cheng and Smith describing shoot formation up to 85% from callus derived from apical meristems isolated from one week-old barley seedlings. However, further assessment of these explants revealed contradictory results. Whereas Kobitz and Saalbach (1976) as well as Dale and Deambrogio (1979) described rare or no shoot formation, the initiation of tissue cultures capable of plant regeneration via somatic embryogenesis in barley (Weigel and Hughes 1985) and organogenesis in wheat was reported (Wernicke and Milkovits 1986). In addition, roots from young wheat and barley seedlings were tested for morphogenic ability, but the easily induced callus was only capable of root formation (Bhujwani and Hayward 1977; Chin and Scott 1977a; Chawla 1989). Moreover, mesocotyls were also evaluated for culture initiation and plant regeneration, but efficiency was low (Jelska et al. 1984; Bartók and Sági 1990).

Mature seeds or embryos from all cereals were intensively analysed and originated tissue cultures as could be shown for rice (Nishi et al. 1968; Nakano and Maeda 1979), maize (Harms et al. 1976), oats (Carter et al. 1967; Cure and Mott 1978; Cure and Mott, 1978) and barley (Cure and Mott 1978; Cure and Mott 1980), whereas Koblitz and Saalbach (1976) described rare or no shoot formation, the initiation of tissue cultures capable of plant regeneration via somatic embryogenesis in barley (Weigel and Hughes 1985) and organogenesis in wheat was reported (Wernicke and Milkovits 1986). In addition, roots from young wheat and barley seedlings were tested for morphogenic ability, but the easily induced callus was only capable of root formation (Bhujwani and Hayward 1977; Chin and Scott 1977a; Chawla 1989). Moreover, mesocotyls were also evaluated for culture initiation and plant regeneration, but efficiency was low (Jelska et al. 1984; Bartók and Sági 1990).

Mature seeds or embryos from all cereals were intensively analysed and originated tissue cultures as could be shown for rice (Nishi et al. 1968; Nakano and Maeda 1979), maize (Harms et al. 1976), oats (Carter et al. 1967; Cure and Mott 1978; Cure and Mott, 1978) and barley (Cure and Mott 1978; Cure and Mott 1980), whereas Koblitz and Saalbach (1976) described rare or no shoot formation, the initiation of tissue cultures capable of plant regeneration via somatic embryogenesis in barley (Weigel and Hughes 1985) and organogenesis in wheat was reported (Wernicke and Milkovits 1986). In addition, roots from young wheat and barley seedlings were tested for morphogenic ability, but the easily induced callus was only capable of root formation (Bhujwani and Hayward 1977; Chin and Scott 1977a; Chawla 1989). Moreover, mesocotyls were also evaluated for culture initiation and plant regeneration, but efficiency was low (Jelska et al. 1984; Bartók and Sági 1990).

Mature seeds or embryos from all cereals were intensively analysed and originated tissue cultures as could be shown for rice (Nishi et al. 1968; Nakano and Maeda 1979), maize (Harms et al. 1976), oats (Carter et al. 1967; Cure and Mott 1978; Cure and Mott, 1978) and barley (Cure and Mott 1978; Cure and Mott 1980), whereas Koblitz and Saalbach (1976) described rare or no shoot formation, the initiation of tissue cultures capable of plant regeneration via somatic embryogenesis in barley (Weigel and Hughes 1985) and organogenesis in wheat was reported (Wernicke and Milkovits 1986). In addition, roots from young wheat and barley seedlings were tested for morphogenic ability, but the easily induced callus was only capable of root formation (Bhujwani and Hayward 1977; Chin and Scott 1977a; Chawla 1989). Moreover, mesocotyls were also evaluated for culture initiation and plant regeneration, but efficiency was low (Jelska et al. 1984; Bartók and Sági 1990).

Mature seeds or embryos from all cereals were intensively analysed and originated tissue cultures as could be shown for rice (Nishi et al. 1968; Nakano and Maeda 1979), maize (Harms et al. 1976), oats (Carter et al. 1967; Cure and Mott 1978; Cure and Mott, 1978) and barley (Cure and Mott 1978; Cure and Mott 1980), whereas Koblitz and Saalbach (1976) described rare or no shoot formation, the initiation of tissue cultures capable of plant regeneration via somatic embryogenesis in barley (Weigel and Hughes 1985) and organogenesis in wheat was reported (Wernicke and Milkovits 1986). In addition, roots from young wheat and barley seedlings were tested for morphogenic ability, but the easily induced callus was only capable of root formation (Bhujwani and Hayward 1977; Chin and Scott 1977a; Chawla 1989). Moreover, mesocotyls were also evaluated for culture initiation and plant regeneration, but efficiency was low (Jelska et al. 1984; Bartók and Sági 1990).
cereal species (reviewed in Devaux and Pickering 2005). Based on the success obtained with anthers, isolated microspores were also cultured. Due to extensive work and several important modifications reproducible regeneration systems applicable for production of homozygous plants were established especially in barley (Jähne and Lörz 1995; Lanthems applicable for production of homozygous plants were important modifications reproducible regeneration systems have been developed based on immature embryos as it is documented for barley as an example. Table 1. Histological analysis demonstrated that the callus capable of embryoid and plant formation originates from the scutellum involving the scutellum’s three basic tissue systems: dermal, ground and vascular (Lu and Vasil 1985; Magnusson and Borman 1985; Rychscha et al. 1991). This embryogenic callus can be visually identified due to its nodular dense structure and yellow-white colour (Ozias-Akins and Vasil 1982).

In the second half of the eighties the identification of tissue types, which are competent for regenerating whole plants run into the general consent that immature tissues and cells derived from a source close to the embryonic state, are the most suitable explants. Subsequently, for all the important cereals, efficient and reproducible plant regeneration systems have been developed based on immature embryos (Vasil 1987; Lörz et al. 1988). Nevertheless, one of the main problems linked to the immature embryos but also to the immature inflorescences as well as anthers/microspores is the need for continuous growth of donor plants. These plants have to be grown under controlled environmental conditions without pathogens and pesticides requiring intensive labour, time and space. In addition, a seasonal influence of harvesting time on the tissue culture response of immature embryos (Dahleen 1995; Sharma et al. 2005a) and on haploid production (Foroughi-Wehr and Mix 1979; Ritala et al. 2001) has been shown. Thus, efforts did not fail to re-evaluate the morphogenetic potential of alternative explants despite earlier studies revealing that efficiency of regeneration is low and of low reproducibility. Another impulse came from the development of the particle gun allowing now the introduction of foreign genes in tissues competent for regeneration (Klein et al. 1987). Subsequently, a number of reports considerably increased in the last two decades successfully exploring alternative tissues, as summarized in Table 1 for barley as an example.

Factors associated with regenerative competence

Independent of the explant source used, the establishment of morphogenic cultures is considerably influenced by several factors. Efficiency of the regeneration protocols is limited by a strong genotype dependency as could be observed for leaves (Wernicke and Milkovits 1984; Hanning and Conger 1986; Ruiz et al. 1992), mature embryos (Bayliss and Dunn 1979; Lazar et al. 1983; Zale et al. 2004; Bi et al. 2007) and immature inflorescences (Maddock et al. 1983; Rajyalakshmi et al. 1988). A strong genotype specificity was also obtained for anthers and microspores (Powell 1988; Kuhlmann and Foroughi-Wehr 1989; Logue et al. 1993).

