

Recent Progress in Cellular, Biochemical and Genetic Events of *Brassica* Species

Bo Zhou¹ • Yuhua Li^{1*} • Fei Zhao² • Saneyuki Kawabata³

Northeast Forestry University, Harbin 150040, China
 Shandong Agricultural University, Tai'an 271018, China
 University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

Corresponding author: * lyhshen@mail.hl.cn

ABSTRACT

Brassica species are playing an even more important role in global agriculture and horticulture. To understand the regulation and evolution of *Brassica* species, the Multinational *Brassica* Genome Project (MBGP) was initiated and various techniques have been developed to characterize the behaviour of the underlying genes, genomic regulatory networks and associated metabolism. By using cDNA library screening and Rapid Amplification of cDNA Ends (RACE), many functional genes related to metabolism have been identified. cDNA microarrays were applied to determine gene expression profiles. Molecular markers were used in marker-assisted selection and breeding, and transformation technology was applied to the introduction of desirable traits. Moreover, quantitative trait loci (QTL) have been identified for a wide range of morphological, physiological and crop traits in the different *Brassica* crop types. Many systems and technologies have also been applied to study self-incompatibility and Cytoplasmic male sterility (CMS) in *Brassica* species. With the development of molecular biology, more and more knowledge at the level of gene expression, biochemistry, metabolism and physiology has been gained in *Brassica* species. Furthermore, as one of the most commonly grown and widely adapted crops *Brassica* species.

Keywords: Brassica rapa, CMS, metabolism, microarray, molecular marker, QTL

Abbreviations: AFLP, Amplified fragment length polymorphism; CMS, Cytoplasmic male sterility; EMS, ecotypic male sterility; ISSR, intersimple sequence repeat; GMS, genic male sterility; MBGP, Multinational *Brassica* Genome Project; QTL, quantitative trait loci; RACE, Rapid Amplification of cDNA Ends; RAPD, random amplified polymorphic DNA; RFLP, restriction fragment length polymorphisms; SAGE, Serial Analysis of Gene Expression; SI, self-incompatibility; SLG, S locus glycoprotein; SRK, S locus receptor kinase

CONTENTS

INTRODUCTION	
THE MULTINATIONAL BRASSICA GENOME PROJECT (MBGP)	113
CLONING OF FUNCTIONAL GENE AND GENE EXPRESSION PROFILES	113
BRASSICA MOLECULAR MARKERS AND BREEDING	114
GENETIC TRANSFORMATION	115
CONCLUSIONS AND FUTURE PROSPECTS	115
ACKNOWLEDGEMENTS	117
REFERENCES	117

INTRODUCTION

In the *Brassicaceae* family *Brassica* is the most economically important genus and plays an important role in global agriculture and horticulture. Many species are important oilseed crops and vegetables which related to the lives of people everyday. Because *Brassica* crops contribute both to the economics and health of populations around the world, and some of which contain a large number of novel phytochemicals that could even protect against carcinogenesis, most research has been performed on brassicas to enhance their quality.

Chromosome rearrangements, including fusions and/or fissions, resulted in the present-day chromosome number variation for the three diploid *Brassica* species, *B. rapa* (syn. *campestris*, AA, 2n = 20), *B. nigra* (BB, 2n = 16) and *B. oleracea* (CC, 2n = 18) (Gale and Devos 1998; Lysak *et al.* 2005). The genomes of three allotetraploids, *B. juncea* (AABB, 2n = 36), *B. napus* (AACC, 2n = 38), and *B. carinata* (BBCC, 2n = 34), were derived by spontaneous hyb-

ridization among the three diploid species, followed by chromosome doubling (U 1935). The genomic relationships are well characterized, as shown in the 'triangle of U', and these have been exploited to understand the basis of chromosome evolution since divergence from a common progenitor shared with *Arabidopsis*.

The genome size of different *Brassica* species is different. *B. rapa* is the smallest at 529 Mb per haploid, compared with 696 Mb in *B. oleracea* and 632 Mb in *B. nigra* (Johnston *et al.* 2005). The haploid genome equivalent of *B. rapa* is closely related with *Arabidopsis* (125 Mb haploid genome equivalent), the completely sequenced model plant. *Arabidopsis* and *Brassica* are speciated around 14.5-20.4 million years ago from a common ancestor (Bowers *et al.* 2003). Comparative genetic mapping has revealed collinear chromosome segments (Schmidt *et al.* 2001) in the *Brassicacea* family and conserved linkage arrangements between *Arabidopsis* and *Brassica*. Comparative genetic mapping has revealed collinear chromosome segments in the *Brassicaceae* family and conserved linkage arrangements between *Arabidopsis* and *Brassica* (Lukens *et al.* 2003; Town *et al.* 2006).

Genomic regulatory networks and associated metabolism research, which mainly aims to understand the structure and the function of genomes and genes in the target organism, has attracted the attention of the global scientific community. *Brassica* species are especially important in this context as they offer a wealth of opportunities to exploit the inherent variation in genes for their use in crop improvement.

THE MULTINATIONAL BRASSICA GENOME PROJECT (MBGP)

Although the physiology and developmental biology of Brassica and Arabidopsis are very similar, the genomes of Brassica species are 4-10 times larger and more complex than that of Arabidopsis thaliana because of extensive polyploidization of the genome during the course of evolution. Despite the advantages of using information from Arabidopsis, and using reference linkage maps both from Arabidopsis and Brassica, the current challenge remains the need to identify key genes and understand their regulation in Brassica crop plants. There is a pressing requirement recently to resolve identified functional loci (major genes and QTLs). Of the cultivated Brassica species, B. rapa ssp. Pekinensis is considered as a typical representative of the Brassica A-genome. Because of its smallest genome (529 Mb) among the diploid Brassicas (Johnston et al. 2005) and availability of genomic resources such as mapping popula-tion and BAC libraries, this species has attracted the atten-tion of *Brassica* workers world-wide. Then the Multinational Brassica Genome Project (MBGP) was initiated. The results from this project are available through a web interface to a Brassica database at http://www.brassica.info. In recent years, bioinformatics tools and computational tools have been developed to study DNA sequences of *Brassica* species deposited in the GenBank (Beckett et al. 2005; Lim

Table 1 Genes of Brassica species identified by strategies of cloning.

et al. 2006; Trick *et al.* 2007). And with the data of genomic information increasing, more and more knowledge at the level of gene expression, biochemistry, metabolism and physiology will be gained.

