Ethnopharmacology of *Mangifera indica* L. Bark and Pharmacological Studies of its Main C-Glucosylxanthone, Mangiferin

Nathalie Wauthoz\(^1\)\(^*\) • Aliou Balde\(^2\) • Elhadj Saïdou Balde\(^3\) • Marc Van Damme\(^3\) • Pierre Duez\(^4\)

\(^1\) Laboratory of Pharmaceutics and Biopharmaceutics, Institute of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 207, B-1050 Brussels, Belgium
\(^2\) Centre de Recherche et de Valorisation des Plantes médicinales de Dubréka, BP 6411 Conakry, Guinea
\(^3\) Laboratory of Toxicology, Institute of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 205-01, B-1050 Brussels, Belgium
\(^4\) Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Institute of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 205-9, B-1050 Brussels, Belgium

*Corresponding author: * Nathalie.Wauthoz@gmail.com

ABSTRACT

This review details the vernacular names, origin, distribution, taxonomy and variety of *Mangifera indica* L. (Anacardiaceae), a medicinal plant traditionally used in tropical regions. Mangiferin, a major C-glucosylxanthone from *M. indica* stem bark, leaves, heartwood, roots and fruits occurs widely among different angiosperm families and ferns. The reported pharmacological activities of mangiferin include antioxidant, radioprotective, antitumor, immunomodulatory, anti-allergic, anti-inflammatory, antidiabetic, lipolytic, antibone resorption, monoamine oxidase inhibiting, antiviral, antifungal antibacterial and antiparasitic properties, which may support the numerous traditional uses of the plant.

Keywords: cultivar, flavonoid, mango, medicinal plant constituent, phytochemistry

CONTENTS

INTRODUCTION.. 112
MANGIFERA INDICA L... 113
Vernacular names... 113
Origin and distribution ... 113
Taxonomy and variety .. 113
Ethnopharmacology of *M. indica* L. bark ... 114
Phytochemistry .. 114
MANGIFERIN.. 114
PHARMACOLOGICAL ACTIVITIES OF MANGIFERIN... 115
Antioxidant activity ... 115
Radioprotective effect .. 115
Immunomodulatory effect ... 116
Anti-allergic activity .. 116
Anti-inflammatory activity .. 116
Antitumor activity .. 116
Anti-diabetic activity ... 116
Effect on type 1 diabetes ... 117
Effect on type 2 diabetes ... 117
Lipolytic ... 117
Antibone resorption .. 117
Antimicrobial ... 117
Antiviral activity .. 117
Antibacterial and antifungal activities ... 117
Antiparasitic activity .. 117
Monoamine oxidase-inhibition activity .. 117
CONCLUSION.. 117
ACKNOWLEDGEMENTS ... 118
REFERENCES... 118

INTRODUCTION

Ethnopharmacology has contributed to drug discovery since the 19th century (Heinrich and Gibbons 2001), but has had a relatively short history as a specifically designated field of research. The term was first used in 1967 and is nowadays much more broadly defined as the observation, identification, description and experimental investigation of the in-
The present review details the vernacular names, origin, distribution, taxonomy and variety of *Mangifera indica* L., a medicinal plant widely distributed in tropical regions and used by indigenous cultures for millennia to cure a range of diseases. A long and sustained use of *M. indica*, based on a “trial and error” methodology, has selected the traditional uses of this medicinal plant. The xanthone C-glucoside mangiferin, the major component of *M. indica* bark aqueous extract, could be responsible for a lot of the reported activities, as discussed in this review.

MANGIFERA INDICA L.

Mangifera indica L. is a large evergreen tree, long living, 10-45 m high with a strong trunk and heavy crown (Fig. 1). Native from tropical Asia, it has been introduced wherever the climate is sufficiently warm and damp and is now completely naturalized in many parts of tropics and subtropics (Ross 1999).

Vernacular names

<table>
<thead>
<tr>
<th>Country</th>
<th>Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Manga, Mango, Mangepa, Skin Mango</td>
</tr>
<tr>
<td>Canary Islands</td>
<td>Mango, China: An Lo Kuo, Manggou, Mango</td>
</tr>
<tr>
<td>Curaçao</td>
<td>Mango; Egypt: Mango; Fiji: Aam, Mango</td>
</tr>
<tr>
<td>France</td>
<td>Abrecotier de St. Domingue, Ambo, Loubi, Freycinet, Manguier de Saint Michel; Germany: Mango</td>
</tr>
<tr>
<td>Guam</td>
<td>Chamorro, Mangga, Mango; Guatemala: Mango</td>
</tr>
<tr>
<td>Guyana</td>
<td>Mango; Haiti: Mango; India: Aam, Alfonso mango, Alipiya, Am, Amm, Amra, Anva, Asm, Bhramavrapyia, Bo-am, Kamaphala, Kamayudha, Kamavallabha, Kokilavasa, Kires, Kokilandana, Maamidi, Mam-maram, Mango, Mango tree, Mangofruit, Mave, Oegkoti-tong, Pitavallabha</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Pauh; Italy: Mango; Ivory Coast: Mango; Japan: マンゴ; Mexico: Mango; Nepal: Aamp, Aamp, Amp, Mango; Nicaragua: Mango, Mango dusa, Mangu, Mankro; Oman: Amba; Pakistan: Am, Mango; Peru: Mango; Puerto Rico: Mango; Rarotonga: Vfi papaa; Rodrigues Islands: Mangue, Senegal: Bumango; Sudan: Mango; Tanzania: Embe, Mango, Mwembe; Tonga: Mango; United States: Bowen mango; Venezuela: Mango (Kirtikar and Basu 1993; Ross 1999).</td>
</tr>
</tbody>
</table>

