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ABSTRACT 
Solanaceous greenhouse crops are susceptible to infestation by a high number of insect and mite pests that can cause serious yield losses. 
The most important of these pests are whiteflies, aphids, leafminers, thrips and spider mites. Biological control is an environmentally 
friendly method which enhances sustainability in agriculture. Biological control is based on the use of natural enemies - antagonists of the 
pests that may be predators, parasitoids or pathogens. Extensive research has been conducted to exploit the potential of natural enemies in 
biological control. Selected natural enemies have been mass reared and commercialized. The application of biological control in 
greenhouses has been proved effective and its use is steadily increasing, worldwide. 
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INTRODUCTION 
 
Among the methods combined in IPM strategies, biological 
control is the most prominent. Continuing problems with 
chemical insecticide resistance and environmental and food 
contamination support continued development of biological 

control. Biological control involves the use of natural ene-
mies (predators, parasitoids and pathogens) that are antago-
nists of insect and mite pests. This costs two orders of mag-
nitude less than chemical control and does not take more 
time to develop and implement than chemical control (Bale 
et al. 2008). The use of biological control has expanded 
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considerably, as it is effective, environmentally friendly and 
offers permanent results (Albajes et al. 1999). 

Greenhouse environments are suitable for the use of 
biological control as they are closed systems that provide 
barriers against the dispersal of natural enemies. Moreover, 
the whole system and pest densities can be supervised 
closely and is less vulnerable to pest invasions than crops in 
open fields. In addition, the conditions can be adapted so as 
to create an environment more favourable for the natural 
enemies than the pests. The protected environment of green-
house crops also makes possible the fulfillment of a main 
prerequisite for the application of biological control, namely 
a low pest population, as appropriate sanitation measures 
can be timely applied to the crop. Biological control could 
be also effective under relatively high pest population pres-
sure but in these cases, the cost could increase dramatically. 

A reason that necessitates the use of biological control 
in greenhouse crops is that the pests in greenhouses are 
more likely to develop resistance to chemicals, when ap-
plied over long periods, since they reproduce rapidly within 
the closed greenhouse environment. In addition, crops are 
harvested frequently at close intervals, and thus intensive 
use of chemicals becomes questioned due to the possible 
contamination of products with chemical residues. Further-
more, most greenhouse vegetables are consumed fresh, 
which is another motivation for farmers to apply less inten-
sive control measures and to meet the consumers’ demands 
for produce of high quality. 

In the greenhouse environment crop protection is often 
disrupted by the introduction of new pests due to trade (Van 
Driesche 2002). Such pests can find ideal conditions for mul-
tiplication, because greenhouses have similar cultivation en-
vironments worldwide. Traditionally newly introduced 
pests resulted in a substantial increase in the use of chemi-
cals, with the ensuing danger of the development of resis-
tance and the subsequent risk of market loss, mainly as a 
result of produce contamination with pesticide residues. 
This was also another reason for research into the potential 
natural enemies of these pests. 
 
BIOLOGICAL CONTROL IN GREENHOUSE 
 
The use of biological control in greenhouse crops was re-
ported before the Second World War with the use of the 
whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: 
Aphelinidae) (Speyer 1927). During the period after the war, 
the development of new synthetic insecticides, which were 
highly effective, reduced the expansion rate of biological 
control. However, the need for alternative methods in insect 
pest control became clear soon afterwards, mainly due to 
the development of resistance, the awareness of a need to 
protect the environment, including surface and underground 
water, and the high risk of contamination of produce by 
chemical residues. The development of resistance to organic 
acaricides by the mite, Tetranychus urticae Koch (Acari: 
Tetranychidae), was observed as early as 1949 (Hussey 
1985), and this gave a boost to research into the develop-
ment of options based on biological control, such as the 
application of the phytoseiid mite Phytoseiulus persimilis 
Athis-Henriot (Acari: Phytoseiidae) which is an efficient 
predator of T. urticae. 

In agro-ecosystems, several natural enemies of the pests 
of protected crops may be found. However, only a few of 
them have shown the potential to be effective in the green-
house environment and few have been commercialized. The 
criteria to identify the most promising natural enemies were 
described by van Lenteren and Woets (1988). These are: 
synchronization with the host, climatic adaptation, easy 
mass-rearing, a high reproductive and host kill rate, high 
searching efficiency, negative effects on other organisms, 
and the existence of an effective method for introduction. 
The criteria can vary between the parasitoids and the pre-
dators; for example, in the former the most important factor 
may be related to reproduction when feeding on the pest, 
while for the latter the killing rate of the pest is more signi-

ficant (Yano 2006). 
In greenhouse crops, biological control is applied by the 

seasonal release of the natural enemies. In these cases, pre-
dators or parasitoids are released, aimed at creating the 
population required for control over a relatively long period 
(several months). Mass releases (inundative releases) may 
be used in some crops with the objective of directly redu-
cing the number of pests, but not controlling the population 
over a longer period. The selection of the method to apply 
depends mostly on the population level of a pest at the time 
of initial release of the natural enemy and the characteristics 
of the enemy, e.g. polyphagy or phytophagy, which may 
permit survival during periods of prey scarcity. 

