NADP-Dependent Malic Enzyme Protects Vigna unguiculata against Reactive Oxygen Species under Osmotic Stress

Maria Erivalda Farias de Aragão1, Domenico Morabito2, Yves Jolivet3, Viviane Moura de Farias4, Maria de Lourdes Oliveira Otoch1, Maria Izabel Florindo Guedes4, Pierre Dizengremel3, Dirce Fernandes de Melo4

1 Laboratório de Biologia Celular, Universidade Estadual do Ceará, Departamento de Biologia, Campus do Icapuí, Fortaleza, Ceará, Brazil
2 Laboratoire de Biologie des Lignéux, Facultés des Sciences, Université d’Orléans, rue de Chartres, BP 6759, Orléans, France
3 Laboratoire de Biologie des Ligneux, Facultés des Sciences, Université d’Orléans, rue de Chartres, BP 6759, Orléans, France
4 Laboratório de Bioenergética, Departamento de Bioquímica e Biologia Molecular, Campus do Pici, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil

Corresponding author: *mefaragao@uece.br

INTRODUCTION

Salinity is a great problem for agriculture in the world today. The main causes of soil salinity are: low pluvial precipitation or flooding and mismanagement of irrigation procedures. In arid and semi-arid areas, as is the case of Northeast Brazil, the salinity levels are high because the amount of rain is not enough to drain the accumulated salts in the soil. In addition, being in the vicinity of the equator in Northeast Brazil, the salinity levels are high because the amount of rain is not enough to drain the accumulated salts in the soil. Therefore, the salt content in the soil is high in Brazil. The main problem is that the soil is not suitable for agriculture.

Thebean is the principal food source for the poor people from Northeast Brazil. Cowpea (Vigna unguiculata) possesses several cultivars that differ from each other with regards to their degree of tolerance to salt stress (Guimarães 1988). Hence, an understanding of the factors that determine the sensitivity of beans to water and salt stress is particularly important.

The metabolic activities of plants are profoundly changed under osmotic stress. Oscillation in the malate levels and changes in the activities of enzymes implicated in malate metabolism under stress conditions suggests a role of malate in plant defense (Lance and Rustin 1984; Aragão et al. 1997). Malic enzymes (MEs) catalyze the oxidative decarboxylation of 1-malate, producing pyruvate, CO2 and NAD(P)H in the presence of a divalent cation (Chang and Tong 2003). Different isoforms from NADP-dependent malic enzyme (NADP-ME) have been found in bundle sheath chloroplasts of some C4 plants and the cytosol of some Crassulacean acid metabolism (CAM) plants, where they take part in photosynthetic metabolism, as well as in the cytosol and plastids of photosynthetic and nonphotosynthetic tissues of C3, C4, and CAM plants playing different postulated nonphotosynthetic roles (Drincoev et al. 2001; Lai et al. 2002a, 2002b).

Actually, NADP-MEs from plants can be classified into four groups: group I corresponding to cytosolic isofrom from dicot, while group II includes plastidic isofrom from dicot; group III comprehends an isofrom found into monocot and the novel group IV is incorporated the group IV. Neither of the AtNADP-ME4 is included in the group II and AtNADP-ME1 is incorporated the group IV. Neither of the AnNADP-ME isosfoms belongs to group III.

In a previous paper we demonstrated an increase of malic enzymes (NAD-ME and NADP-ME) activities in Eucaetys citriodora submitted to a salt treatment (Aragão et al. 1997). It was suggested that an increase in NADP-ME activity was necessary by providing reducing power (NADPH) to supply the detoxification system responsible for elimination of reactive oxygen species (ROS). ROS are byproducts from reactions involved in normal metabolism, such as photosynthesis and respiration. Furthermore, ROS act as signals for the activation of stress-
response and defense pathways and processes such as programmed cell death (PCD) and pathogen defense (for review, see Mittler 2002, Bailey-Serres and Mittler 2006). Thus, ROS can be viewed as cellular indicators of stress and as secondary messengers involved in the stress-response signal transduction. Nevertheless, the production of ROS in cells is low under normal growth conditions, whereas, under stress conditions an imbalance occurs between ROS production and antioxidant content. Therefore, plants need a reduced environment for their protection against the deleterious effects of ROS.