Origin and distribution

Native from Southern Asia, especially Eastern India, Burma and the Andaman Islands, *M. indica* has been cultivated, praised and even revered in its homeland since ancient times. Buddhist monks are believed to have taken the plant on voyages to Malaya and Eastern Asia in the 4th and 5th Centuries BC. Persians are said to have taken mangoes to East Africa around the 10th Century AD. The fruit was grown in the East Indies before the earliest visits of the Portuguese who apparently introduced it to West Africa and Brazil in the early 16th Century. *M. indica* was then carried to the West Indies, being first planted in Barbados about 1742 and later in the Dominican Republic; it reached Jamaica in about 1782 and, early in the 19th Century, reached Mexico from the Philippines and the West Indies (Morton 1987). In this day and age, *M. indica* resides in most tropical biotopes in India, Southeast Asia, Malaysia, Himalayan regions, Sri Lanka, Africa, America and Australia (Calabrese 1993; Kirtika and Basu 1993; Sahni 1998).

Taxonomy and variety

The genus *Mangifera* belongs to the order Sapindales, Anacardiaceae family (Table 1). Hundreds of *M. indica* cultivars are distributed throughout the world. The highest diversity occurs in Malaysia, particularly in peninsular Malaysia, Borneo and Sumatra, representing the heart of the distribution range of the genus (Bompard and Schnell 1997). Asia and India present over 500 classified varieties of which 69 are mostly restricted to tropical regions. *M. indica* is one of the most widespread fruit trees in Western Africa, where 4 categories of mango varieties can be distinguished: (i) varieties of local or polyembryonic mangoes (mangots and Number One); (ii) first monoembryonic varieties propagated by grafting (Amélée, Julie, Sabot, Dijbelor

Table 1 Taxonomy of Mangifera indica Linn.

<table>
<thead>
<tr>
<th>Division</th>
<th>Magnoliophyta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>SubClass</td>
<td>Rosidae</td>
</tr>
<tr>
<td>Order</td>
<td>Sapindales</td>
</tr>
<tr>
<td>Family</td>
<td>Anacardiaceae</td>
</tr>
<tr>
<td>Genus</td>
<td>Mangifera</td>
</tr>
<tr>
<td>Species</td>
<td>indica</td>
</tr>
</tbody>
</table>
and Cuisse Madame); (iii) the Floridian varieties, also monoembyronic and propagated by grafting, introduced later and used either for export (Kent, Keitt, Palmer, Zill, Valencia, Smith, Irwin and Haden), or (iv) for the regional markets (Brooks, David-Haden, Miami Late, Springfels, Beverly, Eldon and Ruby) (Rey et al. 2004).

Ethanopharmacology of *M. indica* L. bark

In all the regions of *M. indica* distribution, one of main organs used is the bark; its medicinal uses throughout the world are reported in Table 2. Based on ethanopharmacological knowledge, a standardized aqueous extract of *M. indica* L. stem bark with antioxidant, anti-inflammatory and immunomodulatory properties has recently been developed in Cuba. This extract is proposed as both a nutritional and immunomodulatory treatment to prevent disease progress or increase the patient’s quality of life in gastric and dermatological disorders, AIDS, cancer and asthma (Nuñez-Selles 2005).

Fig. 2 The molecular structure of mangiferin described in Muruganandan et al. (2002).

The chemical constituents of the different organs of *M. indica* L. are reviewed in Ross (1999) and Scartezzini and Speroni (2000). The bark is reported to contain protocatechuic acid, catechin, mangiferin, alanine, glycine, γ-amino-butyric acid, kinic acid, shikimic acid and the tetracyclic triterpenoids cycloart-24-en-3β,26-diol, 3-ketodammar-24(E)-en-20S,26-diol, C-24 epimers of cycloart-25 en-3β,24,27-triol and cycloartan-3β,24,27-triol (Scartezzini and Speroni 2000).

Table 2 Medicinal uses of *Mangifera indica* L. bark in the world.