A fundamental step in the successful implementation of 
biological control in greenhouses is the use of high quality 
natural enemies for release (van Lenteren 2003). For this 
reason, guidelines have been developed to assess the quality 
of the product-natural enemy that reaches the farmers. Cri-
teria have been elaborated for certain natural enemies and 
these should be followed to evaluate their quality and assess 
their effectiveness in biological control. Results from re-
lated studies indicate the importance of regular quality eva-
luation of mass-reared beneficials (i.e. Blumel and Haus-
dorf 2002; van Lenteren 2003a). 

The use of more than one natural enemy is also a recent 
topic in biological control, because the crop can be affected 
by several pests simultaneously, whereas several alternative 
beneficials are available on the market. The combined use 
of natural enemies is expected to increase the effectiveness 
of biological control as the specific pests can be controlled 
and the risk of virus infection is reduced. It is crucial, when 
the natural enemies are found among the native species, that 
these enter the greenhouse and work there to increase the 
effectiveness of control. Related studies have shown that 
between predators, the use of more than one can be positive 
and promote a synergistic effect (Lucas and Alomar 2002). 
However, when parasitoids and predators are used together, 
the outcome can be negative because the parasitized hosts 
are vulnerable to the predatory action of generalist preda-
tors, and the predator cannot discriminate between parasi-
tized and healthy pests (Meyling et al. 2003; McGregor and 
Gillespie 2005). 

In certain cases, biological control applications have led 
to increasing scepticism about the use of exotic natural 
enemies because they may become established in the new 
area and have adverse effects on the local fauna. The release 
of the predators Coccinella septempunctata L. and Harmo-
nia axyridis (Pallas) (Coleoptera: Coccinellidae) has been 
considered to be questionable since both are aggressive 
competitors and their release caused adverse effects on na-
tive natural enemies (Wheeler and Hoebeke 1995; Majerus 
et al. 2006; van Lenteren et al. 2008). Issues relevant to this 
topic have constituted the main objective of several publica-
tions (van Lenteren et al. 2006; Roy and Wajnberg 2008), 
and concern has increased in the light of globalization and 
the increased public awareness of the need for conservation 
of biodiversity. 

Apart from ‘conventional’ ways to apply biological con-
trol, i.e. by the purchase and subsequent release of natural 
enemies, the conservation of indigenous natural enemies 
can also assist in the control of greenhouse pests. This me-
thod, which has recently attracted considerable attention, is 
a major topic for the sustainability of agro-ecosystems, 
because pest control is included in the functions of the eco-
system. The strategy is based on the conservation of the 
natural host plants of beneficial organisms within the agro-
ecosystem, in order to facilitate their establishment on the 
crop plants. The main feature of agro-ecosystems that act as 
a source of natural enemies is the conservation of natural 
vegetation, which offers several benefits to the natural ene-
mies, such as alternative food (Landis et al. 2000; Wäckers 
et al. 2005). The potential of non-crop plants to assist in 
biological control has been extensively investigated and ap-
plied to several agro-ecosystems, such as cereals (Thomas 
et al. 1991) but is has also been proposed in greenhouse 
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solanaceaous crops (Sanchez et al. 2003). 
In vegetable agro-ecosystems, there are several native 

parasitoids and predators that can be effective in the control 
of crop pests (Nicoli and Burgio 1997). In greenhouse 
vegetable crops, the use of natural host plants as a method 
to introduce natural enemies has proved positive (Albajes 
and Alomar 1999). Alternatively, collection of predators 
from naturally occurring vegetation patches, for subsequent 
release in greenhouses, might be a valuable practice. In 
addition, manipulations such as cutting of plants to trigger a 
predator’s emigration to nearby crops could be worthwhile, 
as it was the case for natural enemies in conservation bio-
logical control (Altieri and Whitcomb 1979; Landis et al. 
2000; Gurr et al. 2004). The conservation and utilization of 
the natural enemies within the agro-ecosystems are major 
factors in the reduction of the cost of application of natural 
enemies, some of which may be expensive to purchase 
(Yano 2008). 