CLONING OF FUNCTIONAL GENE AND GENE EXPRESSION PROFILES

To study the molecular mechanism of genotype of Brassica species, cloning of functional genes is necessary. A variety of strategies can be used to clone a gene such as transposon tagging, screening of a cDNA library, map-based gene cloning, RT-PCR and Rapid Amplification of cDNA Ends (RACE) PCR. Transposon tagging requires that the organism must have well-characterized transposon system such as maize. And so it is not feasible in Brassica species. A partial cDNA clone encoding a B-class gene, BnAP3 (Brassica napus APETALA3), was isolated from a *B. napus* cDNA library (Pylatuik et al. 2003) with a probe derived from A. thaliana AP3. Map-based gene cloning includes target gene mapping, physical mapping, chromosome walking or landing, gene identification four steps. In addition, restriction fragment length polymorphisms (RFLP) or other molecular genetic markers can be used in chromosome walking procedures. PCR is the simple way to clone a gene. In this way, a pair of degenerate primers was designed according to the sequence of GenBank and RT-PCR was conducted on the cDNA template synthesized with RNA of Brassica plants. Subsequently, the full-length cDNA sequence of some genes was obtained by RACE technique. Gene expression profiles can be obtained and compared by various methods, such as RNA-DNA hybridization measurements (Northern hybridization), subtractive hybridization, differential display, DNA microarray technique and Serial Analysis of Gene Expression (SAGE). The DNA microarray technique allows large-scale quantitative gene expression analysis. And SAGE allows simultaneous, comparative, and quantitative analysis of gene-specific, 9- to 10-bp sequence tags

Gene name and function	Strategies of cloning	Brassica species	Reference
Genes involved in starch and sucrose, nitrogen metabolism	Subtractive PCR and cDNA Microarray	<i>B. napus</i> L.	Wu et al. 2007
and nitrobenzene degradation			
Pathogenesis-related ESTs	Differential Display PCR	B. oleracea	Casimiro et al. 2006
Cadmium-responsive genes	Fluorescent differential display PCR	<i>B. juncea</i> L.	Lang et al. 2005
Genes associated with shoot regeneration	Differential Display PCR	B. juncea	Gong et al. 2004
Fatty Acid Elongase 1 (FAE 1) gene	Homolog PCR	B. campestris, B. oleracea	Das et al. 2002
BcMF2, Brassica campestris Male Fertile 2 gene	cDNA-AFLP and RACE	B. campestris	Wang et al. 2005b
Different expression genes in the CMS line and B. napus	cDNA Microarray	B. napus	Carlssonl et al. 2007
Expressed sequence tags (EST)	SSR-PCR	B. napus	Batley et al. 2007
The glutathione transporter, BjGT1	PCR and RACE	B. juncea	Bogs et al. 2003
Chaperones, ribosomal or stress-related genes	Screening suppression subtractive hybridization (SSH) library and RACE	B. rapa	Bulman et al. 2006
Quantitative Trait Loci (tf1,tf2 and tf3) related transformation efficiency	RFLP markers	B. oleracea	Cogan et al. 2004
QTLs for clubroot resistance	Sequence-characterized amplified region (SCAR) markers	B. oleracea	Nomura et al. 2005
<i>KCT</i> ₂ , the gene encoding a membrane-bound protein potassium channel	RACE-PCR	B. rapa ssp. Pekinensis	Zhang et al. 2006
Glutathione reductase gene	Screening cDNA library	B. campestris	Yoon et al. 2005
BNST4, the gene encoding steroid sulfotransferase	Screening cDNA library	B. napus	Marsolais et al. 2004
BNCBFs, CBF/Dreb transcriptional activator genes, controlling the expression of cold-induced genes	Screening cDNA library	B. napus	Gao <i>et al</i> . 2002
Transcript derived fragments (TDFs) related to wound response	cDNA-AFLP	B. napus	Sarosh and Meijer 2007
Cytochrome P450 CYP86MF gene related to male fertility	Differential Display PCR and RACE	B. campestris	Cao et al. 2006
Xyloglucan endotransglucosylase/hydrolases (XTHs) associated with cell expansion	Screening cDNA library	B. campestris	Shin et al. 2006
Androgenesis and embryo development-related ESTs	Subtractive hybridization and differential screening	B. napus	Tsuwamoto <i>et al.</i> 2007
Pis 30, a pistil-specific proline-rich proteins (PRP) gene	Screening cDNA library and RACE	B. napus	Foster et al. 2005
A multifunctional polyketide synthase gene	RNA fingerprinting by arbitrarily primed PCR (RAP)	Plasmodiophora brassicae	Ito et al. 1999
Light responsive genes	cDNA Microarray	B. rapa	Zhou et al. 2007

(Velculescu *et al.* 1995). By these ways, more and more functional genes of *Brassica* species have been cloned and characterized (**Table 1**).

BRASSICA MOLECULAR MARKERS AND BREEDING

In recent years, Molecular marker-assisted breeding has been widely used to map agronomically important genes in *Brassica* genomes. It is performed directly on genotypes rather than phenotypes. Molecular marker tagging has been reported to select some important agronomic traits and to analyze genetic diversity in *Brassica* crops (Chen *et al.* 1997). And molecular markers have their advantages in breeding including numerous markers, a large number of alleles, codominant mode of inheritance and determining genotypes at early developmental stage.

Actually, 'Markers' are polymorphisms in the nucleotide sequence at homologous (allelic) sites. They can be used to define a multilocus genotype characteristic for an individual or a clone and to be diagnostic for a population or a species. Among using molecular markers in plant genetic studies and breeding programs, RFLPs reflect differences in the length of restriction fragments obtained by restriction enzymes digestion, RAPD (random amplified polymorphic DNA) reflect different length of fragments obtained by PCR. And AFLP (Amplified fragment length polymorphism) combines the advantages of RFLP and RAPD system. It has the advantage of speedy and high resolution, and also requires only a small amount of purified DNA. Brassica (including some Sicilian populations) have been tested using RFLP and RAPD markers (Lanner-Herrera et al. 1997; Lázaro and Aguinagalde 1998). For example, RAPD and ISSR (intersimple sequence repeat) techniques were investigated for the development of molecular markers for genes controlling oleic and/or linolenic acid in spring oilseed rape (Brassica napus) (Javidfar et al. 2006). Ten RAPD and AFLP markers have been identified to link to the seed colour gene in rapeseed (B. napus L.). Seven of these were linked to the allele for yellow seed, whereas the other three were linked to the allele for black seed (Liu et al. 2005). A RAPD marker linked to the GMS (genic male sterility) gene in *B. napus* L. was identified and converted into a SCAR marker (Wang et al. 2007a).

For numerous qualitative traits, the development of marker-assisted selection strategies have accelerated the breeding of Brassica and led to many responsible genes be cloned. For quantitative traits, however, it has become apparent that traditional mapping of quantitative trait loci is often not sufficient to develop effective markers for trait introgression or for identification of the genes responsible major role in Brassica breeding because of the genetic distances between markers flanking a QTL are physically very large. QTL analysis involves selecting and hybridizing parental lines of which are different in quantitative traits and analysing the segregating progeny so as to link the quantitative trait locus to known DNA markers. It not only provides DNA markers for efficient selection, it is also of value in resolving interacting environmental and genetic effects which are common in agronomically important traits such as 'days to flowering', 'stay-green' or tolerance to abiotic stresses.