<table>
<thead>
<tr>
<th>Country</th>
<th>Part(s) used</th>
<th>Preparation</th>
<th>Administration</th>
<th>Medicinal use(s)</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Republic of Congo</td>
<td>DB</td>
<td>P</td>
<td>ER</td>
<td>Diarrhea</td>
<td>Ross 1999</td>
</tr>
<tr>
<td>Republic of Egypt</td>
<td>SiB</td>
<td>S</td>
<td>ER</td>
<td>Cough, fever</td>
<td>Ake Assi et al. 1978</td>
</tr>
<tr>
<td>Benin</td>
<td>D*</td>
<td>O</td>
<td></td>
<td>Anemia, hypotension</td>
<td>Adjanohoun et al. 1986</td>
</tr>
<tr>
<td>Brazil</td>
<td>SiB</td>
<td>D</td>
<td>NR</td>
<td>Itch</td>
<td>Schemda and Rojas 1992</td>
</tr>
<tr>
<td>Caribbean</td>
<td>SiB</td>
<td>I</td>
<td>NR</td>
<td>Diuretic, rheumatism</td>
<td>Grenard et al. 2004</td>
</tr>
<tr>
<td>Congo</td>
<td>B</td>
<td>D</td>
<td>NR</td>
<td>Cancer, sore, gingivitis, diarrhea, dysentery</td>
<td>Boullard 2001</td>
</tr>
<tr>
<td>Cuba</td>
<td>SiB</td>
<td>W</td>
<td>NR</td>
<td>Cancer, diabetes, asthma, infertility, lupus, prostatitis, prostatic hyperplasia, gastric disorders, arthralgies, mouth sores, tooth pain</td>
<td>Nuñez-Selles 2005</td>
</tr>
<tr>
<td>Fiji</td>
<td>DB</td>
<td>I</td>
<td>O</td>
<td>Syphilis</td>
<td>Ross 1999</td>
</tr>
<tr>
<td>Gabon</td>
<td>B</td>
<td>NR</td>
<td>NR</td>
<td>Emetic</td>
<td>Boullard 2001</td>
</tr>
<tr>
<td>Guyana</td>
<td>B</td>
<td>NR</td>
<td>NR</td>
<td>Diarrhea, gastric disorders</td>
<td>Grenard et al. 1987</td>
</tr>
<tr>
<td>Haiti</td>
<td>DB</td>
<td>I</td>
<td>O</td>
<td>Hepatic disorders</td>
<td>Weniger et al. 1986</td>
</tr>
<tr>
<td>Canary Islands</td>
<td>DB</td>
<td>I</td>
<td>O</td>
<td>Diarrhea</td>
<td>Ross 1999</td>
</tr>
<tr>
<td>India</td>
<td>DB</td>
<td>I</td>
<td>O</td>
<td>Leukorrhea, bleeding hemorrhoids, lung hemorrhage</td>
<td>Deka et al. 1983</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>NR</td>
<td>Diabetes</td>
<td>Alam et al. 1990</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>I</td>
<td>NR</td>
<td>Astringent, tonic</td>
<td>Maheshwari et al. 1975</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>I</td>
<td>NR</td>
<td>Menorrhagia</td>
<td>Chopra 1933</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>O or I</td>
<td>Jaundice</td>
<td>Singh et al. 1994</td>
</tr>
<tr>
<td></td>
<td>SiB</td>
<td>E</td>
<td>NR</td>
<td>Preventing conception</td>
<td>Ross 1999</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>NR</td>
<td>NR</td>
<td>Melancholia, nervous debility</td>
<td>Chopra et al. 1956</td>
</tr>
<tr>
<td>Madagascar</td>
<td>B</td>
<td>NR</td>
<td>NR</td>
<td>Liver obstruction</td>
<td>Pernet et al. 1997</td>
</tr>
<tr>
<td>Mali</td>
<td>SiB</td>
<td>NR</td>
<td>NR</td>
<td>Emetic</td>
<td>Boullard 2001</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>IB</td>
<td>P/W</td>
<td>E</td>
<td>Wounds</td>
<td>Dennis 1988</td>
</tr>
<tr>
<td>Senegal</td>
<td>DB</td>
<td>I</td>
<td>O</td>
<td>Mouth sores, odontalgia, as a mouthwash for toothache, dysentery, diarrhea</td>
<td>Kerharo et al. 1974; Ross 1999</td>
</tr>
<tr>
<td>Tonga</td>
<td>SiB</td>
<td>DW</td>
<td>O</td>
<td>Toothache</td>
<td>Ross 1999</td>
</tr>
<tr>
<td>Tanzania</td>
<td>SiB</td>
<td>D</td>
<td>O</td>
<td>Toothache</td>
<td>Adjanohoun et al. 1986</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
<td>SiB</td>
<td>I</td>
<td>O</td>
<td>Diarrhea, chest pain, cough, anemia, urinary tract infection, diabetes</td>
<td>Muanza et al. 1994</td>
</tr>
<tr>
<td>Republic of Congo</td>
<td>SiB</td>
<td>DW</td>
<td>O</td>
<td>Dystemorrhoea</td>
<td>Ross 1999</td>
</tr>
<tr>
<td></td>
<td>SiB</td>
<td>Dw</td>
<td>O</td>
<td>Infected wounds, skin diseases</td>
<td>Muanza et al. 1994</td>
</tr>
<tr>
<td></td>
<td>SiB</td>
<td>DW</td>
<td>O</td>
<td>Dental caries</td>
<td>Muanza et al. 1994</td>
</tr>
</tbody>
</table>