Resistance to oxidative stress is accompanied by a more active ascorbate-glutathione cycle and implicated in cross-tolerance to a variety of stresses (Dalton et al. 1996). Therefore, the study of the effect of salt and water stresses on antioxidant enzymes could provide a way to understand the different responses of Vigna unguiculata cultivars to stress. Due to the important role of NADPH in defense reactions of plant to ROS, it was necessary to confer possible roles of the supplement of NADPH by NADP-NE.

We previously verified modifications on RUBISCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) contents from two cultivars of V. unguiculata Vieira 3, considered being more resistant and Vita 5, considered more susceptible to salt stress (Aragão et al. 2005). Furthermore, we demonstrated that both cultivars showed a significant reduction in shoot length, leaf area and dry mass. These reductions were more accentuated for cv. Vita 5, although this cultivar showed an increase in RUBISCO activity as well as RUBISCO content.

In the present study, we report the action of salt and water stresses on NADP-ME from cvs. Vita 3 and Vita 5, as well as some enzymes that participate in the defense system of the plant against oxidative stress, more specifically superoxide dismutase (SOD), glutathione reductase (GR), ascorbate peroxidase (APX) and catalase (CAT). The analyze also include measurements of osmotic potential, stomatal conductance and relative water content (RWC), which are indicators of salt and water stress, as well as malondialdehyde (MDA) content, the major product from lipid peroxidation by ROS.

MATERIALS AND METHODS

Plants

Seeds of two cultivars from Vigna unguiculata (Vieira 3 and Vita 5) were obtained from seed’s bank from Universidade Federal do Ceará. The seeds were treated with 0.4% (w/v) sodium hypochlorite and germinated in the dark for 4 days, in perlite soaked in distilled water. The plants were then transported to a greenhouse and watered daily with a nutritive solution containing: 5.6 mM Ca(NO₃)₂, 2 mM KNO₃, 2 mM KH₂PO₄, 2 mM MgSO₄, 0.1 mM FeEDTA, 40.4 μM H₂BO₃, 7.5 μM MnCl₂, 0.2 μM CuCl₂, 0.05 μM MoO₃ and 0.6 μM ZnSO₄ made up in deionized H₂O and a pH around 6.5. Ten days after germination, three groups of plants were separated and the following treatments were applied: one group was watered with 150 mM NaCl into nutritive solution (salt stress); the second group was watered with a nutritive solution enriched with 41 mM PEG (water stress) and a control group still enriched with 41 mM PEG (water stress). Therefore, leaves were detached, weighted and dried in stuff during 72 hours at 60°C, then weighted again. RWC was calculated according to formula: RWC = (FW-DW)/100(TW-DW) where FW means fresh weight, DW signifies dry weights and TW corresponds to turgid weight, i.e. leaves were left overnight in deionized water and weighed.

Measurements of osmotic potential were realized in a Vapor Pressure Osmometer (VAPRO model 5520, WESCOR). Fluids from leaves were obtained from control and stressed plants by pressure with syringes according to the manufacturer’s instructions. Ten μl of different samples were placed into the osmometer calibrated with different concentrations of NaCl and osmotic potentials were calculated automatically.

Stomatal conductance was determined daily during the treatment period by measuring the flux of air traversing a cell containing the leaf sample utilizing the Li-Cor 6200 photosynthesis system (Li-Cor, Inc, Lincoln, NE, USA). All measurements were made at 22 ± 2°C and 70 ± 5% relative humidity.