In *Brassica*, several genetic systems have been developed for the commercial production of hybrid seed, such as cytoplasmic male sterility (CMS), (GMS), self-incompatibility (SI) and ecotypic male sterility (EMS). They are the four main pollination control systems used in China.

Cytopalsmic male sterility (CMS) is a maternally inherited trait whose determinants are located in the mitochondrial (mt) genome. Nuclear genes, termed as fertility restorer (Rf) genes, can restore male fertility by selectively modulating the expression of CMS-associated regions without influencing the other mitochondrial genes. CMS is encoded in mitochondrial DNA and it may result from spontaneous mutations or through substitution of the crop nucleus into

the alien cytoplasm, the alloplasmic lines. Cytoplasm from eight wild species, namely Brassica oxyrrhina (oxy), Trachystoma balli (trachy), Moricandia arvensis (mori), Diplotaxis catholica (cath), D. siifolia (sii), D. erucoides (eru), Erucastrum canariense (can) and Raphanus sativus (ogu), has been introgressed into B. juncea using sexual or somatic hybridization (Prakash 2001). In nature, CMS occurs as alloplasmic incompatibility or mitochondrial DNA rearrangements. It has been proposed that such changes lead to the production of defective forms of the essential proteins in mitochondria, thus causing male sterility. CMS occurs infrequently through spontaneous mutations in the mt genome. More often, however, CMS is encountered in alloplasmics derived from interspecific or higher order hybrids (Hanson 1991). Nine mitochondrial genes (coxII, coxIII, atpA, atp6, atp9, cob, nad3, nad6, and nad9) were isolated. The sources and characteristics of these fragments have been reported previously (Yamasaki et al. 1998). CMS in alloplasmic B. juncea carrying Diplotaxis catholica cytoplasm exhibited a crooked style and trilocular ovary, and the flowers had smaller nectaries, and anthers were converted into petals or tubular structures (Pathania et al. 2003). They found that *atpA* governs fertility restoration. Moreover, AFLP markers linked to genes responsible for fertility restoration have been identified to facilitate restorer breeding for the tour CMS system in *B. napus* which was developed through the transfer of male-sterile cytoplasm from B. juncea (Janeja et al. 2003)

The CMS system can generate a complete male sterile population economically. However, this system involves the development of three lines: male sterile line (A), maintainer (B), and restorer (R), and it usually takes years to develop A and R lines since most CMS systems have stringent restoring-maintaining relationships. Moreover, many CMS systems have disadvantages such as (1) undesirable pleiotropic effects of the CMS cytoplasm on agronomic quality, (2) increased disease susceptibility, (3) environmentally unstable maintenance of male sterility, and (4) poor floral characteristics of male sterile plants which lead to decreased quantity of hybrid seed (McVetty 1997). On the contrary, some genic male sterility (GMS) systems which can result from mutations in any one of a large number of nuclear genes involved in pollen and/or anther development have great potential in heterosis utilization, with complete and stable male sterility, no negative cytoplasmic effects associated with the CMS system, and easy transference of the male sterility genes to diverse genetic backgrounds. Several kinds of GMS have been used in the breeding of rapeseed hybrids, such as a dominant genic male sterility line (DGMS) and recessive genic male sterility lines (RGMS). DGMS is seldom used in hybrid seed production because of the difficulties in maintaining the sterile lines and finding restorers. The report about this system is few, only dominant epistatic GMS type report can be obtained up to now (Li et al. 1990). RGMS attracted the attention of rapeseed breeders because of the wide availability of restorers and the possibility to develop maintainers for this system. Four AFLP markers were found to be tightly linked to the gms gene of Chinese cabbage (Brassica campestris ssp. chinensis) which decided genic male sterility (Ying et al. 2003).

An ecotypical male fertile-sterile line AB1 was selected out from the progeny of a cross between two *B. napus* lines. AB1 was male fertile when it was sown at Wuhan in Autumn, but it became sterile when it was sown at Kunming or Xining in Summer (Yang *et al.* 1999). They found that light period had probably no considerable influence on the fertility of AB1 and its hybrid, and temperature was the main environmental factor influencing the fertility of AB1 and its hybrid, the higher the temperature, the complete the male sterility. They also suggested that the influence of temperature on the fertility be related to the genotypes or the number of the temperature sensitive genes in the nuclei of the materials. In some range, the more the number of the temperature sensitive genes, the weaker the influence of the temperature (Yang *et al.* 1999).

Self-incompatibility in which pollen-tube growth of self-pollen is inhibited after a self-recognition reaction between the pollen and the pistil is controlled genetically by multiple alleles of the S locus in *Brassica* and the pollen phenotype is determined by the parental genotype (Dodds et al. 1996). Several S locus genes have been isolated such as S locus glycoprotein (SLG) gene and S locus receptor kinase (SRK) gene which are required for the SI phenotype. It is reported that the recognition specificities of the pollen and the stigma are determined by S-locus protein 11/S-locus cysteine-rich (SP11/SCR) (Schopfer et al. 1999; Suzuki et al. 1999) and S-locus receptor kinase (SRK). SLG and SRK which function as the female determinant of SI are exclusively expressed in pistil, whereas SP11/SCR of the male determinant is expressed in pollen (Takasaki et al. 2000). According to the similarity of nucleotide sequences, they can be divided into two classes. Class I exhibits strong selfincompatibility, while class II is relatively weak. Genetically, class I is pollen dominant over class II (Nasrallah and Nasrallah 1993; Hatakeyama et al. 1998). Gene conversion from SLG to SRK would result in self-compatibility in B. rapa (Fujimoto et al. 2006). The genotypes with class II alleles showed great variation in compatibility, from highly self-incompatible to fully self-compatible (Ruffio-Chable et al. 1997). During selecting self-incompatible lines, the class II alleles should be avoided, because it will lead to a highly frequent contamination of selfed seeds in F1 hybrids. The model for SI in Brassica proposes that the pollen-borne ligand interacts with SLG and SRK, activates the SRK protein kinase and triggers a signal cascade that leads to the rejection of self-pollen (Nasrallah et al. 1994; Watanabe et al. 2006). Presently, seventy-two genotypes of five crops of *Brassica* vegetables including Chinese cabbage (*B. rapa* ssp. pekinensis L.), purple flowering stalk (B. rapa ssp. chinensis var. purpurea Hort.), cauliflower (B. oleracea var. botrytis L.), cabbage (B. oleracea var. capitata L.), mustard (B. juncea L.) have been used to investigate the diversity and distribution of S haplotypes by PCR-RFLP comparing SLG and SRK (Wang et al. 2007b). It was found that S haplotypes were more diverse and they exhibited obvious regional distribution except cabbage and purple flowering stalk in which most genotypes from different regions carried the common S haplotype, Self-incompatibility is a natural mechanism in plants that prevents inbreeding and promotes outcrossing.

