Genetic Polymorphisms of the TNF-α and TNF-β Genes in Malaysian SLE Patients

Chua Kek Heng1* · Lau Tze Pheng1 · Foo Chui Ting1 · Tan Si Yen2 · Lian Lay Hoong1

1 Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
2 Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Corresponding author: * kchua@um.edu.my

ABSTRACT

A total of 100 SLE patients and 100 normal healthy controls were included in this study. Blood samples were collected and genomic DNA was extracted by using the conventional phenol-chloroform method. The DNA samples were then used to examine the association between the genetic polymorphisms of TNFs and SLE in the Malaysian population. In this study, the distribution pattern of the TNF-α -308 and TNF-β +252 genetic polymorphisms were demonstrated, in addition to their association with susceptibility to SLE. With regards to the TNF-α gene polymorphisms, the frequency of the TNF1/1 homozygote was significantly higher (χ² = 9.1912, p < 0.05) in healthy controls, while the frequency of TNF1/2 heterozygote was significantly higher (χ² = 9.1912, p < 0.05) in SLE patients. Interestingly, the TNF2/2 homozygote was not present in either SLE patients or in the healthy control group. In terms of the TNF-β gene polymorphisms, there was no significant association between the different alleles or genotypes and SLE susceptibility.

Keywords: genetic association, PCR-RFLP, single nucleotide polymorphism, SLE susceptibility

INTRODUCTION

Autoimmunity is a state where the immune response is directed against our body’s own cells, tissues and other cellular components. Generally, autoimmune diseases can be categorized into two main types, i.e., organ-specific and systemic autoimmune diseases (Goldsby et al. 2003). Systemic Lupus Erythematosus (SLE) is one of the prominent examples of systemic autoimmune diseases. SLE is more prevalent in females than males at a 10:1 ratio. In addition, a higher prevalence rate of SLE is observed in women of child-bearing years, i.e., between 20 to 40 years of age (Goldsby et al. 2003). This may be due to the hormonal changes that occur during puberty and the child-bearing years. The populations of African Americans, Afro-Caribbeans and Asians also show a greater prevalence and incidence rates than Caucasians (Rus and Hochberg 2002). Kaslow’s study (Kaslow 1982), which was previously carried out in 1982, had reported that the mortality rates are three-fold higher among blacks (8.4/100,000) and two-fold higher among Asians (6.8/100,000), compared to whites (2.8/100,000).

In SLE, any part of the body can be affected during the course of the disease, particularly the skin, joints, heart, lungs, liver, kidneys, blood vessels and nervous system. There are various signs and symptoms which may appear either serially or simultaneously, these include the characteristic butterfly-shaped rash (or malar rash), discoid rash, oral ulcers, arthritis, serositis and others (Wallace and Hahn 1997). The pathogenesis of SLE is mainly due to the over-production of disease-causing subsets of T lymphocytes, autoantibodies and immune complexes. In addition, failure to appropriately regulate the synthesis or removal of the autoantibodies, immune complexes and activated T-cells will result in their precipitation on tissues, which subsequently initiate tissue destruction in SLE patients (Hahn 2002).

Broadly, the etiology of SLE involves genetic, environmental and endocrine-metabolic factors. The genetic factor consists of both major histocompatibility complex (MHC) and non-MHC genes (Tsao 2002). Examples of non-MHC genes include those that encode for interleukins, immunoglobulins and mannose-binding lectins (MBL) (Vyse and Kotzin 1998). Owing to its polygenic nature, the susceptibility of SLE is affected by multiple genes that interact with each other (Tsao 2002).

Tumor necrosis factors (TNFs) are a group of low molecular weight proteins that regulate the inflammatory process in our body. The term “tumor necrosis factor” originates from its function as a mediator in tumor necrosis in animal serum treated with lipopolysaccharides (Abbas et al. 1994). The members of the TNF family consists of tumor necrosis factor alpha (TNF-α) and beta (TNF-β), which are also known as cachectin and lymphotoxin, respectively (Ruddle and Waksman 1968; Beutler et al. 1985). Both of these molecules are encoded by genes located at the short arm of human chromosome 6 (Spies et al. 1989). TNF-α is a cytokine produced by monocytes and/or macrophages, while TNF-β is a lymphokine secreted by lymphoid cells (Vilček and Lee 1991). Aside from having different cells of origin, both of these molecules play different roles in the immune system. TNF-α is responsible for the pathogenesis of certain autoimmune diseases, while TNF-β is vital in the monitoring of the normal immune system (Pujol-Borrell et al. 1987; Bettinotti et al. 1993).