Protein extraction

Crude extracts were obtained from the leaves of both cultivars, in either control conditions (washed just with nutritive solution), or water stress (solution nutritive more 41 mM PEG) or salt stress (solution nutritive more 150 mM NaCl salt) treatments. All utilized reagents were purchased from Sigma except to Sephadex G-25 columns which were Pharmacia. The leaves were ground in a homogenizer (Ultra-turrax Ika und Kinkel) containing extraction buffer (50 mM Tris/HCl, 5 mM EGTA, 5 mM MgCl₂, 0.15% (w/v) PVP 25,000, 0.20% (w/v) PEG 20,000, 5 mM ascorbate, 0.04% (w/v) triton, 50% (w/v) PVPP, pH 7.8) and centrifuged (20,000 x g for 30 min, ultra-centrifuge Kontron). The homogenate was desalted by molecular exclusion chromatography on a Sephadex G-25 column, balanced with the wash buffer (50 mM Tris, 5 mM EGTA, 5 mM MgCl₂, 5 mM ascorbate). Protein contents of the crude extracts obtained were determined according to Bradford (1972).

Enzyme activities

Enzyme activities were determined spectrophotometrically in the crude extracts obtained from the leaves of both cultivars according to the following protocols:

NADP-ME activity was measured according to Aragão et al. (1997) following an increase in the absorbance of NADPH at 340 nm. The unit employed was the nanokatal, defined as the amount (in nmol) of NADPH produced per second, per mg of protein.

GR activity was measured following the formation of DTN from DTNB at 418 nm (Smith et al. 1988). NADPH reduces GSSH and DTNB is reduced by GSH formed from NADPH. The unit employed was the nanokatal, defined as the amount (in nmol) of consumed NADPH with DTN formation, per second, per mg of protein.

SOD activity was measured using the system of adrenochrome formation at 480 nm, due to the oxidation of adrenaline by superoxide ions (Misra and Fridovich 1972; Polle et al. 1989). SOD inhibits adrenochrome formation by diminishing superoxide ions concentration. The data were plotted and the activity was calculated by the method of Asada et al. (1974). A unit of SOD (U) was defined as the amount of protein capable of inhibiting 50% of adrenaline oxidation.

CAT activity was measured following the decrease in absorbance of H₂O₂ at 240 nm (Chance and Maehly 1955). The unit (U) was defined as the amount (in μmol) of consumed H₂O₂, per minute, per mg of protein.

APX activity was measured following the decrease in absorbance of ascorbate at 298 nm due dehydroascorbate formation (Nakano and Asada 1981). The unit (U) was defined as the amount (in μmol) of consumed ascorbate, per minute, per mg of protein.

Malondialdehyde content

Malondialdehyde (MDA) content of crude extracts obtained from leaves of the different cultivars grown either control or stress conditions (water and salt) were measured according to Heath and Packer (1968) with some modifications. One volume equals 0.5% thiobarbituric acid dissolved in 20% trichloroacetic; samples were incubated at 90°C for 30 min. After centrifugation (20,000 x g for 30 min, ultra-centrifuge Kontron), the amount of MDA was calculated...
lated according to the following formula:

$$\text{MDA (nmol (mg protein)$^{-1}$) = } \frac{\text{(OD}_{532} - \text{OD}_{600}) \times 1000}{\epsilon \times b \times \text{protein (mg)}}$$

[ϵ: (extinction coefficient) = 155 liter mmol$^{-1}$ cm$^{-1}$. B: (light distance) = 1 cm].

Native electrophoresis

The desalted crude extracts from leaves of both cultivars – either control condition or under salt and water stress – were submitted to native electrophoresis in a 7 or 12% polyacrylamide gel. Electrophoresis were performed according to the discontinuous system developed by Davis (1964), at 4°C using a mini-protein system (BIO-RAD) and the polyacrylamide gel was run for 40 mA and at an initial voltage equal to 150 V. Each sample was applied to the gel in a fixed amount (20 μg). Gels were stained for SOD activity according to Droillard et al. (1989) and treated with inhibitors (KCN and H$_2$O$_2$) according to Beauchamps and Fridovich (1971). Gels analyzed for NADP-ME activity were first incubated for 10 min in a solution of 50 mM Tris-HCl (pH 8.0), then incubated in the same buffer enriched with 60 mM malate, 5 mM NADP, 4 mM MnCl$_2$, 0.16 mM PMS and 0.35 mM NBT (Aragão et al. 1977). The procedure for developing colour was carried out in the dark until the appearance of colored bands. Another gel was used for testing for APX according to Dalton et al. (1987). Attempts to detect GR and CAT were unsuccessful.