GENETIC TRANSFORMATION

There are several techniques for the introduction of recombinant vectors containing heterologous genes of interest into plant cells, and the subsequent regeneration of plants from such cells. The target DNA can be introduced using Agrobacterium or particle bombardment (Christou 1996; Siemens and Schieder 1996). Another relatively new and simple procedure for transformation is 'Agrobacterium vacuum infiltration', which was widely used in the transformation of Arabidopsis thaliana but has only had limited success in Brassica (Cao et al. 2000; Wang et al. 2003). By the method of infiltration with Agrobacterium, Cao et al. obtained 2 transformants out of about 20,000 seeds harvested from infiltrated of Pakchoi (B. rapa L. ssp. chinensis). The two transformants had a different foreign gene insertion site, and both were hemizygous. Wang found that the successful conditions to produce transgenic B. napus plants were: vacuum infiltration at 25-27 in. Hg twice for longer than 5 min either 1 week apart or consecutively and treatment at induced small flowering plants (ISFP, the plants with buds before flowering) and adult flowering plants (AFP, the plants with flowers in flowering). The transformation efficiency was only 0.05%-0.18%. Compared with A. thaliana, the transformation frequency was lower. But research is ongoing to improve its feasibility.

Transformation technology has already greatly expanded the genetic diversity of the *Brassica* crop and offered an array of opportunities for basic scientific research and for producing commercial genetically modified crops. A variety of genes affecting agriculturally important traits have been transferred into *Brassica* species: for improved oil quality (Jadhav *et al.* 2005; Jha *et al.* 2007), disease resistance (Yu *et al.* 2007), insect resistance (Halfhill *et al.* 2001; Cao *et al.* 2005), salt and drought tolerance (Bhattacharya *et al.* 2004; Park *et al.* 2005), herbicide resistance (Qing *et al.* 2000) (**Table 2**).

Another important advancement in the transformation of *Brassica* crops is the development of male-sterile lines and the development of a restoration system. In *B. juncea*, the male-sterile plants were obtained by introducing the *barnase* gene with TA-29 specific promoter (Jagannath *et al.* 2001). The male-sterile line could be restored by crossing it with a *barstar*-containing transgenic line (Jagannath *et al.* 2002). And this male sterility/fertility restorer system has tremendous application in hybrid breeding.

The development of transformation protocols of Brassica by Agrobacterium had been delayed because shoot regeneration was problematic and the main obstacle in the 1980s. More recently, the problem was overcome by using silver nitrate in the culture medium during shoot regeneration of hypocotyls and cotyledon explants (Chi et al. 1990; Hachey et al. 1991; Palmer 1992). Although a wide range of target explants were used in the transformation of Brassica, including hypocotyls (Radke et al. 1988), cotyledonary petioles (Moloney et al. 1989), thin cell layers (Charest et al. 1988), stem segments (Fry et al. 1987), microspores (Pechan 1989) and protoplasts (Wang et al. 2005a), the transformation of Brassica is still hindered by genotype restrictions (Ono et al. 1994; Zhang et al. 1998). Previous studies have demonstrated that a number of key factors affecting transformation including the susceptibility to Agrobacterium and the response of tissue culture in vitro.

Protoplast fusion has allowed not only intrageneric hybridizations, but the production of intergeneric hybrids and cybrids as well. In addition, applying protoplasts as recipients for DNA introduction do not have the restriction of susceptibility to Agrobacterium, but production of transgenic plants through protoplasts requires suitable regeneration systems. By protoplast fusions between B. napus and Orychophragmus violaceus, 257 somatic hybrid plants were obtained (Hu et al. 2002). Variation in fatty acid composition was found in the hybrid plants and their offspring. In addition, several male-sterile plants with high female fertility were recovered. As a conclusion, male sterility most-likely originated from alloplasmic recombination and would be of great potential for the development of a new CMS system. Protoplast fusion has produced disease-resistant hybrids (Ren et al. 2000). Twelve somatic hybrids (synthetic B. napus) were obtained and confirmed. The offspring populations of the somatic hybrids (F1-S1 and F1-BC1) showed more disease-resistant than the parents; the percentage of resistant plants increased from 21% (average of parents) to 36% (F1-S1) and 48% (F1-BC1). Male-fertile and malesterile plants were also obtained (Yamagishi et al. 2002). In their study asymmetric hybrids between A. thaliana and Brassica napus were obtained by treating the protoplasts of A. thaliana with iodoacetamide (IOA) and B. napus protoplasts with UV-irradiation before fusion with polyethylene glycol (PEG).

CONCLUSIONS AND FUTURE PROSPECTS

Development of cellular and molecular biology in plant accelerated the breeding of *Brassica* species and integrated information from agronomy, breeding, genetics and genomics. Genomic research on these crops will have gained impetus after completing the MBGP. The availability of the whole genome sequence of *Brassica* will facilitate the isolation of specific genes to aid in crop improvement and to improve economic use in *Brassica* species. Functional gene analysis, marker-assisted breeding, protoplast fusion, tissue culture, and genetic transformation together can be of use in the development of *Brassica* species with novel desirable traits.

Table 2 Functional genes transferred into Brassica species.

