Nutritional Analyses and Their Inheritance Properties in Colored Wheat Seed lines from Different Origins Using Near-Infrared Spectroscopy

Sanjib Nandy1 • Qin Chen1• • Shan Cheng Sun2 • Faiz Ahmad3 • Robert Graf1 • Gerald Kereliuk1

ABSTRACT

Black, purple and blue wheat could provide a potential replacement of synthetic color with a nutritional ingredient for the cereal industry. Near Infrared reflectance spectroscopy (NIRS) has been widely used for the analysis of seed color and quality traits of intact seeds from cereals and oilseeds plants. The objective of this work was to study nutritional properties and their inheritance in winter and spring colored wheat from different origins by NIRS. Hybrid seeds from ‘Black wheat76’ crossed with ‘Purendo 38’, ‘Konini’ and ‘Lo2147-3-4’ were all black in color. The gene(s) responsible for Chinese winter wheat seed color was shown to have a dominant effect in nature as the reflectance spectra of the hybrid seed was found to be same as Chinese parental lines. Black colored wheat contained higher protein levels than the blue and purple colored wheat lines from both Canadian and Chinese origins. Highest protein percentage was observed in the hybrid between ‘Black wheat76’ and ‘Purendo 38’, whereas purple colored seed ‘Konini’ and black colored seed ‘Lo2147-3-4’ showed a high level of starch content. A strong positive correlation was found between protein and crude fibre percentage, while a high negative correlation was found between protein and moisture content, as well as protein and starch content. All hybrid plants had high protein content, high crude fibre and high minerals content but lower starch and moisture content than their respective parental lines. Further quantification of individual anthocyanins in black, purple and blue color wheat with high nutrient content would facilitate the use of these grains as natural colorants and functional food ingredients in the future.

Keywords: Black wheat76, blue grain, purple grain, black grain, NIR.

INTRODUCTION

The use of wheat (Triticum aestivum L.) as natural dyes is gaining increased attention from both producers and consumers. These colored grains are crushed and used as natural dye in multigrain breads and soy sauce (Yang et al. 2001). Black, purple and blue are more uncommon pigmentation than the red and white pigmentation in wheat seeds. Flavonoids, anthocyanidins, anthocyanins and tannins are important biochemicals for expression of these colors in wheat seed (Yang et al. 2003). Since the 1930’s the blue character in wheat seed was introduced from Thinopyrum ponticum (Host.) Barkworth & D.R. Dewey (syn. Agropyron elongatum (Host) Beauvoir: syn. Elytrigia elongata (Host) Nevski; 2n = 70) which have been the most important perennial Triticeae species for wheat improvement. A substitution line blue grained wheat Blue 58, was developed through wide hybridization between T. ponticum and common wheat T. aestivum in China. This trait of the blue seed in common wheat, which is caused by blue pigments in the triploid aleurone layer, was introgressed from T. ponticum by addition or substitution of the 4Ag chromosome (Tschermak 1938; Li et al. 1983; Zhang et al. 1992). The Chinese black colored ‘Black wheat76’ (Chinese name: ‘Heilixiaomai 76’) was developed from existing blue line (‘No. 1 Lan’ or ‘Blue1’), T. durum and a purple line (Sun et al. 1999).

Similarly development of synthetic purple seed wheat lines derived from T. durum has a long history in North America, Europe and Asia (Zeven 1991). As pointed out by Gilchrist and Sorrells (1982), the purple pigment is located in the pericarp, which follows a maternal inheritance pattern. Sometimes these colors might be deep purple to brownish purple or almost black. Deep purple and almost black grain color was found in T. durum ‘Tukur Sinde’ (black wheat) and ‘Charcoal’ wheat varieties, respectively (Zeven 1991). Among the different blue seed wheat lines, a composite spring type blue-aleuroned, awless wheat ‘Purendo-38’ was developed in Northern America (Abdel-Aal and Hucl 1999) and the stability of the blue-aleurone trait in ‘Purendo-38’ was tested over six generations (Matus-Cádiz et al. 2004). The blue-grained trait is a dominant gene marker that has been applied within gene flow studies (Hucl and Matus-Cádiz 2001; Matus-Cádiz et al. 2004). The color of wheat grain was used as a genetic marker for male sterile plant development (Ji and Deng 1985; Tian and Liu 2001; Zheng et al. 2006), natural crossing (Bolton 1968), confirming haploid plants derived from anther culture (Jan et al. 1981), gamete transformation (Li et al. 2004a; Morrison et al. 2004) and pigment characterization (Zeven 1991). The quality of this seed was tested in China (Bai et al. 2000) and is now used as raw food materials for value added products (Li et al. 2004b).