Since considerable attention has been given to immature embryos there are numerous reports describing genotypic effects and here only a few examples are mentioned for barley and wheat (e.g. Maddock et al. 1983; Hanzel et al. 1985; Goldstein and Kronstad 1986; Ahloowalia 1987; Lührs and Lörz 1987; Redway et al. 1990; Hess and Carman 1998; Viertel et al. 1998; Varshney and Altpeter 2001). Remarkable data have been accumulated revealing that tissue culture ability is under genetic control. However, knowledge about the genetic control mechanisms on in vitro response is still insufficient (Bregitzer and Campbell 2001; Tyankova and Zagorska 2001). Thus routine application of gene transfer to improve traits in a desired cultivar is response is still insufficient (Bregitzer and Campbell 2001; Tyankova and Zagorska 2001). Thus routine application of gene transfer to improve traits in a desired cultivar is strongly limited, since a high efficient and reproducible regeneration system is only available for a few so-called model genotypes. Whereas for generation of transgenic rice plants genotype dependency seems not to be so strongmovie genotypes have been transformed (Cheng et al. 2004), success in transformation of other cereals is closely related.

Table 1 Plant regeneration from tissue cultures of barley with special focus to the explant source.

<table>
<thead>
<tr>
<th>Explant source</th>
<th>Barley</th>
</tr>
</thead>
<tbody>
<tr>
<td>mesocotyl</td>
<td>Jelaska et al. 1984; Müller and Wegner 1989</td>
</tr>
<tr>
<td>immature inflorescences</td>
<td>Thomas and Scott 1985; Barro et al. 1999; Havracentová et al. 2001</td>
</tr>
<tr>
<td>roots</td>
<td>Chund and Sahrawat 2000</td>
</tr>
<tr>
<td>coleoptile</td>
<td>Sahrawat and Chund 2004</td>
</tr>
<tr>
<td>nodes</td>
<td>Sharma et al. 2007</td>
</tr>
</tbody>
</table>

*Anthers and microspores were not included since majority of the studies was focused on obtaining doubled haploids in breeding programs for practical application.
to the model genotypes, for example ‘Bobwhite’ and ‘Fielder’ for wheat or ‘A188’ and its hybrids for maize. The crucial importance of the genotype is convincingly demonstrated for barley. From nearly seventy studies on generation of transgenic plants being available in two thirds of all reports the model cultivars ‘Golden Promise’ for immature embryos and ‘Igri’ for microspores were used which worked for microprojectile bombardment as well as for Agrobacterium-mediated transformation (Table 2).

In the case of explants originating from ex vitro-grown plants, the in vitro response is considerably affected by the growth conditions of the donor plants. Abiotic and biotic stresses reduce embryogenic competence of immature embryos as well as microspores since such stresses may influence the endogenous hormone level and balance. Donor-plant environment effects were repeatedly reported (Carman et al. 1987; Lührs and Lörz 1987; Dahleen 1999) and a promoting influence of cooler growth conditions on tissue culture response was shown for microspores (Lyne et al. 1986; Atele et al. 1992) and immature embryos (Carman et al. 1987; Pickering 1989). A correlation between endogenous hormone content and embryogenic competence was first described by Carney and Wright (1988). Measurements of phytohormones in kernels of three varieties of maize differing in their embryogenic regenerations revealed a 20-fold higher content of indole-3-acetic acid (IAA) in the two poorly embryogenic genotypes in comparison to the highly reactive genotype ‘A188’. Results were confirmed by Hahn and Carman (1998). Embryogenic competence was associated with low IAA and abscisic acid (ABA) levels in seeds from 0 to 12 days post anthesis. Low growth temperatures delayed the rise in IAA and ABA thus increasing the embryogenic response. No detailed analyses were performed up to now on the influence of light intensity and especially spectral composition of light subjected to donor plants and in vitro response of explants. However, various studies have shown correlations between light and changes in auxin levels (reviewed in Tian and Reed 2001).

The composition of the culture medium is a further major parameter remarkably determining efficiency of cell and tissue culture systems independent of the explant used. A range of basal media have been repeatedly compared for the different cereal species and in most cases an MS-based medium (Murashige and Skoog 1962) was found superior to promote fast callus growth, development of embryogenic cultures and also regeneration capacity (Hanzel et al. 1968; Dale and Deambrogi 1979; Bayliss and Dunn 1979; Thomas and Scott 1985; Chang et al. 2003) as well as enhancing effects (Lazar et al. 1983; Rengel and Jelaska 1986; Carman et al. 1987; Kachhwaha and Kothari 1996; Cho et al. 1998; Jelaska et al. 1997). However, B5 medium (Gamborg et al. 1968) also gave reliable results (Dale and Deambrogi 1979; Kott and Kashba 1984; Goldstein and Kronstad 1986; Kachhwaha and Kothari 1996).

The content and balance of plant growth regulators largely determine the in vitro response. Numerous detailed and extensive studies were undertaken to analyse a broad spectrum of auxins and cytokinins in the development of embryogenic in vitro cultures and for maintenance of embryogenic callus formation (Table 2). In summary, 2,4-D is the most widely used growth regulator irrespective of the explant in all cereal species. Nevertheless, prolonged exposures of cell cultures to high concentrations of 2,4-D affects the frequency of regenerated plants and causes chromosomal abnormalities (Deambrogi and Dale 1980; Nabors et al. 1983; Ziauddin and Kashba 1990; Baillie et al. 1993). In contrast, Bregtizer et al. (1995) reported a positive correlation between 2,4-D and frequency from cultures derived from media containing 2,4-D. A significant increase in the frequency of plant regeneration caused by picloram was also confirmed for embryos and microspores of maize (Przetackiewicz et al. 2002). A few studies indicated that 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) is a better auxin source concerning callus proliferation (Lazar et al. 1983) and frequency of root and shoot forming cultures (Jelaska et al. 1984). Nevertheless, more than 7.83 μM (2.0 mg/l) of 2,4,5-T induced dramatic increases of sister chromatid exchanges in wheat callus (Murata 1989). Furthermore, an evaluation of the growth regulators 2,4-D and 2,4,5-T at five different concentrations in a range from 0.5 mg/l to 10.0 mg/l revealed a highly embryogenic callus formation but no regenerants were obtained from any of the 2,4,5-T treatments (Baililie et al. 1993).

With respect to the influence of cytokinins, inhibitory effects (Dale and Deambrogi 1979; Bayliss and Dunn 1979; Thomas and Scott 1985; Chang et al. 2003) as well as enhancing effects (Lazar et al. 1983; Rengel and Jelaska 1986; Carman et al. 1987; Kachhwaha and Kothari 1996; Cho et al. 1998; Jelaska et al. 1997) on establishment and maintenance of regenerable cultures were described.