Functional gene	Expres- sion	Selector/ marker	Explants	Conditions of tissue culture/transformation	Level of detection	Transfor- mation efficiency	Ref.
l-acyl-2- oleoyl-sn- glycero-3- phosphocholin e desaturase (FAD2) gene	pSE (the original plasmid RD400)	kanamycin (<i>npt</i> II)	Cotyledons of <i>B.</i> carinata	Regeneration medium: MS + 2 mg/l 6-BA+ 0.05 mg/l NAA+ 30 g/l sucrose + 7 g/l agar Selection medium: Regeneration medium + 5 mg/l AgNO ₃ + 500 mg/l polyvinylpyrrolidone + 500 mg/l MES + 500 mg/l Carb. + 25 mg/l or 50 mg/l Kan. Shoot elongation medium: MS + 0.05 mg/l 6-BA+ 0.03 mg/l GA + 150 mg/l phloroglucinol + 25 mg/l Kan. (or 5 mg/l L-ppt) + 500 mg/l Carb. + 20 g/l sucrose + 9 g/l agar Rooting medium: 1/2 MS + 0.05 mg/l NAA + 10 g/l sucrose + 7 g/l agar + 500 mg/l Carb. + 50 mg/l Kan. or 5 mg/l L-ppt (Following the protocol developed by Babic <i>et al.</i> 1998)	PCR, Southern, Northern analysis	/	1
Acyl carrier protein (ACP) gene	pCAMBI A1300	Hygromyci n (<i>hpt</i>)	Apical meristems of <i>B</i> . <i>juncea</i>	 (i) Informing the protect reaction peet by Dataset et al. 1756) Pre- and co-cultivation medium, MSB5H: (MSB5 (MS salt + B5 vitamins + 30 g/l sucrose) + 1.5 mg/l 6-BA + 0.01% 2,4-D) Regeneration medium: (MSB5H + 200 mg/l Cef. + 60 mg/l augmentin) Selection medium: (Regeneration medium + 40 mg/l hygromycin) Multiple-shoots induction medium: (MSB5 + 2 mg/l 6-BA + 2 mg/l TDZ) Rooting medium: (MS salt + B5 vitamins + 20 g/l sucrose + 5 mg/l IBA) 	PCR, Southern, Western blot analysis	1	2
The Turnip mosaic virus (TuMV) repli- case (NIb) gene	pBIN- pROK	Free	Flower buds of Chinese cabbage (<i>B. campestris</i> ssp. <i>pekinensis</i> (Lour) Olsson)	Soak in IM medium (MS + vitamin B5 + 6-BA 0.04 mg/l + AS (acetosyringone) 19.6 mg/l + Silwet-77 0.02 mg/l + sugar 50 g/l, pH 5.5) under negative pressure at 10^4 pa	PCR, ELISA, Southern, TuMV resistance analysis	2.09-2.53%	3
GFP and cry1Ac <i>Bacillus</i> <i>thuringiensis</i> (Bt) gene	pBIN19	kanamycin (nptII)	Hypocotyls of <i>B. napus</i> cv. 'Westar'	Pre- and co-cultivation medium: (MS + 1 mg/l 2,4-D) Selection medium: (MS + 1 mg/l 2,4-D + 400 mg/l Tim. + 20 mg/l Kan.) Regeneration medium 1: (MS + 4 mg/l 6-BA + 2 mg/l Zeatin + 5 mg/l AgNO ₃ + 400 mg/l Tim. + 20 mg/l Kan.) Regeneration medium 2: (MS + 4 mg/l 6-BA + 2 mg/l Zeatin + 400 mg/l Tim. + 20 mg/l Kan.) Shoot development medium: (MS + 0.5 mg/l 6-BA + 400 mg/l Tim. + 20 mg/l Kan.)	PCR, Western blot, Fluorescenc e spectrophot ometry, insect analysis	3.5%	4
Cry1Ac and Cry1C Bacillus thuringiensis (Bt) gene	pNS6 and pMON10 517	Hygromyci n (<i>hpt</i>) kanamycin (<i>npt</i> II)	Hypocotyls and cotyledonary petioles of Collards (<i>B.</i> <i>oleracea</i> var. <i>acephala</i>)	Rooting medium: (MS + 0.1% IBA + 400 mg/1 Tim. + 20 mg/1 Kan. Induction medium: MS + B5 vitamins + 5 mM arginine + 5 mg/1 6- BA + 0.5 mg/1 NAA + 3% sucrose + 0.8% Phytagar + 50 mg/1 Kan. Multiplication medium: MS + 100 mg/1 <i>myo</i> -inositol + 1 mg/1 thiamine HCl + 2 mg/1 6-BA + 3% sucrose + 0.8% Phytagar + 50 mg/1 Kan. Rooting medium: MS + 100 mg/1 <i>myo</i> -inositol + 1 mg/1 thiamine HCl + 1% sucrose + 1.1 g/1 Gelrite + 4 g/1 Agar gel Trallwing the protected for a grd Facto 2003)	PCR, Southern, ELISA, insect analysis	0.8-3.6%	5
<i>betA</i> gene for biosynthesis of glycinebetaine	pRC-cdh (the original plasmid pBI101)	kanamycin (<i>npt</i> II)	Hypocotyl of cabbage (<i>B.oleracea</i> var. <i>capitata</i>) cv. 'Golden Acre'	(Following the protocol: Cao and Earle 2003) Pre- and co-cultivation medium: (MS + 2% sucrose + 1 mg/l 2,4-D + 0.5 mg/l kinetin + 0.8% agar). Regeneration medium SI: (MS + 2% sucrose + 0.5 mg/l IAA + 2 mg/l 6-BA + 3.5 mg/l AgNO ₃ + 250 mg/l Cef. + 0.25% phytagel) Selection medium: (SI medium + 25 mg/l Kan.) Rooting medium (MS + 0.1 mg/l IAA + 250 mg/l Cef. + 25 mg/l Kan.) (Fallowing the protocol: Bhattacharm et al. 2002)	PCR, Southern, mRNA expression, NaCl stress analysis	/	6
Late embryogenesis abundant (LEA) gene isolated from <i>Brassica napus</i>	pIG121– LEA	kanamycin sulphate (<i>npt</i> II)	Hypocotyls with the cotyledons of Chinese cabbage (<i>Brassica</i> <i>campestris</i> ssp. <i>pekinensis</i>)	Pre-and co-cultured medium: MS medium $+ 2 \text{ mg/l } 6\text{-BA} + 1 \text{ mg/l}$ NAA + 16 g/l Phytagar Selection medium: MS + 2 mg/l $6\text{-BA} + 1 \text{ mg/l}$ NAA + 4 mg/l AgNO ₃ + 300 mg/l Tim. + 10 mg/l Kan. + 16 g/l Phytagar Rooting medium: MS + 300 mg/l Tim. + 10 mg/l Kan. + 16 g/l Phytagar	PCR, Southern, Northern, salt tolerance analysis	2.2%	7
Basta resistance (Bar) gene	pDHB- NIa1	Basta (<i>Bar</i>)	Plants of <i>B. rapa</i> ssp. <i>chinensis</i> var. <i>utilis</i> , cv. '49 Caixin'	Soak in IM medium under negative pressure at 10^4 pa for 25 mins	PCR, Southern, Northern, basta resistance analysis	0.01%	8

Abbreviations: 2,4-D, 2,4-Dichlorophenoxyacetic Acid; 6-BA, 6-benzylaminopurine; AS, acetosyringone; *bar*, phosphinothricin acetyltransferase gene; Carb, carbenicillin; Cef, cefotaxime; GA, gibberellic acid; *hpt*, hygromycin phosphotransferase gene; IAA, indole-3-acetic acid; IBA, indole-3-butyric acid; Kan, kanamycin; L-ppt, L-phosphinothricin; MES, morpholinoethane sulfonic acid; MS, Murashige and Skoog medium; NAA, α -naphthalene acetic acid; *npt*II, neomycin phosphotransferase II; TDZ, thidiazuron; Tim, timentin.

1, Jadhav et al. 2005; 2, Jha et al. 2007; 3, Yu et al. 2007; 4, Halfhill et al. 2001; 5, Cao et al. 2005; 6, Bhattacharya et al. 2004; 7, Park et al. 2005; 8, Qing et al. 2000

With developing DNA microarray and SNP genotyping technologies, and using the enormous progress already made in *Arabidopsis* as a foundation, it will provide a functional understanding of the molecular genetics of *Brassica* crops. And genetic transformation will bring the highest impact on genetic improvements of *Brassica* species. Thus, it can be expected that practical *Brassica* breeding will reap considerable benefits from molecular genetic research, technology and marker development in the next decade.