Previously color was measured visually in wheat but this measurement depends on light, background color, texture and observer’s experience. Visual measurements are most effective when they are based on standard samples (van Deynze and Pauls 1994), but consistency of the results for color may vary from lab to lab. Instrumental methods were developed to measure the intensity of the color. Reflectance spectroscopy accurately measures the amount of light reflected by samples at different wavelengths from the visible to infra-red spectrum. Therefore, Near Infrared Ref-
lectance Spectroscopy (NIRS) has been widely used for the analyses of seed color, quality traits of intact seeds from cereals and oilseeds plants (Velasco et al. 1999). The use of these devices have permitted the development of bulked single-seed calibration equations for the analysis of protein content in wheat (Abe et al. 1995), oil and protein content in corn (Zea mays L.) and soybean (Glycine max L.) (Orman and Schumann 1992; Abe et al. 1995; Dyer and Feng 1995) and oil content in Brassica sp. (Velasco and Becker 1998; Velasco et al. 1999). Very limited number of research has been recently undertaken in this direction. NIRS has been used to analyse bulk samples of intact seeds for quality measurement in white wheat seeds. Developing new wheat cultivars with different color and good nutritive value is a new trend for the food industry.

The objective of this work was to study the genetic variation of nutritional properties for colored wheat seeds between two different genetic backgrounds using NIRS method and estimate the nutritive values in these black, purple and blue colored seeds.

MATERIALS AND METHODS

Plant material

The first black grain wheat ‘Black wheat76’ (2n=42, CL2) was developed by Sun et al. (1999) using distance hybridization and chromosome engineering. Four distinct colored hybrid lines (white, blue, purple and black) were later developed by crossing with white grained T. aestivum cv. Victo (2n=42, CL1) and ‘Black wheat76’ in China. Grain samples of these winter Chinese white grained wheat (2n=42, CL3), blue grained wheat (2n=42, CL4), purple grained wheat (2n=42, CL5) and black grained wheat (2n=42, CL6) were collected from China.

Another black color substitution line ‘Lo2147-3-4’ (T. aestivum, 2n=42, CL9) was developed from crosses between spring type blue-grained wheat (T. aestivum cv. Purendo 38, 2n=42, CL7) and purple grained wheat (T. aestivum cv. Konini, 2n=42, CL8) (Fig. 1) in Canada. Seeds of blue-grained wheat (‘Purendo 38’), purple grained wheat (‘Konini’) and black grained wheat (‘Lo2147-3-4’) were obtained from Canada and used for the study of genetic and nutrition of winter and spring colored wheat from different origins. Blue, purple and black grained wheat plants were selected from the most promising homozygous lines of their respective cultivar based on grain color, quality, and agronomic traits. Chinese winter wheat plants were crossed with Canadian spring wheat plants to develop six hybrid lines at Lethbridge Research Center, AAFC, Canada. Three hybrids were developed from crosses with ‘Black wheat76′ and three Canadian colored spring wheats separately (CL2 × CL7, CL2 × CL8, and CL2 × CL9) in 2007. Another three hybrids were developed by crossing with the same colored Chinese winter wheat and Canadian spring wheat (CL4 × CL7, CL5 × CL8, and CL6 × CL9). In all the cases Chinese winter wheat was used as the maternal parent.

All these lines were grown in greenhouse with 10 replications in the spring season. Winter wheat seeds were vernalised for one
month at 1°C prior to sowing of spring wheat. Conventional techniques were used for emasculation and crossing. Only lines with well formed and mature seed samples were used for this analysis. F1 seeds and all parental lines were harvested and evaluated for their color and nutritive values. Ten F1 plants from each cross were grown in the greenhouse. Cross compatibility related parameters like number of florets pollinated, number of seed obtained, seed set percentage, 100-grain weight, number of spikes per plant, length of spike and presence of awn were also measured for all parental lines as well as their hybrids.