Statistic analysis

All experiments were repeated three times or more and the data were subjected to one-way analysis of variance (ANOVA). Where significant effects were found, the least significant difference at the 0.05 level of probability was calculated according to Scheffe F Test and used to compare the mean values.

RESULTS AND DISCUSSION

Osmotic potential (Table 1) from leaves’ fluids of both cultivars was not modified by water stress. However, salt stress significantly decreased the osmotic potential in Vita 5. Recently, we demonstrated that both cultivars showed a significant reduction in several parameters grown, as shoot length, leaf area and dry mass when developed in presence of 100 mM NaCl and the reductions were more accentuated for Vita 5 cultivar (Aragão et al. 2005). In this work, we confirmed a higher susceptibility of Vita 5 to salt stress, since lower osmotic potential indicates an elevation in NaCl molarity; therefore, it was less effective than Vita 3 to impede the exacerbated rise of salt towards photosynthetic tissues.

Evolution of the stomatal conductance in Vita 3 and Vita 5 cultivars was measured daily during the application of both treatments (Figs. 1A, 1B). The results demonstrated an accentuated decrease of this evolution in Vita 5, indicating that Vita 5 is, indeed, more susceptible to salt and water stress, since a decrease of the stomatal conductance promotes a decrease in the absorption of CO$_2$. These results explain a diminution of biomass for this cultivar under salt stress in spite of a higher expression of RUBISCO as we explain a diminution of biomass for this cultivar under salt stress. However, there was no significant difference for Vita 5 in either salt or PEG treatment (Fig. 2A, 2B). Early papers analyzed the susceptibility of Vita 5 to salt treatment by evaluation of important enzyme from energetic metabolism. Thus, Melo et al. (1994) demonstrated that mitochondrial ATPase was inhibited in Vita 5 cultivar under a salt treatment. Otoch et al. (2001) showed that 2-day-old seedlings from Vita 5 submitted to treatment with 100 mM NaCl decreased the proton transport and hydrolytic activities of both tonoplast V-ATPase and the H$^+$-PPase. Therefore, in the present study we examined others important enzymes implicated in the metabolism as well as those responsible in defense against oxidative metabolites. Thus, comparative studies in enzyme activities were carried out in crude extracts of control and of stressed plants (water and salt stresses) from both cultivars and these spectrophotometric analysis revealed significative differences between control and stressed plants as well as among different cultivars from cowpea under two types of stress (Figs. 3, 4). NADP-ME activity increased significantly when Vita 3 was subjected to water stress (Fig. 3). But, this activity did not change in cv. Vita 5 under both stress treatments. This increase in NADP-ME activity in Vita 3 was accompanied by an increase in GR activity, which was also not verified for Vita 5 (Fig. 3). SOD activity was not modified by salt stress in both cultivars, although there were increase in cv. Vita 3 subjected to water stress (Fig. 4).

Native electrophoresis revealed four isoforms from

Table 1 Osmotic potential of leaves’ fluids from Vita 3 and Vita 5 cultivars grown under control conditions or under water and salt stresses. The unit used was MPa.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Control</th>
<th>41 mM PEG</th>
<th>150 mM NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vita 3</td>
<td>-0.336 ± 0.077</td>
<td>-0.321 ± 0.036</td>
<td>-0.349 ± 0.036</td>
</tr>
<tr>
<td>Vita 5</td>
<td>-0.307 ± 0.048</td>
<td>-0.292 ± 0.046</td>
<td>-0.433 ± 0.070*</td>
</tr>
</tbody>
</table>

(*) Differences from control values were significant at P < 0.05 according to the Scheffe F test.
SOD into two cultivars: one Mn-SOD, one Fe-SOD and two Cu, Zn-SOD (Figs. 5, 6). Three isoforms were detected for APX (Fig. 7). Concerning to NADP-ME, only one isoform was detected in both cultivars (Fig. 8).