ACKNOWLEDGEMENTS

Our research was funded by the National Natural Science Foundation of China (30571510).

REFERENCES

- Babic V, Dalta RS, Scoles GJ, Keller WA (1998) Development of an efficient *Agrobacterium*-mediated transformation system for *Brassica carinata*. *Plant Cell Reports* 17, 183-188
- Batley J, Hopkins CJ, Cogan NOI, Hand M, Jewell E, Kaur J, Kaur S, Li X, Ling AE, Love C, Mountford H, Todorovic M, Vardy M, Walkiewicz M, Spangenberg GC, Edwards D (2007) Identification and characterization of simple sequence repeat markers from *Brassica napus* expressed sequences. *Molecular Ecology Notes* 7, 886-889
- Beckett P, Bancroft L, Trick M (2005) Computational tools for Brassica-Arabidopsis comparative genomics. Comparative and Functional Genomics 6, 147-152
- Bhattacharya RC, Maheswari M, Dineshkumar V, Kirti PB, Bhat SR, Chopra VL (2004) Transformation of *Brassica oleracea* var. *capitata* with bacterial *bet*A gene enhances tolerance to salt stress. *Scientia Horticulturae* 100, 215-227
- Bhattacharya RC, Viswakarma N, Bhat SR, Kirti PB, Chopra VL (2002) Development of insect-resistant transgenic cabbage plants expressing a synthetic *cryIA(b)* gene from *Bacillus thuringiensis*. *Current Science* **83**, 146-150
- Bogs J, Bourbouloux A, Cagnac O, Wachter A, Rausch T, Delrot S (2003) Functional characterization and expression analysis of a glutathione transporter, *BjGT1*, from *Brassica juncea*: evidence for regulation by heavy metal exposure. *Plant, Cell and Environment* 26, 1703-1711
- Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. *Nature* **422**, 433-438
- Bulman S, Siemens J, Ridgway HJ, Eady C, Conner AJ (2006) Identification of genes from the obligate intracellular plant pathogen, *Plasmodiophora* brassicae. Federation of European Microbiological Societies 264, 198-204
- Cao J, Earle ED (2003) Transgene expression in broccoli (*Brassica oleracea* var. *italica*) clones propagated *in vitro* via leaf explants. *Plant Cell Report* 21, 789-796
- Cao J, Shelton AM, Earle ED (2005) Development of transgenic collards (*Brassica oleracea* L., var. *acephala*) expressing a *cry1Ac* or *cry1C* Bt gene for control of the diamondback moth. *Crop Protection* 24, 804-813
- Cao JS, Yu XL, Ye WZ, Lu G, Xiang X (2006) Functional analysis of a novel male fertility CYP86MF gene in Chinese cabbage (Brassica campestris L. ssp. chinensis makino). Plant Cell Reports 24, 715-723
- Cao MQ, Liu F, Yao L, Bouchez D, Tourneur C, Li Y, Robaglia C (2000) Transformation of pakchoi (*Brassica rapa* L. ssp. *chinensis*) by *Agrobacterium* infiltration. *Molecular Breeding* **6**, 67-72
- Carlssonl J, Lagercrantz U, Sundström J, Teixeira R, Wellmer F, Meyerowitz EM, Glimelius K (2007) Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile *Brassica napus* flowers. *The Plant Journal* **49**, 452-462
- Casimiro S, Tenreiro R, Monteiro AA (2006) Identification of pathogenesisrelated ESTs in the crucifer downy mildew oomycete *Hyaloperonospora parasitica* by high-throughput differential display analysis of distinct phenotypic interactions with *Brassica oleracea*. Journal of Microbiological Methods 66, 466-478
- Charest PJ, Holbrook LA, Gabard J, Lyer VN, Miki BL (1988) Agrobacterium-mediated transformation of thin cell layer explants from Brassica napus L. Theoretical and Applied Genetics 75, 438-445
- Chen BY, Jørgensen RB, Cheng BF, Heneen WK (1997) Identification and chromosomal assignment of RAPD markers linked with a gene for seed colour in a *Brassica campestris-alboglabra* addition line. *Hereditas* 126, 133-138
- **Chi GL, Barfield DG, Sim GE, Pua EC** (1990) Effect of AgNO₃ and aminoethoxyvinylglycine on *in vitro* shoot and root organogenesis from seedling explants of recalcitrant *Brassica* genotypes. *Plant Cell Reports* **9**, 195-198

Christou P (1996) Transformation technology. Trends in Plant Science 1, 423-431

Cogan NOL, Newbury HJ, Oldacres AM, Lynn JR, Kearsey MJ, King GJ, Puddephat LJ (2004) Identification and characterization of QTL controlling Agrobacterium-mediated transient and stable transformation of Brassica oleracea. Plant Biotechnology Journal 2, 59-69

- **Das S, Roscoe TJ, Delseny M, Srivastava PS, Lakshmikumaran M** (2002) Cloning and molecular characterization of the *Fatty Acid Elongase 1 (FAE 1)* gene from high and low erucic acid lines of *Brassica campestris* and *Brassica oleracea. Plant Science* **162**, 245-250
- **Dodds PN, Clarke AE, Newbiggin E** (1996) A molecular perspective on pollination in flowering plants. *Cell* **85**, 141-144
- Foster E, Lévesque-Lemay M, Schneiderman D, Albani D, Schernthaner J, Routly E, Robert LS (2005) Characterization of a gene highly expressed in the *Brassica napus* pistil that encodes a novel proline-rich protein. *Sexual Plant Reprodution* 17, 261-267
- Fry J, Barnasson A, Horsch RB (1987) Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Reports 6, 321-325

Fujimoto R, Sugimura T, Nishio T (2006) Gene conversion from SLG to SRK resulting in self-compatibility in *Brassica rapa*. FEBS Letters 580, 425-430

- Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. *Science* 282, 656-659
- Gao MJ, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from *Brassica napus*. *Plant Molecular Biology* 49, 459-471
- Gong H, Pua EC (2004) Identification and expression of genes associated with shoot regeneration from leaf disc explants of mustard (*Brassica juncea*) in vitro. Plant Science 167, 1191-1201
- Hachey JE, Sharma KK, Moloney MM (1991) Efficient shoot regeneration of Brassica campestris using cotyledon explants cultured in vitro. Plant Cell Reports 9, 549-554
- Halfhill MD, Richards HA, Mabon SA, Stewart CN (2001) Expression of GFP and Bt transgenes in *Brassica napus* and hybridization with *Brassica rapa*. *Theoretical and Applied Genetics* **103**, 659-667
- Hanson MR (1991) Plant mitochondrial mutations and male sterility. Annual Review of Genetics 25, 461-486
- Hatakeyama K, Takasaki T, Watanabe M, Hinata K (1998) Molecular characterization of S locus genes, SLG and SRK, in a pollen-recessive self-incompatibility haplotype of *Brassica rapa* L. *Genetics* 149, 1587-1597
- Hu Q, Hansen LN, Laursen J, Dixelius C, Andersen SB (2002) Intergeneric hybrids between *Brassica napus* and *Orychophragmus violaceus* containing traits of agronomic importance for oilseed rape breeding. *Theoretical and Applied Genetics* 105, 834-840
- Ito S, Ichinose H, Yanagi C, Tanaka S, Kameya-Iwaki M, Kishi F (1999) Identification of an *in planta*–induced mRNA of plasmodiophora brassicae. *Journal of Phytopathology* **147**, 79-82
- Jadhav A, Katavic V, Marillia EF, Giblin EM, Barton DL, Kumar A, Sonntag C, Babic V, Keller WA, Taylor DC (2005) Increased levels of erucic acid in *Brassica carinata* by co-suppression and antisense repression of the endogenous *FAD2* gene. *Metabolic Engineering* 7, 215-220
- Jagannath A, Arumugam N, Gupta V, Pradhan A, Burma PK, Pental D (2002) Development of transgenic *barstar* lines and identification of a male sterile (*barnase*)/restorer (*barstar*) combination for heterosis breeding in Indian oilseed mustard (*Brassica juncea*). *Current Science* **82**, 46-52
- Jagannath A, Bandyopadhyay P, Arumugam N, Gupta V, Burma PK, Pental D (2001) The use of a spacer DNA fragment insulates the tissue-specific expression of a cytotoxic gene (*barnase*) and allows high frequency generation of transgenic male sterile lines in *Brassica juncea* L. *Molecular Breeding* 8, 11-23
- Janeja HS, Banga SS, Lakshmikumaran M (2003) Identification of AFLP markers linked to fertility restorer genes for *tournefortii* cytoplasmic malesterility system in *Brassica napus*. *Theoretical and Applied Genetics* 107, 148-154
- Javidfar F, Ripley VL, Roslinsky V, Zeinali H, Abdmishani C (2006) Identification of molecular markers associated with oleic and linolenic acid in spring oilseed rape (*Brassica napus*). *Plant Breeding* 125, 65-71
- Jha JK, Sinha S, Maiti MK, Basu A, Mukhopadhyay UK, Sen SK (2007) Functional expression of an acyl carrier protein (ACP) from Azospirillum brasilense alters fatty acid profiles in Escherichia coli and Brassica juncea. Plant Physiology and Biochemistry 45, 490-500
- Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in *Brassicaceae*. Annals of Botany **95**, 229-235
- Lang M, Zhang Y, Chai T (2005) Identification of genes up-regulated in response to Cd exposure in *Brassica juncea* L. Gene 363, 151-158
- Lanner-Herrera C, Bryngelsson T, Gustafsson M (1997) Relationships of wild *Brassica* species in chromosome number 2n=18, based on comparison on RFLPs. *Genome* 40, 302-308
- Lázaro A, Aguinagalde I (1998) Genetic diversity in *Brassica oleracea* (Cruciferae) and wild relatives (2n=18) using RAPD markers. *Annals of Botany* 82, 829-833
- Lim YP, Plaha P, Choi SR, Uhm T, Hong CP, Bang JW, Hur YK (2006) Toward unraveling the structure of *Brassica rapa* genome. *Physiologia Plantarum* 126, 585-591
- Li SL, Zhou XR, Zhou ZJ, Qian YX (1990) Inheritance of genetic male sterility (GMS) and its utilization in rape (*Brassica napus* L.) (in Chinese). *Crop*

Research 4, 27-32

- Liu Z, Fu T, Tu J, Chen B (2005) Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (*Brassica napus* L.). *Theoretical and Applied Genetics* **110**, 303-310
- Lukens L, Zou F, Lydiate D, Parkin I, Osborn T (2003) Comparison of a *Brassica oleracea* genetic map with the genome of *Arabidopsis thaliana*. *Genetics* 164, 359-372
- Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe *Brassiceae*. *Genome Research* **15**, 516-525
- Marsolais F, Sebastià CH, Rousseau A, Varin L (2004) Molecular and biochemical characterization of BNST4, an ethanol-inducible steroid sulfotransferase from *Brassica napus*, and regulation of *BNST* genes by chemical stress and during development. *Plant Science* 166, 1359-1370
- McVetty PBE (1997) Cytoplasmic male sterility. In: Shivanna KR, Sawhney VK (Eds) Pollen Biotechnology for Crop Production and Improvement, Cambridge University Press, pp 155-182
- Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of *Brassica napus* using *Agrobacterium* vectors. *Plant Cell Reports* 8, 238-242
- Nasrallah JB, Nasrallah ME (1993) Pollen-stigma signaling in sporophytic self-incompatibility response. *Plant Cell* 5, 1325-1335
- Nasrallah JB, Stein JC, Kandasamy MK, Nasrallah ME (1994) Signaling the arrest of pollen tube development in self-incompatible plants. *Science* 266, 1505-1508
- Nomura K, Minegishi Y, Kimizuka-Takagi C, Fujioka T, Moriguchi K, Shishido R, Ikehashi H (2005) Evaluation of F₂ and F₃ plants introgressed with QTLs for clubroot resistance in cabbage developed by using SCAR markers. *Plant Breeding* **124**, 371-375
- Ono Y, Takahata Y, Kaizuma N (1994) Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (*Brassica napus* L.). *Plant Cell Reports* 14, 13-17
- Palmer CE (1992) Enhanced shoot regeneration from *Brassica campestris* by silver nitrate. *Plant Cell Reports* 11, 541-545
- Park BJ, Liu Z, Kanno A, Kameya T (2005) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a *B. napus* LEA gene. *Plant Science* 169, 553-558
- Pathania A, Bhat SR, Dinesh Kumar V, Ashutosh, Kirti PB, Prakash S, Chopra VL (2003) Cytoplasmic male sterility in alloplasmic *Brassica juncea* carrying *Diplotaxis catholica* cytoplasm: molecular characterization and genetics of fertility restoration. *Theoretical and Applied Genetics* 107, 455-461
- Pechan PM (1989) Successful cocultivation of *Brassica napus* microspores and proembryoes with *agrobacterium*. *Plant Cell Reports* **8**, 387-398
- Prakash S (2001) Utilization of wild germplasm of *Brassica* allies in developing cytoplasmic male sterility/fertility restoration systems in Indian mustard – *Brassica juncea*. In: Liu H, Fu TD (Eds) *Proceedings of the International Symposium on Rapeseed Science*, Science Press, New York, pp 63-68
- Pylatuik JD, Lindsay DL, Davis AR, Bonham-Smith PC (2003) Isolation and characterization of a *Brassica napus* cDNA corresponding to a B-class floral development gene. *Journal of Experimental Botany* 54, 2385-2387
- Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of pakchoi (*Brassica rapa* L. ssp *chinesis*) by *Agrobacterium* infiltration. *Molecular Breeding* **6**, 67-72
- Radke SE, Andrews BM, Moloney MM, Crouch ML, Kridl JC, Knauf VC (1988) Transformation of *Brassica napus* L. using *Agrobacterium tumefaciens*: Developmentally regulated expression of a reintroduced napin gene. *Theoretical and Applied Genetics* **75**, 685-694
- Ren JP, Dickson MH, Earle ED (2000) Improved resistance to bacterial soft rot by protoplast fusion between *Brassica rapa* and *B. oleracea*. *Theoretical* and *Applied Genetics* 100, 810-819
- Ruffio-Chable V, Herve Y, Dumas C, Gaude T (1997) Distribution of S haplotypes and its relationship with self-incompatibility in *Brassica oleracea*. Part I. In inbred lines of cauliflower (*B. oleracea* var botrytis). Theoretical and Applied Genetics 94, 338-346
- Sarosh BR, Meijer J (2007) Transcriptional profiling by cDNA-AFLP reveals novel insights during methyl jasmonate, wounding and insect attack in *Brassica napus*. *Plant Molecular Biology* 64, 425-438
- Schmidt R, Acarkan A, Boivin K (2001) Comparative structural genomics in the Brassicaceae family. Plant Physiology and Biochemistry 39, 253-262
- Schopfer CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in *Brassica. Science* 286, 1697-1700
- Shin YK, Yum H, Kim ES, Cho H, Gothandam KM, Hyun J, Chung YY (2006) BcXTH1, a *Brassica campestris* homologue of Arabidopsis XTH9, is associated with cell expansion. *Planta* 224, 32-41
- Siemens J, Schieder O (1996) Transgenic plants, genetic transformation recent developments and state of the art. *Plant Tissue Culture and Biotechnology* 2, 66-75