In 2004, Parks and his collaborators revealed that TNFs are one of the determinants responsible for the initiation and progression of SLE. The synthesis of TNF was found to be altered in SLE patients and associated with the disease activity (Aringer et al. 2002). Polymorphisms of the TNF-α and TNF-β genes are associated with the susceptibility of SLE to a great extent. Preceding studies had demonstrated the association between TNF-α-308 G/A and TNF-β+252 A/G polymorphisms with SLE (Bettinotti et al. 1993; Kim et al. 1996; Zhang et al. 1997; Parks et al. 2004). As a result, our current study aimed to investigate the association between both TNF-α and TNF-β genetic polymorphisms with SLE in the Malaysian population.
MATERIALS AND METHODS

Sample collection and DNA extraction
A total of 100 SLE patients, who had attended the University Malaya Medical Centre (UMMC) in Kuala Lumpur, Malaysia, were randomly selected for this study. These patients had fulfilled the revised American College of Rheumatology (ACR) criteria for SLE (Tan et al. 1982). An additional 100 healthy individuals were also included as normal controls. Blood samples were collected from these volunteers with written informed consent (Ethics Approval No: 380.1). Subsequently, genomic DNA was extracted by using the conventional phenol-chloroform method and stored at -70°C until further use.

Analysis of the TNF-α gene polymorphisms
The TNF-α gene polymorphisms were analyzed by polymerase chain reaction (PCR) followed by agarose gel electrophoresis (AGE). The forward and reverse primers used in this analysis were previously described by Zúñiga et al. (2001), with some modifications in the PCR conditions. The PCR conditions were as follows: denaturation step at 95°C for 1 min, annealing step at 65°C for 1 min and an extension step at 72°C for 1 min. This PCR cycle was repeated for 30 rounds. The PCR products obtained were separated and identified via 2.0% (w/v) AGE, with the 50 bp DNA ladder repeated for 30 rounds. The PCR products obtained were separated and identified via 2.0% (w/v) AGE, with the 50 bp DNA ladder (Fermentas, USA) as the indicator for the size of DNA fragments produced. The gel was stained with ethidium bromide and visualized by using a 2.0% (w/v) ethidium bromide-stained agarose gel, where a 100 bp DNA ladder (Fermentas, USA) was used as the marker for the size of DNA fragments produced.

Analysis of the TNF-β gene polymorphisms
The analysis of TNF-β gene polymorphisms involved both PCR and restriction enzyme (RE) digestion. Initially, PCR was carried out by using primers that were previously described in Bettinotti et al. (1993) and the PCR conditions were modified, as follows: denaturation step at 95°C for 1 min, annealing step at 67°C for 1 min and extension step at 72°C for 1 min. The PCR cycle was repeated for 30 rounds. After PCR, a 740 bp PCR product was obtained and analyzed on a 1.5% (w/v) agarose gel. Subsequently, RE digestion was carried out on the amplified products by using the Nco enzyme (Fermentas, USA). The fragments yielded were analyzed and visualized by using a 2.0% (w/v) ethidium bromide-stained agarose gel, where a 100 bp DNA ladder (Fermentas, USA) was used as the marker for the size of DNA fragments produced.

Statistical analysis
The data obtained from the analysis of TNF-α and -β gene polymorphisms were statistically analyzed by using the allelic and genotypic frequencies, Chi-square (χ^2) test, probability (p) value, odds ratio (OR) and 95% confidence interval (CI) values (Joseph et al. 1994).

RESULTS

Analysis of the TNF-α gene polymorphisms
Post-PCR amplification, different lengths of PCR fragments were obtained. The TNF1 homozygote produced two fragments of 308 and 216 bp, while the TNF2 homozygote was represented by 308 and 139 bp fragments. As for the heterozygote, three fragments of 308, 216 and 139 bp were observed. Figs. 1A and 1B reveal the banding patterns that represent different genotypes on 2% (w/v) agarose gels observed in both SLE patients and healthy control groups, respectively. Both the TNF1 and TNF2 alleles were observed in the SLE patients and normal control samples. Analysis of the allelic frequency of the TNF-α gene showed that the TNF1 allele was more frequent than the TNF-2 allele, and was significantly associated ($\chi^2 = 7.44, p < 0.05$) with healthy controls. In contrast, the TNF2 allele was significantly associated ($\chi^2 = 7.44, p < 0.05$) with SLE (Table 1). In addition, the TNF1 allele showed a lower disease penetration to SLE (OR = 0.4650), whilst the TNF2 allele showed a higher penetration to this disease (OR = 2.1507) (Table 1).