Maturation of somatic embryos and plant regeneration was promoted after transfer of embryogenic callus to medium with reduced auxin concentration. Cytokinins can improve plant regeneration (Gosch-Wackerle et al. 1979; Powell et al. 1983; Lührs and Lörz 1987; Barro et al. 1999; Cho et al. 1998; He and Lazzeri 2001; Chang et al. 2003); but there are also reports that a medium without growth regulators was sufficient (Cheng and Smith 1975; Weigel and Hughes 1985; Ahloowalia 1987; Bartók and Sági 1990; Ruiz et al. 1992; Kachhwaha et al. 1997; Varshney and Alt-peter 2001).

Type and concentration of carbon source also determine efficiency of embryogenic callus formation. The carbohydrates serve not only as an energy supply, they also influence the osmotic value for reduction of germination of immature as well as mature embryos, for improvement of embryogenic callus formation and for maintenance of long-term embryogenic capacity was demonstrated for maize, wheat, rice and barley using sucrose, sorbitol, mannitol and maltose as well as salts and polyethylene glycol (Lu et al. 1983; Galiba and Yamada 1988; Brown et al. 1989; Rychicka et al. 1991; Shinohara et al. 2005). Moreover, an interaction of the carbohydrate and the type of auxin used was observed. In a detailed study the effects of four auxins and the effect of maltose versus sucrose were evaluated (Mendoza and Kaeppler 2002). The substitution of sucrose by maltose resulted in an increase of regeneration frequency from cultures derived from media containing 2,4-D and picloram whereas a decreased regeneration was found on media supplemented with maltose (Rauh et al. 2002).

Different organic supplements were investigated to improve the initiation of embryogenic cultures. Thus, the addition of 0.25 to 1.0 g/l casein hydrolysate (Lührs and Lörz 1987; Bregtizer 1992), 500 mg/l glutamine (Redway et al. 1990) or 0.2 mM L-tryptophan (Carman et al. 1987) were found to increased the induction of embryogenic cell cultures. Moreover, addition of 10 mg/l proline helped to maintain morphogenic competence of cell lines induced from immature wheat embryos for over two years (Kothari and
Table 2 Approaches used for transformation with regeneration1 of Hordeum vulgare L.

<table>
<thead>
<tr>
<th>Cultivar or source</th>
<th>Method of transformation</th>
<th>Genes4</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>bar, uidA, BYDVcp</td>
<td>Wan and Lemaux 1994</td>
</tr>
<tr>
<td>MS Igri</td>
<td>particle gun</td>
<td>bar, uidA</td>
<td>Jähne et al. 1994</td>
</tr>
<tr>
<td>IE Kymppi</td>
<td>particle gun</td>
<td>nptII</td>
<td>Ritala et al. 1994</td>
</tr>
<tr>
<td>PP Igri</td>
<td>PEG</td>
<td>nptII</td>
<td>Funatsuki et al. 1995</td>
</tr>
<tr>
<td>IE Golden Promise, Haruna Nijo, Disa</td>
<td>particle gun</td>
<td>hpt, uidA</td>
<td>Hagio et al. 1995</td>
</tr>
<tr>
<td>PP Kymppi</td>
<td>electroporation</td>
<td>nptII</td>
<td>Salmenkallio-Marttila et al. 1995</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>(1,3-1,4)-β-glucanase, bar, uidA</td>
<td>Jensen et al. 1996</td>
</tr>
<tr>
<td>IE Golden Promise, Femina, Salome, Corniche</td>
<td>particle gun</td>
<td>bar, uidA</td>
<td>Kropzek et al. 1996</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>bar, uidA</td>
<td>Tingay et al. 1997</td>
</tr>
<tr>
<td>IE, EC Golden Promise, Harrington, Galena</td>
<td>particle gun</td>
<td>bar, uidA</td>
<td>Cho et al. 1998</td>
</tr>
<tr>
<td>PP Golden Promise</td>
<td>PEG</td>
<td>nptII</td>
<td>Kihara et al. 1998</td>
</tr>
<tr>
<td>MS Igri</td>
<td>particle gun</td>
<td>VstI, bar</td>
<td>Leckband and Lorz 1998</td>
</tr>
<tr>
<td>IE Golden Promise, Baronesse</td>
<td>particle gun</td>
<td>gfp</td>
<td>Ahlandsberg et al. 1999</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>hycC</td>
<td>Brinich-Pederensen et al. 1999</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>wrch, bar</td>
<td>Cho et al. 1999a</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>bar, uidA</td>
<td>Cho et al. 1999b</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>codA, P450gene, bar</td>
<td>Kropzek et al. 1999</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>egfl, bar</td>
<td>Nutilia et al. 1999</td>
</tr>
<tr>
<td>SMC Harrington</td>
<td>particle gun</td>
<td>bar, uidA, nptII</td>
<td>Zhang et al. 1999</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>bar, uidA, luc</td>
<td>Harwood et al. 2000</td>
</tr>
<tr>
<td>PP Igri, Alexis</td>
<td>microinjection</td>
<td>uidA</td>
<td>Holm et al. 2000</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>(1,3-1,4)-β-glucanase, bar, hpt</td>
<td>Horvath et al. 2000</td>
</tr>
<tr>
<td>PP Igri</td>
<td>PEG</td>
<td>β-amylose, nptII</td>
<td>Kihara et al. 2000</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>Ac::TPass, Ds element</td>
<td>Kropzek et al. 2000</td>
</tr>
<tr>
<td>PP Clipper</td>
<td>PEG</td>
<td>nptII, uidA</td>
<td>Nobre et al. 2000</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>xynD, bar</td>
<td>Patel et al. 2000</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>BYDV-PAV hRNA, hpt</td>
<td>Wang et al. 2000</td>
</tr>
<tr>
<td>MS Igri</td>
<td>particle gun</td>
<td>uidA, gfp</td>
<td>Carlsson et al. 2001</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>LPI, AG, HPI, hpt</td>
<td>Matthews et al. 2001</td>
</tr>
<tr>
<td>IE, MS Golden Promise, Igri</td>
<td>particle gun</td>
<td>AcAl102, pat</td>
<td>Scholz et al. 2001</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>bar, uidA</td>
<td>Trifonova et al. 2001</td>
</tr>
<tr>
<td>EC Schoener</td>
<td>Agrobacterium</td>
<td>bar, uidA</td>
<td>Wang et al. 2001</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>gfp, bar</td>
<td>Cho et al. 2002</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>gfp, hpt</td>
<td>Fang et al. 2002</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>bar, luc</td>
<td>Harwood et al. 2002</td>
</tr>
<tr>
<td>EC Conlon</td>
<td>particle gun</td>
<td>bar, uidA</td>
<td>Manoharan and Dahle 2002</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>Amy-gfp-amy3’, hpt</td>
<td>Matthews et al. 2002</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>PI-MAR1, TBS-MAR, uidA</td>
<td>Petersen et al. 2002</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>HIVDR</td>
<td>Schüttmann et al. 2002</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>five human genes4</td>
<td>Stahl et al. 2002</td>
</tr>
<tr>
<td>EC Golden Promise</td>
<td>Agrobacterium</td>
<td>1033-asi::gfp, hpt</td>
<td>Furtado et al. 2003</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>Rpg1, bar</td>
<td>Horvath et al. 2003</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>HvGAMYB-gfp</td>
<td>Murray et al. 2003</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>akBA, bar</td>
<td>Tull et al. 2003</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>cel-hyb1, hpt</td>
<td>Xue et al. 2003</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>Gln-1D-1; γ zein, bar, uidA</td>
<td>Zhang et al. 2003</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>gfp, bar</td>
<td>Cho et al. 2004</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>wt-Rp1D, hpt</td>
<td>Ayliffe et al. 2004</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>Mla1 and Mla6 derivatives</td>
<td>Bieri et al. 2004</td>
</tr>
<tr>
<td>IE Golden Promise, Schoener, Chebec, Sloop</td>
<td>Agrobacterium</td>
<td>hpt, gfp, uidA</td>
<td>Murray et al. 2004</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>HORvucPh11:1</td>
<td>Rae et al. 2004</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>AtZIP1, hpt</td>
<td>Rameh et al. 2004</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>LDI, bar</td>
<td>Stahl et al. 2004</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>hpt, uidA, gfp</td>
<td>Coronado et al. 2005</td>
</tr>
<tr>
<td>EC Golden Promise</td>
<td>Agrobacterium</td>
<td>EM: gfp, hpt</td>
<td>Furtado and Henry 2005</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>rach-G13V, gfp, hpt</td>
<td>Schulte et al. 2005</td>
</tr>
<tr>
<td>MS Igri</td>
<td>Agrobacterium</td>
<td>Hv-eIF4E</td>
<td>Stein et al. 2005</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun, Agrobacterium</td>
<td>bar, luc, uidA</td>
<td>Travella et al. 2005</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>Lem2::gfp</td>
<td>Abebe et al. 2006</td>
</tr>
<tr>
<td>ovules</td>
<td>Golden Promise</td>
<td>Agrobacterium</td>
<td>Holme et al. 2006</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>FaewG, bar</td>
<td>Joensuu et al. 2006</td>
</tr>
<tr>
<td>MS Igri</td>
<td>Agrobacterium</td>
<td>bar, uidA, pat, hpt, gfp</td>
<td>Kumlehn et al. 2006</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>hpt, gfp</td>
<td>Lange et al. 2006</td>
</tr>
<tr>
<td>IE Conlon</td>
<td>particle gun</td>
<td>Tri101, bar, uidA</td>
<td>Manoharan et al. 2006</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>Jekyll, gfp</td>
<td>Radchuk et al. 2006</td>
</tr>
<tr>
<td>IE Salome</td>
<td>particle gun</td>
<td>LOX2:Hv1, bar</td>
<td>Sharma et al. 2006</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>UbiDs, bar, uidA</td>
<td>Ayliffe et al. 2007</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>Agrobacterium</td>
<td>bar, uidA, hpt, gfp</td>
<td>Shrawat et al. 2007</td>
</tr>
<tr>
<td>IE Conlon</td>
<td>particle gun</td>
<td>chi11, tlp, bar</td>
<td>Tobi et al. 2007</td>
</tr>
<tr>
<td>EC Dooseweinachsalbitori, Igri</td>
<td>particle gun</td>
<td>AgNDPK2</td>
<td>Um et al. 2007</td>
</tr>
<tr>
<td>IE Golden Promise</td>
<td>particle gun</td>
<td>vhh, bar, uidA</td>
<td>Wilkinson et al. 2007</td>
</tr>
</tbody>
</table>
Table 2 (Cont.)