*SiB = Stem Bark; B = Bark; Df = Dried Bark; IB = inner Bark
S = Soaking; D = Decoction with salt and chili; D = Decoction; I = Infusion; W = aqueous extract; E = Powder in alcoholic wine; P/W = phenol/water extract; DW = decoction in wine; NR = not reported
*ER = Enema; E = External use; O = Oral; I = Inhalation; OA = oral application; NR = not reported

MANGIFERIN

The natural C-glucoside xanthone mangiferin [2-C-β-D-glucose-1,3,6,7-tetrahydroxyxanthone; C_{19}H_{18}O_{11}; Mw, 422.35; melting point, anhydrous 271°C (Muruganandan et al. 2002)] has been reported in various parts of *M. indica*: leaves (Desai et al. 1966), fruits (El Ansari et al. 1971), stem bark (Bhatia et al. 1967; El Ansari et al. 1967), heartwood (Ramanathan and Seshadri 1960) and roots (Nigam and Mitra 1964). This pharmacologically-active compound occurs among different angiosperm families and ferns (Hostettmann and Wagner 1977; Richardson 1983, 1984); it is widely distributed in the Anacardiaceae and Gentianaceae families, especially in the leaves and the bark (Yoshimi et al. 2001).

The mangiferin aglycone is a phenolic compound that arises from two different aromatization pathways, the shikimate (carbons C4b, C5, C6, C7, C8, C8a) and the ketate (carbons C1, C2, C3, C4, C4a, C8b) pathways.
Table 3 Pharmacological activities of mangiferin.

<table>
<thead>
<tr>
<th>Pharmacological activities</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioxidant</td>
<td>Sanchez et al. 2000; Muruganandam et al. 2002; Leiro et al. 2003; Stoilova et al. 2005</td>
</tr>
<tr>
<td>Radioprotective</td>
<td>Jagetia and Baliga 2005; Jagetia and Venkatesha 2005</td>
</tr>
<tr>
<td>Anti-allergic</td>
<td>Rivera et al. 2006</td>
</tr>
<tr>
<td>Anti-inflammatory and anti-nociceptive</td>
<td>Beltan et al. 2004; Garrido et al. 2004</td>
</tr>
<tr>
<td>Antioxidant</td>
<td>Guha et al. 1996; Yoshimi et al. 2001</td>
</tr>
<tr>
<td>Antidiabetic</td>
<td>Ichiki et al. 1998; Miura et al. 2001a, 2001b, 2001; Muruganandam et al. 2005</td>
</tr>
<tr>
<td>Inhibitory activities on carbohydrate metabolism enzyme</td>
<td>Yoshikawa et al. 2001</td>
</tr>
<tr>
<td>Lipolytic activity</td>
<td>Yoshikawa et al. 2002</td>
</tr>
<tr>
<td>Antineoplastic</td>
<td>Li et al. 1998</td>
</tr>
<tr>
<td>Antiviral</td>
<td>Zheng et al. 1990, 1993; Guha et al. 1996</td>
</tr>
<tr>
<td>Antibacterial</td>
<td>Srinivasan 1982; Stoilova et al. 2005</td>
</tr>
<tr>
<td>Antifungal</td>
<td>Stoilova et al. 2005</td>
</tr>
<tr>
<td>Antiparasitic</td>
<td>Perucci et al. 2006</td>
</tr>
<tr>
<td>Monoamine oxidase-inhibiting activity</td>
<td>Bhattacharya et al. 1972</td>
</tr>
</tbody>
</table>

Its structure (Fig. 2) fulfills the four requisites which have been reported to favor a high bioavailability by oral administration (Lipinski et al. 1997):

1. molecular weight below 500 daltons;
2. less than 5 donor functions for hydrogen bonds (4);
3. less than 10 acceptor functions for hydrogen bonds (2);
4. favorable octanol/water partition coefficient ($\log_{p} \text{mangiferin} = 2.73$; Nuñez-Selles 2005)

PHARMACOLOGICAL ACTIVITIES OF MANGIFERIN

Mangiferin has been reported to have multiple biological effects which are summarized in (Table 3) and commented hereunder.