The current paper is focusing on presentation of recent 
advances in the biological control of the main insect and 
mite pests of the greenhouse solanaceous crops. This is a 
major topic in the biological control and this paper is 
aiming to concentrate on the most relevant and key data 
available in the recent literature. 
 
WHITEFLIES 
 
Whiteflies are major pests in greenhouse crops. The adults 
are white in colour, 2-3 mm in length, but immature are 
almost transparent and oval in shape. In general, the adults 
are mostly recorded in the top parts of the plants where they 
oviposit. The first instar is the only mobile nymphal instar. 
It selects a place, mostly on the undersurface of the top 
leaves, where it establishes itself. During the first molt it 
loses its legs. Adult and immature forms feed on plant 
phloem and excrete a high amount of honeydew, which is a 
substrate for the development of fungal mould, leading to 
lower fruit quality due to leaf (and fruit) blackening and re-
duced photosynthetic activity. 

The most important species of whitefly in the green-
house are the greenhouse whitefly (Trialeurodes vaporari-
orum (Westwood)) and the tobacco whitefly (Bemisia tabaci 
Gennadius) (Homoptera: Aleyrodidae). T. vaporariorum has 
an extremely wide host range, which includes plants from 
249 genera and 84 families (Russel 1977). Host plant spe-
cies can be ranked for suitability for development and fec-
undity of T. vaporariorum as eggplant > cucumber > tomato 
> sweet pepper (van Lenteren and Noldus 1990). This spe-
cies completes its development on eggplant in 43, 29 and 23 
days at 17, 22 and 27°C, respectively (Di Pietro 1977). On 
eggplant it lays 286 eggs at 22°C (Woets and van Lenteren 
1976). It can transmit some viruses, but in general its pot-
ential in virus transmission is not considered to be of major 
importance (Schuster et al. 1996). 

The tobacco whitefly is an effective vector of viruses 
and this is considered to be the most important risk linked 
to this pest (Gerling et al. 2001). It is an efficient vector of 
the tomato yellow leaf curl virus (TYLCV) (Mehta et al. 
1994). The introduction of this species into new areas resul-
ted in considerable losses in tomato crops both in the field 
and in greenhouses. The resulting increase in the use of in-
secticides quickly led to the development of resistance in 
the pest, and had a negative side-effect on biological control 
because growers hesitated to rely on natural enemies and so 
reduced the use of biological control in their greenhouses. 

Mixed populations of both whitefly species occur and 
this has to be taken into account in the development of con-
trol strategies for local populations. It should be noted that 
the tobacco whitefly is more common in middle and late 
season in solanaceous crops in southern Europe (Nannini et 
al. 2006; Trottin-Caudal et al. 2006). 

Biological control of whiteflies in greenhouse environ-
ments is mainly based on the use of parasitoids, predators or 
pathogens. 
 

Parasitoids 
 
Encarsia formosa 
 
The most well known natural enemy of whiteflies is the 
parasitic wasp Encarsia formosa. The adult is less than 1 
mm in length, with a dark head, black thorax and yellow 
abdomen. Its developmental period was 30-32 d at 17-18°C 
and the fecundity was 165 eggs (Vet and van Lenteren 
1981). Its developmental threshold on T. vaporariorum was 
12.8°C (Obsorne 1982). This species parasitizes mostly the 
3rd or 4th instar nymphs of whitefly (Nell et al. 1976; Ne-
chols and Tauber 1977). The female can recognize already 
parasitized hosts from conspecifics, so as to avoid super-
parasitism (van Lenteren et al. 1976). 

E. formosa feeds on the fluids that are excreted from the 
wound that it causes on the host by its ovipositor. This host 
feeding behaviour occurs in all stages of the whitefly (van 
Lenteren et al. 1980). The host feeding increases the poten-
tial of the parasitoid in biological control considering that 
when 36 whitefly 4th instar nymphs were available to a sin-
gle female daily during her entire life span, 442 hosts were 
parasitized and 101 hosts were killed by host feeding at 
25°C (Arakawa 1982). Host feeding has generally been re-
lated to a higher fecundity or longevity (Heimpel and Col-
lier 1996) but in E. formosa it seems that host feeding bene-
fits are less important than in other parasitoids and com-
parable to honeydew feeding (Burger et al. 2004). 

E. formosa searches for hosts at random (van Lenteren 
et al. 1980). The presence of host honeydew had a major in-
fluence on the host searching behaviour of the parasitoid 
(Romeis and Zebitz 1997). Light intensity (sunshine) has an 
important effect on the activity of the wasp (Zilahi-Balogh 
et al. 2006). The light condition can be a critical factor res-
ponsible for low effectiveness of the parasitoid in late win-
ter or early spring when light intensity is low. This para-
sitoid is also a natural enemy of the tobacco whitefly, B. 
tabaci. However, it is not considered to be particularly ef-
fective against this whitefly species (Enkegaard 1993). 