- Suzuki G, Kai N, Hirose T, Fukui K, Nishio T, Takayama S, Isogai A, Watanabe M, Hinata K (1999) Genomic organization of the S locus: Identification and characterization of genes in SLG/SRK region of S⁹ haplotype of *Brassica campestris* (syn. *rapa*). *Genetics* 153, 391-400
- Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogaik A, Hinata K (2000) The S receptor kinase determines self-incompatibility in *Brassica* stigma. *Nature* **403**, 913-916
- Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of *Brassica oleracea* and *Arabidopsis thaliana* reveal gene loss, fragmentation, and dispersal after polyploidy. *The Plant Cell* 18, 1348-1359
- Trick M, Bancroft I, Lim YP (2007) The Brassica rapa Genome Sequencing Initiative. Genes, Genomes and Genomics 1, 35-39
- Tsuwamoto R, Fukuoka H, Takahata Y (2007) Identification and characterization of genes expressed in early embryogenesis from microspores of *Brassica napus. Planta* 225, 641-652
- U N (1935) Genome analysis in *Brassica* with special reference to the experimental formation of *B. napus* and peculiar mode of fertilization. *Japanese Journal of Botany* 7, 389-452
- Velculescu VE, Zhang L, Volgelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 5235, 484-487
- Wang DJ, Guo AJ, Li DR, Tian JH, Huang F, Sun GL (2007a) Cytological and molecular characterization of a novel monogenic dominant GMS in Brassica napus L. Plant Cell Report 26, 571-579
- Wang T, Li H, Lu Y, Zhang J, Ye Z (2007b) Identification and distribution of S haplotypes in *Brassica* vegetables from China. *Scientia Horticulturae* 112, 271-277
- Wang WC, Menon G, Hansen G (2003) Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Reports 22, 274-281
- Wang YP, Sonntag K, Rudloff E, Han J (2005a) Production of fertile transgenic Brassica napus by Agrobacterium-mediated transformation of protoplasts. Plant Breeding 124, 1-4
- Wang YQ, Ye WZ, Cao JS, Yu XL, Xiang X, Lu G (2005b) Cloning and characterization of the microspore development-related gene *BcMF2* in Chinese cabbage pak-choi (*Brassica campestris* L. ssp. *chinensis Makino*). Journal of Integrative Plant Biology 47, 863-872
- Watanabe M, Suzuki G, Shiba H, Takayama S (2006) Molecular mechanisms of self-incompatibility in Brassicaceae. In: Teixeira da Silva JA (Ed) *Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues* (1st Edn, Vol I), Global Science Books, Isleworth, pp 552-555
- Wu J, Shen J, Mao X, Liu K, Wei L, Liu P, Yang G (2007) Isolation and analysis of differentially expressed genes in dominant genic male sterility (DGMS) *Brassica napus* L. using subtractive PCR and cDNA microarray. *Plant Science* 172, 204-211
- Yamagishi H, Landgren M, Forsberg J, Glimelius K (2002) Production of asymmetric hybrids between Arabidopsis thaliana and Brassica napus utilizing an efficient protoplast culture system. Theoretical and Applied Genetics 104, 959-964
- Yamasaki S, Konno N, Kishitani S (1998) An alteration in transcription patterns of mitochondrial genes in alloplasmic lines of *Brassica rapa*. Genes and Genetic Systems 73, 167-172
- Yang G, Duan Z, Fu T, Wu C (1999) A promising alternative way of utilizing pol CMS for hybrid breeding in *brassica napus* L. 10th International Rapeseed Congress. Canberra, Australia. Available online: http://www.regional. org.au/au/gcirc/4/86.htm
- Ying M, Dreyer F, Cai D, Jung C (2003) Molecular markers for genic male sterility in Chinese cabbage. *Euphytica* 132, 227-234
- Yoon H, Lee IA, Lee H, Lee BH, Jo J (2005) Overexpression of a eukaryotic glutathione reductase gene from *Brassica campestris* improved resistance to oxidative stress in *Escherichia coli*. *Biochemical and Biophysical Research Communications* 326, 618-623
- Yu Z, Zhou S, He Q (2007) High level resistance to *Turnip mosaic virus* in Chinese cabbage (*Brassica campestris* ssp. *pekinensis* (Lour) Olsson) transformed with the antisense NIb gene using marker-free Agrobacterium tume-faciens infiltration. Plant Science 172, 920-929
- Zhang FL, Takahata Y, Xu JB (1998) Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage (*Brassica campestris* L. ssp. *pekinensis*). *Plant Cell Reports* 17, 780-786
- Zhang Y, Wang Z, Zhang L, Cao Y, Huang D, Tang K (2006) Molecular cloning and stress-dependent regulation of potassium channel gene in Chinese cabbage (*Brassica rapa* ssp. *Pekinensis*). Journal of Plant Physiology 163, 968-978
- Zhou B, Li YH, Xu ZR, Yan HF, Homma S, Kawabata S (2007) Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (*Brassica rapa*). *Journal of Experimental Botany* **58**, 1771-1781