Antioxidant activity

Reactive oxygen species (ROS) possess a strong oxidizing effect and induce damage to biological molecules, including proteins, lipids and DNA, with concomitant changes in their structure and function (Seifried et al. 2007). In a series of pathological conditions, an extensive generation of ROS appears to overwhelm natural defense mechanisms, dramatically reducing the levels of endogenous antioxidants, vitamin E, vitamin C and /g533-carotene, with concomitant changes in their structure and function (Halliwell 1990).

Mangiferin is characterized by 2 ionizable functions (pKa, 7.5 and 12.2, respectively) and its UV absorption spectrum significantly changes with pH; intense absorption bands are seen at pH 4 (λ_{max}, 317 and 364 nm) and 9 (λ_{max}, 390 nm). The reaction of mangiferin with different oxidizing and reducing radicals, O^\cdot, N_2^\cdot and $\text{CCl}_3\text{O}_2^\cdot$, was investigated by pulse radiolysis techniques. Upon reaction with these radicals (Fig. 3), mangiferin is converted into 2 phenoxy radicals (λ_{max}, 390 and 470 nm, respectively) which decay by radical-radical reactions; the second radical reacts with ascorbate to regenerate mangiferin (Mishra et al. 2006).

The protective antioxidant abilities of a $M. \text{indica}$ stem bark extract (Vimang®) and its main polyphenol mangiferin were investigated in vivo in OF1 mice (Sanchez et al. 2000b). Vimang® (50, 110, 250 mg/kg), mangiferin (50 mg/kg), vitamin C (100 mg/kg), vitamin E (100 mg/kg), vitamin E plus vitamin C (100 mg/kg each) and β-carotene (50 mg/kg) were orally administered once a day for 7 consecutive days; 12-O-tetradecanoylphorbol-13-acetate (TPA), an inducer of oxidative damage in serum, liver and brain and a stimulator of ROS production by peritoneal macrophages, was administered (0.1 μg, i.p.) on the eighth day, 2 h after the antioxidant treatment. Considering a series of biomarkers (ii) the activity of the major antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx); (ii) a marker for protein oxidation, total sulfhydryl group protein content (TSH); (iii) markers for lipid peroxidation (LP), malondialdehyde (MDA) and 4-hydroxyalkenals (4-HA); (iv) fragmentation of nuclear DNA; and (v) cytochrome c reduction and H₂O₂ levels), Vimang® was either comparable or superior (GPx, TSH, LP, DNA fragmentation, cytochrome c reduction and H₂O₂ levels) to the nutritional antioxidants in protecting mice from oxidative stress; the effect was dose-dependent. Mangiferin showed the same pattern of effect as Vimang® except for GPx (no restoration of GPx levels) (Sanchez et al. 2000).

Radioprotective effect

A protection of mangiferin against radiation-induced micronucleus formation in cultured human peripheral blood lymphocytes and in DBAxC57BL mice was shown by Jagetia and Venkatesha (2005) and by Jagetia and Baliga (2005).
Immunomodulatory effect

Most of the genes overexpressed in inflammation, such as those encoding proinflammatory cytokines, chemokines, adhesion molecules and inflammatory enzymes, contain kB sites within their promoters suggesting that these genes are controlled predominantly by the nuclear factor kappa B (NF-κB) (Christman et al. 2000; Aggarwal et al. 2006). The activation of NF-κB and its associated kinases (IκB kinase (IKK)) depends in most cases on the production of ROS (Manna et al. 1998; Kumar and Aggarwal 1999).

Mangiferin mediates the down-regulation of NF-κB, suppresses NF-κB activation induced by inflammatory agents, including tumor nuclear factor (TNF), increases the intracellular glutathione (GSH) levels and potentiates chemotherapeutic agent-mediated cell death; this suggests a possible role in combination therapy for cancer (Sarkar et al. 2004). It is likely that these effects are mediated through mangiferin ROS quenching and GSH rising; increased intracellular (GSH) levels are indeed known to inhibit the TNF-induced activation of NF-κB (Manna et al. 1999).

Leiro et al. (2004a) characterized in vivo the immunomodulatory activity of mangiferin on thioglycollate-elicited mouse macrophages which were stimulated with lipopolysaccharide (LPS) and gamma interferon (IFN-γ). The expression of cytokines synthesis and of 96 genes involved in the NF-κB signal transduction pathway was investigated by microarray.

Mangiferin at 10μM significantly (i) hinders NF-κB activation by LPS, TNF, and interleukin 1 (IL-1) at the level of TNF receptor-associated factor 6; (ii) inhibits NF-κB mediated signal transduction (inhibition of two genes of the Rel/NF-κB/IB family, RelA and RelB); (iii) inhibits toll-like receptor proteins, including Jun N-terminal Kinase 1 and 2 (JNK1 and JNK2); (iv) inhibits proteins involved in response to TNF and in apoptotic pathways triggered by DNA damage; (v) inhibits a series of pro-inflammatory cytokines (IL-1α, IL-1, IL-6, IL-12, NF-κB, granulocyte and macrophage colony-stimulating factors, A2) and various intracellular and vascular adhesion molecules (VCAM-1) (Leiro et al. 2004a).