| 5 | Only original papers were given in the Table. Reports dealing with further analyses of transgenic plants were not included. |
| 6 | To

Varshney 1998). Besides that, an optimisation in media nitrogen concentration due to an altered nitrate/ammonia ratio resulted in a significant improvement of regeneration (Naqvi et al. 2004; 2006) and 4-phenyl-1-butanol derivatives composited (Mok et al. 1982). Furthermore, activity of TDZ was demonstrated in the traditional cytokinin-dependent bioassays of soybean (Glycine max) callus growth, raphid (Raphanus sativus) cotyledon expansion and tobacco plantlet regeneration (Thomas and Katterman 1986). Based on these observations, the chemical was evaluated in many tissue culture study revealing that TDZ is a powerful regulator of various morphogenetic processes. By applying TDZ, a diverse set of reactions in tissue culture was described including callus induction, initiation of somatic embryos, adventitious shoot formation, and axillary shoot proliferation. Consequently, this highly active cytokinin has received more and more attention as summarized in a survey of published reports demonstrating a dramatic rise in the number of publications in the second half of the nineties (Murthy et al. 1998) which is constantly increasing. Improved regeneration protocols were developed in a number of dicot species (Lu 1993).

However, most impressive was the facilitation of efficient micropropagation of many recalcitrant woody species. According to Huetteman and Preece (1993) there is substantial evidence that TDZ is perhaps the most potent cytokinin for in vitro establishment and proliferation of difficult to propagate woody species. Besides that, TDZ showed a remarkable generative ability in leguminous plants also known to be recalcitrant (Lakshmanan and Taji 2000). In contrast, in vitro regeneration of many crops is limited to a few species especially in barley (Table 2) and wheat.

THE IMPACT OF TDZ IN CEREAL TISSUE CULTURE

The plant growth regulator N-phenyl-N'-1,2,3-thiadiazol-5-ylurea (thidiazuron, TDZ) originally registered as a cotton defoliant (Arndt et al. 1976) in 1976 by Schering AG (Berlin, Germany) was first described to have cytokinin activity in 1982. In comparison to the adenine-type cytokinins like benzylaminopurine (BAP), kinetin (Kin) or zeatin (Zea), this substance, a substituted phenylurea, does not contain the purine ring. TDZ promoted growth of cytokinin dependent callus cultures of lime bean (Phaseolus lunatus) and revealed the highest cytokinin activity output from nine thiadiazuron derivatives and four thiadiazole derivatives (Huang and Varshney 1998).