NIRS analyses

Foss Model 6500 Feed and Forage Analyzer (Foss NIRSystems Inc. Silver Spring, MD, USA. Model 6500) was used for NIRS. The spectra were collected using ISIscan™. Three replications were taken to draw mean spectral data and calculated mean nutritive data for each line. The NIRS instrument determined chemical and physical composition of the nutrient material by measuring log (1/R) values, where R stands for reflectance (Blanco and Villarroya 2002). The essential information from spectra was extracted using chemometric techniques such as multivariate analysis by WinISI software (WinISI™ II Calibration development software, Infrasoft International). A relationship between reference data and log (1/R) values of a set of samples of known composition was already established by regressing reference data to the spectral data (log 1/R) by wheat calibration, which was also purchased from ‘Foss’ (Foss NIRSystems Inc. Silver Spring, MD, USA). Starch, protein, crude fibre, calcium, phosphorus, potassium, and sulphur in whole wheat seed, were determined by approved methods using spectral data, wheat calibration and WinISI software. All these predicted nutritive values were calculated at 13.5% moisture basis of wheat calibration.

Statistical analyses

Statistical analyses such as mean, variance, LSD test from mean values were performed using SAS software (SAS Institute 2003). Correlation was also calculated between two nutritional traits. All graphs were plotted using Microsoft Excel software.

RESULTS AND DISCUSSION

Plant secondary metabolites are a source of many natural products with diverse applications, including pharmaceuticals, food colors, dyes, fragrances, attraction of pollinating insects and protection against pests and pathogens (Meme-link et al. 2001; Verhoeven et al. 2002). Therefore, it is very important to identify the genetic nature of black, purple and blue grain pigments in colored wheat. Light reflectance by colored wheat seeds changed as the wavelength of the illuminating light was increased from 400 to 2498 nm in the scanning spectrophotometer. The increase in reflectance began at violet (400–450 nm) to blue spectrum (450–500 nm) and an increasing tendency was also observed in yellow (570–590 nm) to red spectrum (610–750 nm) in this study. From these spectral data (Fig. 2), it was observed that all genotypes had distinct color intensity and reflectance spectra. Highest log (1/R) value was obtained for hybrids between CL2 and CL8 within a range of 400 to 500 nm wavelength. This indicated that this hybrid was darker than the parental line CL2. F1 seeds from the CL2 crossed with CL7, CL8 and CL9 were all black. The spectral data (log 1/R) from NIRS results in visual range also showed that all the hybrids crossed with CL2 (viz. CL2 × CL7, CL2 × CL8, and CL2 × CL9) were similar or close to the CL2 spectra within the range of wavelength between 400–750 nm (Fig. 2). From all the spectral data it was clear that the CL2 seed color gene(s) was dominant in nature. A positive correlation (0.78) between the degree of red pigmentation and number of dominant R alleles were obtained by Wang et al. (1999) using NIRS method. Many scientists have also discussed the inheritance of the blue aleurone trait in wheat seed (Zeven 1991; Huel and Matus-Cádiz 2001; Metzger and Sebastia 2004). Hurd (1959) suggested that two complementary dominant genes conditioned the blue grain color. According to results of test crosses, a dominant gene designated Ba was believed to control the expression of blue pigment (Keppenne and Baenziger 1990). The heredity of black grained wheat, CL2 was derived from blue grained (Bule1), T. durum and Elymus dasystachys Trin. Whereas, blue grained wheat (Blue1) was selected cytogenetically from crossing between common wheat and Agropyron (Sun et al. 2003). The black grain color in CL2 was controlled by two gene pair of incompletely dominant genes (Sun et al. 2003). Blue grained wheat derived from common wheat and Th. ponticum has been studied; it was shown that this gene clearly exhibited a dose effect, which was revealed by the intensity of the seed color correlating with the 4Ag chromosome dosage in the endosperm cells (Li et al. 1986). Dominance of purple alleles was found in F1 plants by Sharman (1958) in T. durum wheat crossing. Two genes controlling purple pericarp were found by Capron (1918) in a cross between T. polonicum × T. elboni. In this study, 61, 49 and
73% of F1 seeds were obtained through hand pollination for CL2 × CL7, CL2 × CL8, and CL2 × CL9 hybrids, respectively. In all three hybrid combinations, the black color control gene(s) of CL2 showed dominance over the CL7 blue color gene(s), CL8 purple color gene(s) and CL9 black color gene(s).