According to Wheeler et al. (2005) NADP-ME2 is responsible for the major part of NADP-ME activity in mature tissues of Arabidopsis. They demonstrated that NADP-ME2 and NADP-ME4 are constitutively expressed, while the expression of NADP-ME1 and NADP-ME3 is restricted to developmental stages of the plant rather than being involved in primary metabolism. Only one isoform of NADP-
ME was detected by native electrophoresis and it showed a profile similar to cistosolic isoforms (NADP-ME1, NADP-ME2 and NADP-ME3). Therefore, we suggest that the detected isoform refers to NADP-ME2.

The different gels were scanned and the volume of blots (OD x mm x mm) were quantified with a ScionImage software (Scion Corporation, USA). The results for NADP-ME were compatible with that shown in activities measured by water (Scion Corporation, USA). The results for NADP-ME (OD x mm x mm) were quantified with a ScnImage software (Scion Corporation, USA). The results for NADP-ME2 and NADP-ME3). Therefore, we suggest that the detected isoform refers to NADP-ME2.

Enzyme activities, in general, were affected by salt and water stresses. The modifications verified in the enzymes of the SOD-APX-GR cycle (Fig. 4) suggested that both water and salt stress induced oxidative stress in both cowpea cultivars. Cv. Vita 5 was less efficient than Vita 3 in overcoming the deleterious effects of ROS. Exception was seen for the results obtained for APX that showed an accentuated enhancement for Vita 5 in relation to Vita 3 cultivar (Fig. 4). D’arcy-Lameta et al. (2006) also showed an elevation of APX activity in another V. unguiculata cultivar named ‘1183’ (more susceptible to salt stress) in relation to ‘EPACE 1’ cultivar, a more tolerant cultivar. Furthermore, the same team found an augmentation transcript of glutathione reductase from ‘EPACE 1’ more accentuated when compared with the same transcript by ‘1183’ cultivar submitted to drought stress (Contour-Ansel et al. 2006).

MDA content increased more in the less tolerant cultivar, Vita 5 (Table 2) in comparison with the results obtained with the enzymatic activities that indicate a higher susceptibility for Vita 5 to osmotic stresses.

NADP-ME displays an important role in C4 and CAM plants by production of CO2 to photosyntetic process. Thus, a constitutive isoform chloroplastic in C4 plants and a cytosolic isoform in plant CAM were extensively characterized (Bailley-Serres and Mittler 2006). It is known that an inducible cytosolic isoform from NADP-ME is expressed in plants as Flaveria sp. that display different C4 and C3 or CAM photosynthetic pathways (Lai et al. 2002a, 2002b). Nevertheless, an increase in expression level of non-photosynthetic NADP-ME mRNA under high-salt or water conditions was reported in the facultative halophyte and CAM plant, Mesembryanthemum crystallium demonstrating the importance of malic enzymes in display others roles in process of plant defenses (Cushman 1992). Similar results were found in Aloe vera, an obligate monocot CAM when exposed to salt stress conditions (Sun et al. 2003). Furthermore, E. citriodora (a C4 plant) increased its NADP-ME activity when submitted to salt stress (Aragão et al. 1997). Therefore, these results suggest important biological roles of NADP-ME in constraint situations, apart from being involved in C4 and CAM photosynthesis.

Therefore, NADP-ME plays a role in the detoxification process by supplying reducing power (NADPH) for the SOD-APX-GR cycle. Hereby, this result can also explain the greater susceptibility of cv. Vita 5 to stress conditions. This cultivar inefficiently maintained an appropriate redox state inside its biosynthetic machinery to face with the ROS.

ACKNOWLEDGEMENTS

The authors acknowledge CAPES (Brazil) and COFECUB (France) for financial support of this work.

REFERENCES

Beauchamps CO, Fridovich I (1971) Improved assays and na assay applicable to acrylamide gels. Analytical Biochemistry 44, 276-287