Table 2 (Cont.)

| 5 | Only original papers were given in the Table. Reports dealing with further analyses of transgenic plants were not included. |
| 6 | To
from immature embryos. The addition of TDZ as the sole growth regulator was superior to all other phytohormone variations concerning percentage of calli forming buds (Yu et al. 1999). Furthermore, the compound was evaluated in a detailed study including barley and wheat. Callus derived from immature embryos was analysed using the model genotypes ‘Golden Promise’ and ‘Bobwhite’ (Shan et al. 2000). TDZ concentrations ranging from 0.045-45.41 μM (0.01-2.2 mg/l) were examined. For both species, plant regeneration was observed at all levels of TDZ tested with the highest mean percent regeneration using 4.54 μM (1 mg/l) for barley and 0.91 μM (0.2 mg/l) for wheat. The optimum found was compared with other commonly used plant growth regulator formulations for barley and wheat, respectively. For both species, the TDZ-containing medium produced significantly higher mean percent regeneration than the often used hormone combinations comprising low 2,4-D and BAP or IAA and Kin (Shan et al. 2000). The promoting effect of TDZ on regeneration of wheat callus induced from immature as well as mature embryos in comparison to other cytokinins was confirmed for several Chinese spring wheat cultivars (Li et al. 2003). Very recently, a comparative analysis of morphogenic response of several explants including immature and mature embryos and immature inflorescences documented that TDZ was superior to the other cytokinins in numerous species (Lu 1993). A primary requirement for initiation of embryos from somatic cells is the application of exogenous auxins or an alteration of the cytokinin/auxin ratio. Nevertheless, TDZ alone has been observed to induce somatic embryogenesis thus substitute for the requirement of both phytohormone classes (Murthy et al. 1998). These findings suggested a role of TDZ in modulation of auxin metabolism. Evidences were provided by Murch and Saxena (2001) using radiolabelled versions of TDZ. Their results indicate that TDZ-exposure enhances the accumulation and translocation of the auxin IAA within the tissues.

Surprisingly, reports on stimulation of somatic embryogenesis by TDZ in the Poaceae are rare up to now. Rashid (2002) described a variety of experimental approaches to establish an in vitro regeneration system from mature caryopsis of kodo millet (Paspalum scrobiculatum). Callus initiated on medium supplemented with 4.52-22.62 μM (1-5 mg/l) 2,4-D turned embryogenic within 6 weeks and differentiated into somatic embryos. However, the combined use of 4.52 μM 2,4-D and 4.54-22.72 μM (1-5 mg/l) TDZ resulted in shoot bud differentiation on the callus raised from the basal part of the seedlings whereas somatic embryos differentiated to form somatic embryos regenerating into shoots. No somatic embryos were observed at a combination of 11.25-22.72 μM (2.5-5 mg/l) TDZ along with 4.52 μM 2,4-D (Rashid 2002).

Contrasting observations were provided for caryopsis of indica rice cv. ‘Jauimala’ which formed a slow-growing non-embryogenic callus on 2,4-D-containing medium. A short three day exposure to 2,4-D followed by subculture on medium with 10 μM (2.2 mg/l) TDZ resulted in formation of compact callus which proliferated, turned green and differentiated to form somatic embryos regenerating into shoots. Somatic embryogenesis was also observed applying equimolar amounts of BAP but with a lower frequency (Gairi and Rashid 2004). In contrast, Sharma et al. (2005b), analysing the effect of cytokinins on primary callus induction from mature barley embryos, observed that very low doses of BAP (0.001 mg/l) enhanced embryogenesis whereas TDZ did not.

Multiple bud and shoot formation

Although TDZ was characterized to have powerful cytokinin-like activity resulting in a significant improvement of shoot multiplication in diverse recalcitrant species, the compound was introduced into cereal tissue culture for that purpose with a remarkable delay. In attempts to develop in vitro systems for switchgrass (Panica virgatum), Gupta and Conger (1998) first described application of TDZ for differentiation of multiple shoots in the Poaceae. Using mature caryopsis as starting material, multiple shoot formation from the apical region and formation of a variable amount of callus at the mesocotyl part was observed due to application of different combinations of 2,4-D and TDZ. Replacement of TDZ with BAP failed to induce multiple shoots. Regeneration frequency and number of shoots per responding explant was significantly regulated by the ratio of 2,4-D and TDZ. The highest regeneration frequency as well as mean number of shoots per responding explant occurred on 4.52 μM (1 mg/l) 2,4-D and 18.2 μM (4 mg/l) TDZ in all the three genotypes evaluated. The results clearly showed that a rise in 2,4-D concentration decreased multiple shoot formation while an increase in TDZ concentration increased shoot formation. Interestingly, neither 2,4-D and TDZ alone initiated multiple shoots, and both substances were required (Gupta and Conger 1998). In contrast, analysing the effect of TDZ alone on mature caryopsis of kodo millet, Rashid (2002) observed a poor seedling development and a gradual degeneration of the main shoot followed by differentiation of multiple shoots from the base of the seedling. TDZ was favourable in a range of 4.54-22.72 μM (1-5 mg/l) reaching a maximum of 40% of the cultures which responded at

Somatic embryogenesis

Various investigations in a wide variety of plants, including herbaceous as well as woody species, documented the high efficiency of TDZ in stimulating somatic embryogenesis (Huetteman and Preece 1993; Murthy et al. 1998; Lakshmanan and Taji 2000). Comparative analysis of BAP, Kin, 2iP and TDZ in combination with 2,4-D showed that TDZ was superior to the other cytokinins in numerous species (Lu 1993).
The utility of TDZ to induce multiple shoot formation also in small grain cereals was analysed in a variety of experimental approaches to establish \textit{in vitro} regeneration protocols using (i) readily accessible explants and (ii) cultivars of high commercial value.

To overcome insufficient induction of embryogenic callus from mature embryos in barley, the explants were cultured directly on regeneration media containing low levels of 2,4-D in combination with BAP or TDZ (Ganeshan \textit{et al.} 2003). Direct shoot production without a callus interphase was obtained yielding 1.5-3.5 shoots per explant due to the addition of 8.9 \(\mu \text{M} \) (2 mg/l) BAP and 3-8 shoots per explant in case of 4.54 \(\mu \text{M} \) (1 mg/l) TDZ. However, application of TDZ as the sole growth regulator at a concentration of 4.5 \(\mu \text{M} \) resulted in a further increase reaching 7.5-12 shoots per explant. In parallel, leaf-bases/apical meristems were examined as explants and responded favourably concerning multiple shoot production caused by TDZ (Ganeshan \textit{et al.} 2003). The mature embryo system developed for barley was successfully reproduced for winter, spring and durum wheat as well as for oat and triticale. Direct multiple shoot production was reported yielding varying numbers of shoots per explant and requiring different optimal concentrations of TDZ depending on the species and the cultivar (Ganeshan \textit{et al.} 2006a).