These results indicate that, in addition to ROS-scavenging properties, mangiferin modulates the expression of a large number of genes critical for the regulation of apoptosis, viral replication, tumorigenesis, inflammation and various autoimmune diseases. They suggest that mangiferin, protecting cells against oxidative damage and mutagenesis, may be of value in the treatment and prevention of inflammatory diseases and/or cancer.

Anti-allergic activity

Type I allergic response is mainly mediated by mast cells activated through the interaction of their surface receptors (FceRI) with specific molecules such as an IgE-bound antigen. These interactions initiate a series of biochemical events resulting in the release of biologically active mediators that cause allergic reaction (Chang and Shiang 2006); other cells, notably basophils, eosinophils, B and Th2 lymphocytes and neutrophils, are also involved in the allergic response. In animal models of allergy, mangiferin significantly (i) reduces IgE levels in ovalbumin-immunized mice; (ii) inhibits passive anaphylactic reactions; (iii) reduces histamine-induced cutaneous reaction; (iv) decreases the compound 48/80-induced histamine release from rat mast cells; and (v) inhibits the lymphocyte proliferative response to ovalbumin stimulation (Rivera et al. 2006).

Anti-inflammatory activity

Inflammatory processes involve a broad spectrum of chemical mediators; these include nitric oxide (NO) and prostanoids synthesized by inducible isoforms of NO synthase (iNOS) and cyclooxygenase (COX-2), respectively. Vascular events associated with an inflammatory reaction include dilatation of the small arterioles, resulting in increased blood flow and permeability (Briones et al. 2002; Garcia and Stein 2006; Zeihofer 2007).

Beltran et al. investigated the effects of Vimang® and mangiferin on COX-2 and iNOS expression and noradrenaline-induced vasoconstriction in vascular smooth muscle cells from mesenteric arteries of normotensive (WKY) and spontaneously hypertensive (SHR) rats, while and without stimulation by interleukin-1β (1 ng/ml; 24 h). In both strains, in the absence of IL-1β, Vimang® (0.5 mg/ml) and mangiferin (0.025 mg/ml) had no effect by themselves on iNOS nor COX-2 vascular expression; they could however prevent the 2 enzymes induction by IL-1β, suggesting a potent anti-inflammatory action. In agreement with these data, mangiferin was found to decrease NO production and iNOS mRNA levels in activated macrophages (Garcia et al. 2002; Leiro et al. 2003). As NF-κB plays an important role in the induction of the promoter for both cyclooxygenase-2 and iNOS genes, the inhibition of NF-κB activation (cd § 4.3) appears to be involved in the anti-inflammatory mechanisms of action (Aggarwal et al. 2006).

Both in WKY and SHR rats, Vimang® (1, 0.5 and 0.25 mg/ml), but not mangiferin (0.05 mg/ml), induces a reduction of the contractions elicited by noradrenaline (0.1-30 μM).

This suggests that the inhibitory effect of Vimang® on vasoconstrictor responses and on COX-2 and iNOS expression would be mediated by different compounds.

Antitumor activity

Minor dietary constituents, apparently important to prevent carcinogenesis or revert tumor promotion, are known as chemopreventive agents, a very promising approach to cancer control (Chen and Kong 2005). Yoshimi et al. (2001) examined in rats the chemopreventive effects of mangiferin for both the initiation and post-initiation phases of azoxymethane (AOM; alkylant, 15 mg/kg body weight, s.c., once a week for 3 weeks) - induced colon carcinogenesis. In a short-term assay (5 weeks, development of AOM-induced preneoplastic lesions), mangiferin (0.1% in the basal diet for 5 weeks) significantly inhibited the aberrant crypt foci development in AOM-treated rats (~40% less). In a long-term assay (40 weeks), the group treated with mangiferin during the AOM initiation phase had significantly lower incidence and multiplicity of intestinal neoplasms (>40% reduction) with reduced colonic mucosa cell proliferation (65-85% decrease). The underlying mechanisms are still unclear but the chemopreventive effect may be due to quenching of AOM by the xanthone; the inhibitory effect on cell proliferation may come from the release of proapoptotic cytokines (Hara et al. 1997) by mangiferin-activated lymphocytes (Chattopadhyay et al. 1987). In vitro, mangiferin dose- and time-dependently inhibited the proliferation of K562 leukemia cells and induced apoptosis in K563 cells line, probably through down-regulation of bcl abl gene expression (Peng et al. 2004). These results suggest that mangiferin has a potential as a naturally-occurring chemopreventive agent (Yoshimi et al. 2001).