In this study, the most common TNF-α genotype observed in the Malaysian population was the TNF1 homozygote, followed by the heterozygote (Table 2). The analysis of genotypic frequency showed that the TNF1 homozygote was significantly higher ($\chi^2 = 9.1912, p < 0.05$) in healthy controls, thus indicating that this genotype was inversely associated with SLE and might be protective against this disease. On the other hand, the frequency of the TNF2 allele showed a lower disease penetration to SLE (OR = 0.3895), compared to the heterozygote. Interestingly, there were no TNF2/2 homozygotes observed in either the SLE patient or healthy control groups (Table 2).

Analysis of the TNF-β gene polymorphisms
After NcoI digestion of the PCR product, two fragments of 555 and 185 bp were produced by the TNFB*1 homozygote, while the PCR product remained intact for the TNFB*2 homozygote. As for the heterozygote, three fragments of
Table 1 The allelic frequency (n), \(\chi^2 \) (p) and OR (95% CI) values of the TNF-\(\alpha \) gene polymorphisms in Malaysian SLE patients and healthy controls.

<table>
<thead>
<tr>
<th>Allele</th>
<th>SLE patient (n)</th>
<th>Healthy control (n)</th>
<th>(\chi^2) value (p value)</th>
<th>OR value (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF1</td>
<td>158</td>
<td>178</td>
<td>7.44 (0.0064)</td>
<td>0.4650 (0.2660 – 0.8129)</td>
</tr>
<tr>
<td>TNF2</td>
<td>42</td>
<td>22</td>
<td>2.1507 (1.2303 – 3.7597)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 The genotypic frequency (n), \(\chi^2 \) (p) and OR (95% CI) values of the TNF-\(\alpha \) gene polymorphisms in Malaysian SLE patients and healthy controls.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>SLE patient (n)</th>
<th>Healthy control (n)</th>
<th>(\chi^2) value (p value)</th>
<th>OR value (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF1/1</td>
<td>58</td>
<td>78</td>
<td>9.1912 (0.0024)</td>
<td>0.3695 (0.2100 – 0.7224)</td>
</tr>
<tr>
<td>TNF2/2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF1/2</td>
<td>42</td>
<td>22</td>
<td>2.5674 (1.3843 – 4.7617)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The analysis of TNF-\(\beta \) genotypic frequency revealed that the most common genotype observed among the Malaysian population was the TNFB*1/TNFB*2 heterozygote, followed by the TNFB*2 homozygote and TNFB*1 homozygote (Table 4). In this study, there was no significant difference (\(\chi^2 = 4.0010, p > 0.05 \)) in the distribution of TNFB*1/TNFB*1 homozygotes between the SLE patients and normal controls. Likewise, there was also no significant association between the TNFB*2/TNFB*2 homozygotes (\(\chi^2 = 4.0010, p > 0.05 \)) and the TNFB*1/TNFB*2 heterozygotes (\(\chi^2 = 4.0010, p > 0.05 \)) with SLE (Table 4). Furthermore, the heterozygotes showed the lowest penetration to SLE (OR = 0.5670) compared to the TNFB*1 homozygote (OR = 1.2849) and TNFB*2 homozygote (OR = 1.5653) (Table 4).
DISCUSSION

Analysis of the TNF-α gene polymorphisms

Polymorphism of the TNF-α gene, which we investigated in this study, is located at the promoter region at position -308. There are two alleles indicated by the presence of a G or A base at position -308, namely the TNF1 allele and TNF2 allele, respectively (Wilson et al. 1997). Both of the alleles were positively scored in the Malaysian population, with the TNF1 allele occurring more commonly than the TNF2 allele. This distribution pattern is similar to that previously reported in Zúñiga et al. (2001) study of a Mexican population (Table 5). However, while the distribution pattern was similar, our study contradicts theirs, by demonstrating that the TNF-α -308 polymorphisms are significantly associated with SLE.