Furthermore, application of TDZ provided the basis for establishment of \textit{in vitro} cultures containing small shoots and tight clusters of shoot buds with unexpanded leaves in a short period of 9-10 weeks, which were described for model and commercial barley cultivars (Sharma \textit{et al.} 2004). Using meristemoid shoot segments excised from germinated mature embryos thirty eight combinations and concentrations of four different auxins and two cytokinins were analysed revealing that the combined use of 8.28 \(\mu \text{M} \) (2 mg/l) picloram and 13.62 \(\mu \text{M} \) (3 mg/l) TDZ favoured highest formation of multiple shoots and additional buds already after 3 weeks. These responses were strongly determined by culture of mature embryos directly on the appropriate hormone formulation with the axis side down to avoid continued elongation of the main shoot. The meristemoid shoot segments were prepared after 5-7 days of culture and further cultured on the same medium. Three weeks later, many multiple shoots with a minimum number of 10 per explant and a maximum length of 2-3 cm were formed. Moreover, many new axillary buds were obtained. Shoots with a length of 2-3 cm were cut and the clumps recultured or divided into sectors and transferred onto medium containing 8.28 \(\mu \text{M} \) (2 mg/l) picloram and 11.35 \(\mu \text{M} \) (2.5 mg/l) TDZ. Well-growing shoots with a maximum length of 2-3 cm in length along with many shoot buds were found after 3 weeks. The expanded leaves were removed again and clumps with remaining small shoots, less than 1 cm in length, and shoot buds (clusters of the meristematic domes with unexpanded leaves) were subdivided again and cultured on the same medium. Elongation of the main shoot was not observed. Enrichment of buds was achieved due to culture of mature embryos directly on the appropriate hormone formulation with the axis side down to avoid continued elongation of the main shoot. The meristemoid shoot segments forming multiple shoots as well as average shoot number per responding explant ranging between 28 and 33 shoots after 10-12 weeks. Almost no differences were found between both cultivars thus indicating a very low genotype dependency when meristemoid shoot segments were used as an alternative explant source and cultures of multiple shoot clumps due to application of TDZ and picloram (Sharma \textit{et al.} 2005c). Interestingly, cv. ‘Dekan’ was also included in a genotype screening of 38 European winter wheats using immature embryos (Varshney and Alpeter 2001) revealing a poor response ranking at position 35 for regenerated shoots per embryo, thus emphasizing the advantage of the method provided by Sharma \textit{et al.} (2004, 2005c). Surprisingly, the morphogenic potential of these cultures is maintained for over 4 years now by regular subcultures for barley as well for wheat (Fig. 1A-D).

This simple and highly efficient short-term \textit{in vitro} regeneration system was also suitable for wheat. Two commercially used European winter wheat cultivars ‘Dekan’ and ‘Drifter’ gave a high response concerning percentage of meristemoid shoot segments forming multiple shoots as well as average shoot number per responding explant ranging between 28 and 33 shoots after 10-12 weeks. Almost no differences were found between both cultivars thus indicating a very low genotype dependency when meristemoid shoot segments were used as an alternative explant source and cultures of multiple shoot clumps due to application of TDZ and picloram (Sharma \textit{et al.} 2005c). Interestingly, cv. ‘Dekan’ was also included in a genotype screening of 38 European winter wheats using immature embryos (Varshney and Alpeter 2001) revealing a poor response ranking at position 35 for regenerated shoots per embryo, thus emphasizing the advantage of the method provided by Sharma \textit{et al.} (2004, 2005c). Surprisingly, the morphogenic potential of these cultures is maintained for over 4 years now by regular subcultures for barley as well for wheat (Fig. 1A-D).

The feasibility of this high potent culture system was studied for nodes from barley and wheat (Sharma \textit{et al.} 2007). The combination of 8.28 \(\mu \text{M} \) (2.0 mg/l) picloram and 4.54-22.72 \(\mu \text{M} \) (1.5-8.9 mg/l) TDZ favoured induction of clumps of multiple shoots and buds with or without callus formation from nodal explants excised from \textit{in vitro} grown plants. Within 8-10 weeks upon further subcultures, the proliferation into little callus with rapidly and continuously forming adventitious buds containing clusters of meristemoids, termed meristemoid bulk tissue was obtained. The proliferation of shoot buds can be maintained for long-term at the meristemoid stage without promoting of shoots (inhib-
iting shoot differentiation) on media containing higher levels of picloram (8.28-12.42 μM) and TDZ (9.08-13.62 μM). Shoot development can be achieved by lowering the levels (0.45 μM) of both the hormones promoting shoot differentiation. Highly morphogenic cultures using nodal shoot segments from multiple model and elite cultivars in barley and wheat were established with a frequency ranging between 37% and 82% (Sharma et al. 2007). The organogenic response was raised from excised tissue and ex vitro grown plants repeatedly described for dicots for several decades was rarely demonstrated for cereals (Dale et al. 1981). This system further extends the kind of tissues suitable for in vitro culture and plant regeneration in cereals.

In all the studies describing multiple shoot and bud formation in cereals and grasses due to involvement of TDZ the compound was effective in a range of 4.54-22.72 μM (1-5 mg/l), which is relatively high in comparison to 10 nM-3 μM (0.0022 mg/l-0.66 mg/l) which is generally used for dicots (Lu 1993). In many recalcitrant woody species concentrations lower than 1 μM (0.22 mg/l) were shown to induce greater axillary proliferation than the other cytokinins (Huetteman and Preece 1993) suggesting different requirements for hormones for dicots and monocots with respect to their morphogenic response.

Mode of multiple shoot clump formation

The high morphogenic potential of shoot meristems was already documented in earlier reports. Using extremely immature shoot meristems from wheat, cultures capable of plant regeneration were successfully initiated. These cultures were kept in a proliferating budding state in the presence of 9.05 μM (2 mg/l) 2,4-D, whereas the removal of 2,4-D resulted in an outgrowth of shoots and roots (Wernicke and Milkovits 1986). In attempts to identify alternative and highly regenerative explant sources in comparison to the most commonly used immature embryos, the differentiation of multiple shoot clumps from shoot tips caused by the cytokinin BAP was first described for maize (Zhong et al. 1992). In the following years protocols for establishing shoot meristematic cultures have been successfully developed for oat (Zhang et al. 1996), barley (Zhang et al. 1998), sorghum (Zhong et al. 1998), pearl millet (Devi et al. 2000), finger millet (Eleusine coracana) (Kumar et al. 2001) and wheat (Ahmad et al. 2002). In all these reports excluding finger millet, shoot apices from aseptically germinated one week old seedlings were cultured on media with 2.26 μM (0.5 mg/l) 2,4-D and 8.9-17.8 μM (2-4 mg/l) BAP and differentiated multiple shoots with a high frequency. For finger millet more effective BAP concentrations (0.5 mg/l) and ex vitro subcultures resulted in the formation of multiple shoot clumps differentiating axillary and adventitious buds, which was clearly documented by scanning electron microscopy (Zhong et al. 1992; Zhang et al. 1996; Zhong et al. 1998).

Early morphological changes in development of meristems exposed to TDZ were studied in detail by histological analyses in combination with scanning electron microscopy (Gupta and Conger 1998). For wheat, direct multiple shoot induction from mature embryos in response to TDZ was also witnessed by histological analyses. Shoot formation obtained originate directly from the primary explant with no evidence of primary callus induction (Ganeshan et al. 2006a). Moreover, the tight clusters of multiple buds developed after 3-4 weeks of first subculture of nodes on TDZ-containing medium were characterized by reduced levels of auxin and primoros differentiation. Lateral sections revealed several meristemoids developing on the surface of proliferating nodular compact meristematic bulk tissue (Sharma et al. 2007).