Spectral data of the hybrid seeds from a cross between CL4 and CL7, and CL5 and CL8 had similar seed color to CL7 and CL5, respectively. On the other hand, Canadian spring wheat CL8 had a darker purple color than the Chinese winter wheat CL5. The gene(s) responsible for Chinese winter wheat seed color had a dominant effect in nature, since the reflectance spectra of the hybrid seed CL5 × CL8 was found to be the same with CL5. Blue colored wheat seeds exhibited a reduced effect on anthocyanin content under different growing environments, as compared to purple colored wheat seed. This may be due to the location of the anthocyanins in the aleurone as opposed to the pericarp (Abdel-Aal and Huel 2003). The blue aleurone wheat CL7 contained higher concentrations of total anthocyanin as compared to the purple wheat cultivar CL8, which may reflect diverse stabilities and characteristics (Abdel-Aal and Huel 1999, 2003). This stability of the blue-aleurone trait in CL7 was tested over six generations and verified by evaluating grain samples from 200 head-rows (Matus-Cadiz et al. 2004). The hybrid plant CL6 × CL9 was a cross between two black seed color substitution lines (CL6 and CL9) and showed different reflectance spectra than the parental lines. By artificial pollination method only 57, 79 and 49% hybrid seeds were obtained for CL4 × CL7, CL5 × CL8 and CL6 × CL9 crosses, respectively (Table 1).

<table>
<thead>
<tr>
<th>Seed code</th>
<th>Color of seeds</th>
<th>Presence of awn</th>
<th>100 grain weight (g)</th>
<th>№ of florets pollinated</th>
<th>№ of seeds obtained</th>
<th>% of seed set</th>
<th>№ of spikes/plant</th>
<th>Spike length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL1</td>
<td>White</td>
<td>Yes</td>
<td>52.2</td>
<td>14.7</td>
<td>11.2</td>
<td>7.0</td>
<td>0.08</td>
<td>10.86</td>
</tr>
<tr>
<td>CL2</td>
<td>Black</td>
<td>No</td>
<td>50.8</td>
<td>16.6</td>
<td>10.9</td>
<td>7.0</td>
<td>0.08</td>
<td>8.85</td>
</tr>
<tr>
<td>CL3</td>
<td>White colored seed</td>
<td>Yes</td>
<td>55.4</td>
<td>13.0*</td>
<td>11.7**</td>
<td>5.4*</td>
<td>0.09</td>
<td>10.3</td>
</tr>
<tr>
<td>CL4</td>
<td>Blue colored seed</td>
<td>Yes</td>
<td>54.0</td>
<td>13.2*</td>
<td>11.7**</td>
<td>5.7</td>
<td>0.09</td>
<td>10.51</td>
</tr>
<tr>
<td>CL5</td>
<td>Purple colored seed</td>
<td>Yes</td>
<td>57.2**</td>
<td>13.1*</td>
<td>11.8**</td>
<td>5.9</td>
<td>0.09</td>
<td>10.21</td>
</tr>
<tr>
<td>CL6</td>
<td>Black colored seed</td>
<td>Yes</td>
<td>57.4**</td>
<td>13.1*</td>
<td>11.9**</td>
<td>4.9**</td>
<td>0.10</td>
<td>11.89</td>
</tr>
</tbody>
</table>

Table 2 Predicted wheat seed nutritional properties by Near-Infrared Spectroscopy.