Anti-diabetic activity

Diabetes mellitus represents a series of metabolic conditions associated with hyperglycaemia and caused by defects in insulin secretion and/or insulin action. In type 1 diabetes, pancreatic β-cells are destroyed usually by autoimmune inflammatory mechanisms; type 2 diabetes is a complex metabolic disorder associated with β-cells dysfunction and with varying degrees of insulin resistance (Dinneen 2006). Recently, it has been reported that long standing hyperglycaemia with diabetes mellitus leads to the formation of advanced glycosylated end-products which are involved in the generation of ROS, leading to oxidative damage, particularly to heart and kidney (Rolo and Palmeira 2006).
Effect on type 1 diabetes

Muruganandan et al. (2002) and Muruganandan et al. (2005) investigated the effects of mangiferin on hyperglycemia, atherogenicity and oxidative damage to cardiac and renal tissues in streptozotocin-induced diabetic rats (STZ destroys pancreatic β cells and causes persistent hyperglycaemia; 55 mg/kg body weight i.v.); after 30 days, diabetic rats administrated with mangiferin or insulin (positive control) daily for 28 days. As expected, STZ treatment resulted in (i) catalese (CAT) and SOD activities significantly reduced in kidney, increased in heart (possibly through a compensatory mechanism) and unaltered in erythrocytes; (ii) a significant increase of MDA in all tissues, of glycosylated haemoglobin, creatine phosphokinase (CPK), glucose, triglycerides (TG), total cholesterol, low-density lipoprotein cholesterol (LDL-C) and decrease of high-density lipoprotein cholesterol (HDL-C) (Muruganandan et al. 2002, 2005). In STZ-induced rats, repeated i.p. injections of insulin (6 U/kg) or mangiferin (10 or 20 mg/kg) for 28 days significantly reduced the tissue MDA levels, improved the alterations in cardiac and renal antioxidant enzyme activities, decreased the glycosylated haemoglobin and CPK levels. This antiadiabetic activity of mangiferin could involve multiple mechanisms, other than pancreatic β-cell insulin release/secretion; these extrapancreatic actions (Bwittiti et al. 2000; Jouad et al. 2000) could consist of (i) a stimulation of peripheral glucose utilization; (ii) an enhancement of glycolytic and glycogenic processes (Saxena and Vikram 2004); and/or (iii) a glycemia reduction through the inhibition of glucose intake. The last hypothesis could be supported by the recent finding that mangiferin isolated from roots of Salacia reticulata inhibits α-glucosidases (sucrase, isomaltase and maltase; IC50 values of 87, 216 and 1.4 μg/mL, respectively) (Yoshikawa et al. 2001). Treatment with mangiferin resulted in a potent antihyperlipidemic and antiatherogenic activities in diabetic rats (strong and significant reduction in atherogenic index, total cholesterol, TG, LDL-C and decrease of HDL-C) (Muruganandan et al. 2005). Lipid profile.

Effect on type 2 diabetes

Therapy of type 2 diabetes resides principally in exercise and diet; in second line, therapeutic agents to stimulate insulin secretion are used. In KK-A' mice, an animal model of type 2 diabetes, mangiferin (90 mg/kg), 7 h after oral administration, decreased the baseline glucose level by 56% (Miura et al. 2001a). In the same model, mangiferin (30 mg/kg, p.o., once daily followed 30 min later by exercise (120 min motorized treadmill) for 2 weeks) reduced the blood cholesterol (~40%) and triglyceride levels (~70%) (Miura et al. 2001b). Mangiferin or exercise alone did not influence cholesterol but significantly decreased triglycerides (Miura et al. 2001b). Mangiferin is certainly worthy of further investigation for these beneficial effects on hyperglycaemia and hyperlipidaemia in type 2 diabetes.

Lipolytic

 Constituents isolated from the roots of Salacia reticulata, including its main xanthone, mangiferin, showed a significant lipolytic effect on rat epididymal fat-derived cultured adipocytes. Mangiferin (100 mg/l) reduced 35% triglycerides in these adipocytes (Yoshikawa et al. 2002).

Antibone resorption

Four water extracts of Kampo formulae were screened for their inhibitory effect on bone resorption induced by parathyroid hormone in organ culture of neonatal mouse parietal bones. Mangiferin isolated and tested in vitro showed a significant inhibitory effect on this model (Li et al. 1998).

Antimicrobial

Antiviral activity

Zhu et al. studied in vitro the effect of mangiferin against Herpes simplex virus type 2; mangiferin does not directly inactivate HSV-2 but inhibits the late event in HSV-2 replication (Zhu et al. 1993). In vitro mangiferin was also able to inhibit HSV-1 virus replication within cells (Zheng et al. 1990) and to antagonize the cytopathic effects of HIV (Guha et al. 1996).