The pattern of development of multiple shoot clumps caused by TDZ occurred in a manner very similar to that described for BAP-induced cultures. However, the time frame needed was shortened by TDZ. The data presented for application of BAP to establish meristematic shoot cultures outlined that clumps with adventitious shoot formation were obtained 12 weeks after culture initiation for maize, oat, sorghum, pearl millet and wheat (Zhong et al. 1992; Zhang et al. 1996; Zhong et al. 1998; Devi et al. 2000; Ahmad et al. 2002). For barley, the initial development of shoot meristematic cultures using BAP was described to be slow compared to the development of standard embryogenic callus derived from immature embryos but no exact time schedule was given (Zhong et al. 1999; Bregitzer et al. 2002). For genetic transformation 9-months-old shoot meristematic tissue was used which was induced on an improved medium (Zhang et al. 1999). However, the use of TDZ resulted in a shortage of time necessary to establish this type of highly differentiating cultures in commercial cultivars of barley since only eight weeks were needed (Sharma et al. 2004).

For switchgrass and wheat, multiple shoot clumps were observed as early as three to four weeks after initiation (Gupta and Conger 1998; Sharma et al. 2005c).

Biochemical effects of TDZ exposure

Despite many investigations characterizing TDZ as a potent regulator of plant growth and development which induces cytokinin and auxin-type responses in tissue culture, the mode of action of the substance remains unclear. It is assumed that the high activity of TDZ is related to its stability in tissue culture. Using radio-labelled TDZ, the metabolism of the compound was analysed in callus of lima bean revealing that TDZ was not metabolized within the first 48 hours of culture and the primary metabolites were shown to be glucoside residues (Mok and Mok 1985). Consequently, the substance is not degraded by cytokinin oxidase (Mok et al. 1987). Moreover, partially purified cytokinin oxidase from wheat has been shown to be strongly inhibited by bifenylyurea (Galuszka et al. 2000). In addition, experiments were conducted using hypocotyl tissue of geranium (Pelargonium × hortorum) to determine the effect of TDZ exposure on auxin transport. The results demonstrate that TDZ functions as an intact molecule in both a free and conjugated or sequestered form. Furthermore, the functions of auxin accumulation and transport are maintained and enhanced in the tissues exposed to TDZ (Murch and Saxena 2001). Very recently, evidence was provided that the levels of IAA and endogenous indoleamines like melatonin and serotonin were enhanced in tissues showing regeneration caused by TDZ (Jones et al. 2007). Besides that, a decrease in TDZ-stimulated regeneration was found after application of an auxin-transport inhibitor and an auxin action inhibitor, respectively but concentration of melatonin and serotonin increased. Inhibitors of calcium and sodium transport also reduced the TDZ-induced regeneration. The authors suggested the TDZ-induced morphogenesis as a metabolic cascade, which includes an initial signal, accumulation and transport of endogenous plant signals and a system of secondary messengers (Jones et al. 2007).
Application of TDZ-based protocols

Various reports over the last decade have clearly evidenced that TDZ reveals activities exceeding that of other cytokinins also for the cereals and grasses. Its regulatory role of in vitro morphogenesis comprises shoot induction from callus as well as initiation and development of shoot meristematic clumps. The substance is highly efficient concerning enhancement of shoot formation from dormant shoot callus with respect to the (i) percentage of responding explants, (ii) the number of shoots per explant and (iii) the faster induction of shoots relative to previously published protocols. These features are of remarkable importance for application of biotechnological approaches for crop improvement. Protocols enabling a high, fast and reproducible regeneration of plants are urgently needed for genetic engineering since the stress caused by transformation independent of the method used as well as the stress caused by selection independent of the selectable agent applied dramatically reduce efficiency of transformation. Despite the vast amount of literature screening genotypes, medium composition and explants as presented for barley as an example (Table 1), successful transformation is limited to very few genotypes and the majority of all reports is concentrated to one or a few model genotypes (Table 1).

The results obtained by Shan et al. (2000) documented the superiority of the compound in comparison to commonly applied growth regulators since model genotypes in barley and wheat were used and a significant improvement of regeneration frequency was demonstrated. Besides that, Chauhan et al. (2007) very recently described the development of an efficient genotype independent in vitro regeneration system by manipulating the concentration and time of exposure to TDZ.

The suitability of the shoot meristematic cultures characterized by proliferation of tightly packed clusters of continuously multiplying axillary and adventitious buds has been shown to allow genetic transformation in maize, rice, barley, oat, sorghum and millet (for review see Sticklen and Oraby 2005). This easy-to-handle system can be established based on a low auxin/high cytokinin ratio using dry mature seeds being available without limit at any time. Furthermore, the protocols published document a low genotype dependency (Zhong et al. 1992; Zhang et al. 1996; Zhong et al. 1998; Ahmad et al. 2002; Ganeshan et al. 2003; Sharma et al. 2004, 2005c; Ganeshan et al. 2006a) thus allowing the application of gene transfer methods to varieties of agronomical value. With respect to the growth regulators used, the combination of 2,4-D and BAP first was described to be summarized by Wernicke and Milkovits (1986) who first demonstrated in vitro proliferation of axillary shoot meristems (Zhang et al. 1998) and over two years for maize (Sticklen and Oraby 2005). For wheat, long-term maintenance of morphogenic capacity of multiple shoot clumps was reported for more than 12 months due to the combined use of TDZ and picloram (Sharma et al. 2005c). Moreover, these cultures continue to multiply and regenerate normal green plants also after four years (data not published). In contrast, Ahmad and Kasha (1990) and Baillie et al. (1993) who demonstrated high morphogenetic competence of shoot meristems in the presence of 2,4-D, also followed proliferation of the cultures for a year. However, they described a remarkable decrease in the percentage of cultures able to regenerate shoots, an overgrowth by root-type tissues and an increase in the frequency of albino shoots. No data concerning longevity were given by Ahmad et al. (2002)

The establishment of highly differentiating clusters containing multiple axillary and adventitious buds originated from shoot apical meristems or meristematic shoot clumps provided an alternative regeneration system with low genotype dependency. The multiple shoot clumps can be maintained in vitro by regularly subcultures for long periods. The multiplication efficiency of these cultures was observed to remain consistent and high based on the use of BAP and 2,4-D for more than 18 months in the case of sorghum (Zhong et al. 1998) and over two years for maize (Sticklen and Oraby 2005). For wheat, long-term maintenance of morphogenic capacity of multiple shoot clumps was reported for more than 12 months due to the combined use of TDZ and picloram (Sharma et al. 2005c). Moreover, these cultures continue to multiply and regenerate normal green plants also after four years (data not published). In contrast, Ahmad and Kasha (1990) and Baillie et al. (1993) who demonstrated high morphogenetic competence of shoot meristems in the presence of 2,4-D, also followed proliferation of the cultures for a year. However, they described a remarkable decrease in the percentage of cultures able to regenerate shoots, an overgrowth by root-type tissues and an increase in the frequency of albino shoots. No data concerning longevity were given by Ahmad et al. (2002).
Problems associated with the use of TDZ

Despite the high cytokinin-like activity of TDZ for dicots, some analyses have shown disturbance of normal plant development associated with the use of that growth regulator. Such undesirable changes observed are hyperhydricity of the recovered shoots, abnormal leaf morphology like fasciated shoots, short and compact shoots and problems in elongation and rooting of the regenerated shoots as reviewed in Lu (1993) and Huetteman and Preece (1993).