<table>
<thead>
<tr>
<th>Parental lines and hybrids</th>
<th>Seed code</th>
<th>Starch</th>
<th>Protein</th>
<th>Moisture</th>
<th>Crude fibre</th>
<th>Calcium</th>
<th>Phosphorus</th>
<th>Potassium</th>
<th>Sulphur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin from China</td>
<td>CL1</td>
<td>55.4</td>
<td>12.9*</td>
<td>11.1</td>
<td>5.7</td>
<td>0.06**</td>
<td>0.33</td>
<td>0.30</td>
<td>0.13**</td>
</tr>
<tr>
<td></td>
<td>CL2</td>
<td>58.4**</td>
<td>12.5**</td>
<td>11.6*</td>
<td>6.2</td>
<td>0.07**</td>
<td>0.33</td>
<td>0.35*</td>
<td>0.13*</td>
</tr>
<tr>
<td></td>
<td>CL3</td>
<td>58.9**</td>
<td>14.4</td>
<td>11.4</td>
<td>6.2</td>
<td>0.07**</td>
<td>0.33</td>
<td>0.35*</td>
<td>0.13*</td>
</tr>
<tr>
<td></td>
<td>CL4</td>
<td>49.7**</td>
<td>23.6**</td>
<td>9.8**</td>
<td>9.8**</td>
<td>0.08**</td>
<td>0.38**</td>
<td>0.22**</td>
<td>0.18**</td>
</tr>
<tr>
<td></td>
<td>CL5</td>
<td>51.0*</td>
<td>16.2</td>
<td>10.5</td>
<td>7.0</td>
<td>0.11**</td>
<td>0.31</td>
<td>0.31</td>
<td>0.19**</td>
</tr>
<tr>
<td></td>
<td>CL6</td>
<td>53.1**</td>
<td>16.9</td>
<td>9.0**</td>
<td>7.8</td>
<td>0.13**</td>
<td>0.43**</td>
<td>0.34</td>
<td>0.18**</td>
</tr>
</tbody>
</table>

Table 1 List of parameters studied with relation to wheat pollination and seed settings.

©2008 Global Science Books
content than the parental lines. Among the parental lines, CL2 showed the highest protein percentage and hybrid CL2 × CL7 plant showed highest protein content among all these lines, whereas purple colored seed CL8 and black colored seed CL9 showed higher levels of starch content (58.4 and 58.9%, respectively). Similarly, Gao et al. (2000) found high levels of polysaccharides (starches), flavonoids and other secondary metabolites in the endosperm of blue-grained wheat. This blue pigments is located in the outer layers of the wheat grain (Abdel-Aal and Hucl 2003). Black wheat contained higher protein levels than the blue and purple wheat lines from both Canadian and Chinese origin. Different crude fibre percentages were observed among the parental lines. Chinese black colored seed, ‘Black wheat76’, showed higher fibre percentage and lower moisture percentage among all the parental lines, while ‘Konini’ showed lower crude fibre percentage. From Table 2 it is clear that all the hybrid plants had high protein, crude fibre and mineral contents but lower starch and moisture content than their corresponding parental lines. A highly significant (p<0.01) positive correlation was found between protein and sulphur content and, starch and moisture content while a strongly negative correlation was found between crude fibre and moisture content, starch and protein content, starch and crude fibre content, starch and sulphur content, protein and moisture content, protein and potassium content, potassium and sulphur content as well as crude fibre and potassium content (Table 3). Higher free radical scavenging ability and phenolic compounds were reported to be present in Chinese black colored wheat than in purple, blue and white colored wheat (Li et al. 2005).

In general, black, purple and blue wheat could provide a potential replacement of synthetic color with a nutritional ingredient for the cereal industry based on its anthocyanin content. Further quantification and identification of individual anthocyanins in black, purple and blue wheat would facilitate the use of these grains as natural colorants and functional food ingredients. Breeding for new wheat lines for these quality characteristics without NIRS would be too expensive and time-consuming (Oatway and Helm 2002). This fast, nondestructive and cost-effective NIRS technique is advantageous for colored wheat breeding and prediction of bulked wheat seeds nutritive values. Future research will be important to determine the number of controlling or influencing gene(s) for seed coat color and the possible loca-
tion of the gene(s) involved. A homoeologous series could be developed for black, purple and blue grain color from these lines for future DNA marker analysis.

REFERENCES

IIScan™ software. Infrasoft International. Available online: http://www.winisis.com

Ji FG, Deng JY (1985) Adding a blue marker to nuclear male sterile Taigü wheat. Shantxi Agricultural Science 7, 6-9

Keppenne VB, Baenziger PS (1990) Inheritance of the blue aleurone trait in diverse wheat crosses. Genome 33, 525-529

van Deuzen AE, Pauls KP (1994) Seed color assessment in Brassica napus using a near infrared reflectance spectrometer adapted for visible light measurements. Euphytica 76, 45-51

Wang D, Dowell FE, Lacey RE (1999) Predicting the number of dominant R alleles in single wheat kernels using visible and Near Infrared Reflectance Spectra. Cereal Chemistry 76, 6-8

Zeven AC (1991) Wheats with purple and blue grains: a review. Euphytica 56, 243-258