The TNF1/1 and TNF1/2 genotypes were reported in both SLE patient and healthy control groups, but there was a notable absence of the TNF2/2 genotype. The significant increase in the TNF1/1 genotype in the healthy control group might imply an inverse association between the TNF1 allele and SLE. This genotype probably exerts a protective effect against the occurrence of SLE. In this context, it is assumed that the TNF1 allele might affect the production of the TNF-α protein. Hence, the synthesis of cytotoxic T cells and those that down-regulate the production of antibodies would decrease. This would then help to maintain and regulate our body’s own immune system, and subsequently reduce the risk of developing SLE (Vassilli 1992).

As for the TNF2 allele, the TNF1/2 genotype was significantly higher among the SLE patients. Therefore, there was a positive association between the TNF2 allele and SLE. It is suggested that the increase in TNF2 allele transcription would result in a drastic elevation in circulating TNF levels, which might trigger SLE (Savill 1995). In addition, the TNF2 allele may also stimulate the increased production of IL-1α, which is a proinflammatory cytokine. This will then contribute to the susceptibility of SLE (Danis et al. 1995). In addition, the TNF2 allele may also stimulate the increased levels of soluble TNF-receptors (TNF-Rs) type I and II. The binding of TNF-α to these soluble TNF-Rs prevents the membrane-bound receptor binding and subsequently, reduces the transport of proapoptotic signal to target cells. These circulating TNF-Rs will also inhibit the proteolytic cleavage of TNF-α and prolong the serum half-life of TNF-α leading to the development of a circulating pool of cytokines. As a result, the microenvironmental TNF-α concentration will increase and stimulate subsequent pathological tissue damage (Aderka et al. 1992). Previous studies had examined the association between the TNF-α gene and the susceptibility of SLE, based on different populations with different ethnic backgrounds. In 1996, Rudwaleit and his group had demonstrated that the TNF2 allele was significantly increased in Caucasian SLE patients when compared to healthy controls. Later in 2004, Parks and his collaborators reported an association between the TNF allele and the risk of SLE, with the presence of IL-1α -889 C/C genotype in Caucasian SLE patients in the southeastern United States.

Analysis of the TNF-β gene polymorphisms

The site of interest in the TNF-β gene is located at position +252 in the first intron of the gene, where a G or A base is present (Abraham et al. 1991). The two alleles, i.e., TNFB*1 and TNFB*2 can be differentiated by the presence or absence of the NcoI polymorphic restriction site (Abraham et al. 1991; Messer et al. 1991). In this context, the restriction site is present in the TNFB*1 allele but absent in the TNFB*2 allele (Bettinotti et al. 1993).

Table 5 Distribution of the TNF-α -308 allelic and genotypic frequencies in SLE patients and healthy controls in both Mexican and Malaysian populations.

<table>
<thead>
<tr>
<th>Allele/Genotype</th>
<th>SLE patient n (%)</th>
<th>Healthy control n (%)</th>
<th>SLE patient n (%)</th>
<th>Healthy control n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF1</td>
<td>94 (92.2)</td>
<td>107 (97.3)</td>
<td>158 (79.0)</td>
<td>178 (89.0)</td>
</tr>
<tr>
<td>TNF2</td>
<td>8 (7.8)</td>
<td>3 (2.7)</td>
<td>42 (21.0)</td>
<td>22 (11.0)</td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF1/1</td>
<td>44 (86.3)</td>
<td>52 (94.5)</td>
<td>58 (58.0)</td>
<td>78 (78.0)</td>
</tr>
<tr>
<td>TNF1/2</td>
<td>6 (11.7)</td>
<td>3 (5.5)</td>
<td>42 (42.0)</td>
<td>22 (22.0)</td>
</tr>
<tr>
<td>TNF2/2</td>
<td>1 (2.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
</tbody>
</table>

Table 6 Comparison of TNF-β genotypic and allelic frequencies among Korean, German, and Malaysian populations in SLE patients and healthy controls.