In most of the studies evaluating TDZ for improvement of plant regeneration in the cereals and grasses, normal plant development without any visible abnormalities was described (Gallo-Meagher et al. 2000; Ganeshan et al. 2003; Sharma et al. 2004, 2005c; Ganeshan et al. 2006a; Chauhan et al. 2007; Sharma et al. 2007). However, in a few reports detrimental side effects of TDZ were mentioned for cereals. For wheat, Li et al. (2003) reported that higher concentrations of TDZ tended to suppress root formation from shoots. In contrast, Shan et al. (2000) found no negative effect of TDZ on calli or regenerated plantlets neither from wheat nor from barley excluding short browning and necrosis of calli in barley on TDZ-containing regeneration medium. Besides that, no differences were obtained concerning plant morphology when plants regenerated from TDZ and those from other growth regulator combinations (Shan et al. 2000). Using TDZ for regeneration from embryogenic callus derived from young leaves of sugarcane, the substance produced the largest number of shoots. Nevertheless, it had the lowest percentage of shoots that were more than 1 cm in length (Chengalrayan and Gallo-Meagher 2001) confirming observations on reduced shoot length in dicots (Lu 1993; Huetteman and Preece 1993). Furthermore, an investigation aimed at improvement of plant regeneration from mature embryo-derived callus by TDZ in several rice varieties resulted in the regeneration of some albino shoots in every variety tested (Azria and Bhalla 2000). Altogether, the difficulties listed above were observed in cases in which plant regeneration was induced from callus implying the use of dedifferentiated tissues. In all the studies where plant development occurred from multiple bud and shoot clumps induced by TDZ, no problems with respect to shoot elongation, rooting, acclimatization, transfer into soil and seed set were described (Gupta and Conger 1998; Rashid 2002; Ganeshan et al. 2003; Sharma et al. 2004, 2005c, 2007). Moreover, plants regenerated from four-year-old cultures from elite lines in barley and wheat (Sharma et al. 2004, 2005c) continuously subcultured exhibit normal root development (Fig. 1B). These observations emphasize the use of shoot meristem cultures as suggested by Bregitzer et al. (2002) and Sticklen and Oraby (2005).

Data on somaclonal variation induced by TDZ are not available for the cereals and grasses up to now. Moreover, a putative mutagenic influence of TDZ on long-term cultures remains to be analysed.

CONCLUDING REMARKS

Considerable progress has been made concerning in vitro regeneration of cereals and grasses during the last decades screening genotypes worldwide, various explant sources and numerous media constituents. In spite of these advances, the number of highly responsive genotypes suitable for genetic transformation experiments is still limited due to extensive genotypic variation for tissue culture performance. Interestingly, much data has accumulated during the last decade indicating that TDZ shows powerful cytokinin-like activity also for cereals and grasses in addition to the earlier reported high activity for recalcitrant dicots (Lu 1983; Murthy et al. 1998; Lakshmanan and Tai 2000). The results summarized above are very exciting since they offer the possibility to extend the range of genotypes amenable to biotechnological approaches to elite cultivars, which is highly relevant for the future improvement of these major crops.

TDZ was found to be superior in promoting morphogenic response from (i) callus induced from various explants, (ii) from a wide range of species and cultivars, (iii) reduces time necessary for establishment of regenerating cultures, (iv) enhances frequency of responding explants as well as the (v) number of shoots per explant. The substance can be used in cases, where other cytokinins are not or only less effective. Nevertheless, also for that high potent plant growth regulator conditions have to be optimised concerning combination with other hormones since several reports indicate highest organogenic capability, if TDZ is applied as the sole growth regulator while other studies describe the need to couple with a certain auxin. Moreover, despite the high efficacy of TDZ, also for that growth regulator genotype × medium interaction were reported thus an optimisation of concentration and time exposed to the substance is necessary. However, there are still some problems and uncertainties which have to be resolved. Thus, little is known so far about genetic stability and somaclonal variation especially after long-term exposure as well as agronomic performance of regenerated lines and further research is needed.

Finally, fifty years after the observation made by Skoog and Miller (1957) on manipulation of shoot and root development from callus implying the use of dedifferentiated tissues which have to be resolved. Thus, little is known so far about genetic stability and somaclonal variation especially after long-term exposure as well as agronomic performance of regenerated lines and further research is needed.

ACKNOWLEDGEMENTS

Thanks to many colleagues worldwide who helped me with literature and further comments. I would like to thank Juliane Siebert for excellent technical assistance.

REFERENCES

Bai Y, Qu R (2001) Factors influencing tissue culture responses of mature seeds and immature embryos in turf-type tall fescue. Plant Breeding 120, 239–242

Barro F, Barcelo P, Lazziere PA, Shevry PR, Ballesteros J, Martin A (2003) Functional properties of floors from field grown triticum wheat lines express the HWM glutenin subunit 1Ax1 and 1Dx5 genes. *Molecular Breeding* 12, 223-229

Bhojwani SS, Hayward C (1977) Some observations and comments on tissue culture of wheat. *Zeitschrift für Pflanzenphysiologie* 85, 341-347

Chen C-C (1978) Effect of sucrose concentration on plant production in anther culture of rice. *Crop Science* 18, 905-906

Chin JC, Scott KJ (1977a) The isolation of a high rooting cereal callus line by recurrent selection with 2,4-D. *Zeitschrift für Pflanzenphysiologie* 85, 117-124

Dahleen LS (1995) Improved plant regeneration from barley callus cultures by increased copper levels. *Plant Cell, Tissue and Organ Culture* 43, 267-269

Dahleen LS, Bregitzer P (1999) Screening new midwestern US. cultivars and advanced breeding lines for green plant regeneration from tissue culture. *Barley Genetic Newsletter* 29, 22-29

Deambrogio E, Dale PJ (1980) Effect of 2,4-D on the frequency of regenerated plants in barley and on genetic variability between them. *Cereal Research Communications* 8, 417-423

He GY, Lazziere PA (2001) Improvement of somatic embryogenesis and plant regeneration from durum wheat (Triticum turgidum var. durum Desf.) scutellum and inflorescence cultures. Euphytica 119, 379-367

Kachhwaha S, Kohrtal SI (1994) Regeneration in barley through micro-

Rikihisi K, Matsuura T, Maekawa M, Noda K, Takeda K (2003) Barley lines showing prominent high 2,4-D shoot regeneration in cultures derived from immature embryos. Plant Breeding 122, 105-111

Sharma VK, Hänisch R, Mendel RR, Schulze J (2005a) Seasonal effect on tissue culture response and plant regeneration frequency from non-bombarded and embryo-derived scutella of barley (Hordeum vulgare L.) harvested from controlled environment. Plant Cell, Tissue and Organ Culture 81, 9-26

Shevry PR, Jones HD (2005) Transgenic wheat: where do we stand after the first 12 years? Annuals of Applied Biology 147, 1-14

Shrawat AK, Becker D, Lütitchke S, Lörz H (2003) Genetic improvement of

TZX in the improvements of cereal tissue culture. Jutta Schulze