Antibacterial and antifungal activities

In an in vitro agar diffusion technique, mangiferin showed activity against 7 bacterial species, Bacillus pumilus, B. cereus, Staphylococcus aureus, S. citreus, Escherichia coli, Salmonella agona, Klebsiella pneumoniae, 1 yeast (Saccharomyces cerevisiae) and 4 fungi (Thermoascus aurantiacus, Trichoderma reesei, Aspergillus flavus and A. fumigatus) (Stoilova et al. 2005).

Antiparasitic activity

In a neonatal mouse model, mangiferin at 100 mg/kg has a similar inhibitory activity on Cryptosporidium parvum than the same dose (100 mg/kg) of an active drug, paromomycin (Perrucci et al. 2006).

Monoamine oxidase-inhibiting activity

The monoamine oxidase-inhibiting activity was investigated on adult albino rats and mice. Mangiferin (100 mg/kg, i.p.) (i) significantly potentiates hexobarbitone (100 mg/kg, i.p. 30 min after mangiferin) narcosis by nearly 80% (sleeping time); (ii) markedly antagonizes the ptois and reverses the sedation induced by reserpine; (iii) potentiates amphetamine (25 mg/kg, i.p. 60 min after mangiferin) toxicity in aggregated rats (750% increase in mortality); (iv) potentiates DOPA-induced (100 mg/kg, i.p. 60 min after mangiferin) piloerection, salivation, motor activity and aggressiveness; (v) potentiates the typical head-twitch response of 5-HTP (50 mg/kg, i.p. 60 min after mangiferin); and (vi) potentiates the analgesic effect of subanalgescic doses of morphine (2 mg/kg, i.p. 60 min after mangiferin) by nearly 100% (increase in tail flick time), when administered 60 min before morphine.

Although mangiferin induced a positive response on all these techniques accepted for detecting monoamine oxidase-inhibiting activity in vivo, the dose required to produce an inhibition was fairly large (100 mg/kg versus a LD50 of 365 mg/kg) (Bhattacharya et al. 1972).

CONCLUSION

Many different pharmacological activities, antioxidant, radioprotective, immunomodulatory, anti-allergic, anti-inflammatory, antitumor, antiabetic, lipolytic, antibone resorption, monoamine oxidase-inhibiting, antimicrobial and antiparasitic, have been reported for mangiferin. All these studies indicate that a wide part of activities acknowledged in vitro and (vi) potentates the analgesic effect of subanalgesic activity against 7 bacterial species, Bacillus pumilus, B. cereus, Staphylococcus aureus, S. citreus, Escherichia coli, Salmonella agona, Klebsiella pneumoniae, 1 yeast (Saccharomyces cerevisiae) and 4 fungi (Thermoascus aurantiacus, Trichoderma reesei, Aspergillus flavus and A. fumigatus) (Stoilova et al. 2005).

Conclusión

Many different pharmacological activities, antioxidant, radioprotective, immunomodulatory, anti-allergic, anti-inflammatory, antitumor, antiabetic, lipolytic, antibone resorption, monoamine oxidase-inhibiting, antimicrobial and antiparasitic, have been reported for mangiferin. All these studies indicate that a wide part of activities acknowledged in vitro and vivo were screened for their inhibitory effect on bone resorption induced by parathyroid hormone in organ culture of neonatal mouse parietal bones. Mangiferin isolated and tested in vitro showed a significant inhibitory effect on this model (Li et al. 1998).
loping countries (so-called coca-colonization...) makes it a choice preparation to develop. Based on the knowledge of the many properties of mangiferin, phytomedicines should be adequately standardized regarding this active compound.

ACKNOWLEDGEMENTS
A travel grant to N. Wauthoz from the Belgian CUD (Coopération Universitaire au Développement) for the study of Guinean Mangifera indica is gratefully acknowledged. We thank Mrs M. Faes for her help in the present work.

REFERENCES

El Amari MA, Reddy KK, Sastry KNS, Nayudamma Y (1971) Dicoty-
dose, anacardiaceae polyphenols of Mangifera indica. Phytochemistry 10, 2239-2241

El Amari MA, Rajadurai S, Nayudamma Y (1967) Studies on the polyphen-
olns of Mangifera indica bark. Leather Science 14, 247-251

Diplock AT, Charleux JL, Crozier-Willi G, Kog FK, Rice-Evans C, Rober-

Diplock AT, Charleux JL, Crozier-Willi G, Kog FK, Rice-Evans C, Rober-

Diplock AT, Charleux JL, Crozier-Willi G, Kog FK, Rice-Evans C, Rober-

Diplock AT, Charleux JL, Crozier-Willi G, Kog FK, Rice-Evans C, Rober-

Diplock AT, Charleux JL, Crozier-Willi G, Kog FK, Rice-Evans C, Rober-

Ross IA (1999) Medicinal Plants of the world, Chemical constituents, Traditiional and Modern Medicine, pp 219-220

Nauta-Selsing J, Harkema, Therapy: Myth or reality? Journal of the Brazilian Chemical Society 16, 699-710