<table>
<thead>
<tr>
<th>Allele/Genotype</th>
<th>SLE n (%)</th>
<th>Control n (%)</th>
<th>SLE n (%)</th>
<th>Control n (%)</th>
<th>SLE n (%)</th>
<th>Control n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFB*1</td>
<td>67 (34.5)</td>
<td>260 (46.3)</td>
<td>136 (39.3)</td>
<td>11 (29.1)</td>
<td>83 (41.5)</td>
<td>89 (44.5)</td>
</tr>
<tr>
<td>TNFB*2</td>
<td>127 (65.5)</td>
<td>302 (53.7)</td>
<td>210 (60.7)</td>
<td>271 (70.9)</td>
<td>117 (58.5)</td>
<td>111 (55.5)</td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFB1/TNFB1</td>
<td>12 (24.4)</td>
<td>59 (21.0)</td>
<td>26 (15.0)</td>
<td>21 (11.0)</td>
<td>22 (22.0)</td>
<td>18 (18.0)</td>
</tr>
<tr>
<td>TNFB1/TNFB2</td>
<td>43 (44.3)</td>
<td>142 (50.5)</td>
<td>84 (48.6)</td>
<td>69 (36.1)</td>
<td>39 (39.0)</td>
<td>53 (53.0)</td>
</tr>
<tr>
<td>TNFB2/TNFB2</td>
<td>42 (43.3)</td>
<td>80 (28.5)</td>
<td>63 (36.4)</td>
<td>101 (52.9)</td>
<td>39 (39.0)</td>
<td>29 (29.0)</td>
</tr>
</tbody>
</table>

a: Zúñiga et al. 2001
b: This study
In this study, none of the alleles or genotypes of the TNF-β gene were significantly associated with either the SLE patients or healthy controls. Thus, the TNF-β gene is not associated to the susceptibility of SLE in the Malaysian population. However, some previous studies reported an association between the TNF-β gene and SLE. In 1993, Bettnotti et al. reported that the TNFβ1 allele was significantly more common among German SLE patients compared to healthy controls, while the TNFβ2 allele was not significantly different between both groups. In contrast, the findings of Kim et al. in 1996 demonstrated that the TNFβ1 allele was significantly higher among healthy controls while the TNFβ2 allele was significantly higher in SLE patients in a Korean population study (Table 6). It was also suggested that the TNFβ alleles were in linkage disequilibrium with the HLA-DRB1 alleles instead (Kim et al. 1996). It was surprising that although the Malaysian and Korean populations shared a similar genetic background, i.e., Asian lineage, data collected from these populations were not consistent (Table 6). This phenomenon might be explained by the role of having different geographical backgrounds in influencing the distribution patterns of TNF-β gene polymorphisms. Consequently, this might explain the difference in the disease prevalence and susceptibility to SLE in different ethnicities. Previous studies showed that TNF-β gene polymorphisms might influence the production of TNF-α proteins. It was found that the TNFβ2 homozygote had the highest secretion of TNF-α, while the lowest secretion of TNF-α was seen in the TNFβ1 homozygote, with an intermediate level of production observed in the heterozygote (Pociot et al. 1993). Thus, it was proposed that the TNFβ2 allele might stimulate the production of TNF-α, while the TNFβ1 allele might inhibit the synthesis of TNF-α. Since there was no significant association between the TNF-β alleles or genotypes with SLE observed in this study, it was believed that the effects of TNFβ1 and TNFβ2 alleles had a counter-balancing effect on the production of TNF-α.

CONCLUSION

In conclusion, all of the TNF-α and TNF-β alleles were scored among Malaysians. The TNF1 and TNFB2 alleles were the most common alleles for the TNF-α and TNF-β genes, respectively. In this study, we found that the TNF1 allele is significantly higher in the healthy controls and this might imply a potential protective effect against SLE. On the other hand, the TNF2 allele is significantly higher in the SLE patients and thus, we can hypothesize that it could be associated with the susceptibility of SLE. As for the TNF-β gene, none of the alleles or genotypes were significantly associated to the risk of developing SLE.

ACKNOWLEDGEMENTS

This research work is supported by 36-02-03-6006 and FP047/2005C grants from the University of Malaya, Kuala Lumpur, Malaysia.

REFERENCES

Abbas AK, Lichtman AH, Pober JS (1994) Cellular and Molecular Immunology (2nd Edn). W. B. Saunders Company, USA, pp 4-13, 376-392

Dorner T, Matthias H, Mayet WJ, Trezzer U, Burmester GR, Hiepe F (1995) Enhanced membrane expression of the 52kDa Re (SS-A) and La (SS-B) antigens by human keratinocytes induced by TNF alpha. Annals of the Rheumatic Diseases 54, 904-909