Methods used for the introduction of E. formosa into 
the greenhouse are the ‘pest-in-first’ method and periodic 
introductions. The ‘pest- in- first’ method is applied by 
introducing a low number of whitefly on certain plants, 
followed by the introduction of the wasp. This enables the 
best timing of wasp release, i.e. when the preferred third in-
star of the whitefly has formed on the plants. However, this 
method, which has also been applied in spider mite control, 
has not been widely adopted, as growers do not like to re-
lease a pest within their crop (Ekbom 1977; Stacey 1977). 
The alternative method of periodic releases is initiated soon 
after the crop has been established. There may need to be 
performed as many as 10 introductions of the wasp in order 
to achieve successful control (Parr et al. 1976). A modifica-
tion of this method is the release of the wasp after the first 
adults of the whitefly have been recorded on the plants. In 
this case, four introductions gave satisfactory results (Woets 
1978). This is the most commonly used method for the re-
lease of the wasp. 

The cultural method of removing the lower leaves has 
to be applied with caution as it can be detrimental to the 
wasp population, as pupae normally develop on the lower 
leaves and may be discarded together with the removed 
leaves. It is advisable therefore to avoid removing the leaves 
from the greenhouse until the parasitoids emerge. 

The parasitoid is effective on tomatoes but to a possibly 
lesser extent on non-Solanaceous crops such as cucumber, 
due to the higher suitability of this plant for the whitefly 
(Woets and van Lenteren 1976) and the long hairs that re-
tain honeydew and increase the difficulty of the wasp in 
searching the environment (Ekbom 1977). 
 
Eretmocerus spp. 
 
Eretmocerus mundus Mercet (Hymenoptera: Aphelinidae) 
is a solitary ecto- endo- parasitoid of whitefly nymphs (Rose 
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et al. 1996). Eggs are laid under the whitefly nymph and the 
first instar larva penetrates the host. This parasitoid can 
attack all the whitefly instars, but prefers the second instar 
in comparison with the fourth (Jones and Greenberg 1998). 
It is an effective parasitoid against B. tabaci (Stansly et al. 
2005). Natural populations of E. mundus were effective in 
the control of B. tabaci in greenhouse tomatoes in Spain 
(Arno et al. 2005). The release of E. mundus together with 
the predator Macrolophus melanotoma Costa (=M. caligi-
nosus Wagner) (Hemiptera: Miridae), improved the control 
of B. tabaci in comparison with the use of each natural 
enemy separately, particularly in spring and when high 
populations of whitefly occurred (Gabarra et al. 2006). En-
carsia spp. could invade the greenhouses where the para-
sitoid E. mundus had been released, and in some cases 
became the predominant species (Weintraub et al. 2002). 

Another species of this genus, Eretmocerus eremicus 
Rose & Zolnerowich, attack both whitefly species effici-
ently (Greenberg et al. 2002). Development of E. eremicus 
was faster using tobacco whitefly as host than T. vaporario-
rum. Mortality patterns in E. eremicus reflected those of the 
host: increasing with temperature on T. vaporariorum, 
while decreasing on tobacco whitefly (Greenberg et al. 
2000). 

Comparative studies of two strains of E. formosa, E. 
eremicus and E. mundus showed that the lower develop-
mental threshold for development was 11.5, 8.1, 13.0 and 
11.5°C, respectively. At 15°C, daily parasitism of tobacco 
whitefly was very low by all parasitoids. The two Encarsia 
strains had a constant, but low rate of reproduction during 
adult life, while the two Eretmocerus species had a very 
high rate of reproduction when one-day old, which then de-
creased quickly (Qiu et al. 2004). Research into the evalua-
tion of new natural enemies has shown that Eretmocerus sp. 
nr. furuhashii Rose and Zolnerowich, an indigenous para-
sitoid of B. tabaci from southern China, was promising 
against whitefly at temperatures of 26-32°C (Qiu et al. 
2007). Life table parameters of Eretmocerus melanoscutus 
Zolnerowich and Rose were higher than those reported for 
B. tabaci indicating that E. melanoscutus has an important 
potential as a biological control agent of B. tabaci (Liu 
2007). 
 
Hyper-parasitic species 
 
The use of hyper-parasitic species for the control of white-
fly has also been evaluated. These species are Encarsia tri-
color Förster and Encarsia pergandiella Howard, which are 
heteronomus hyper-parasitoids, the females of which deve-
lop on the whiteflies (primary host), while the males deve-
lop either on females of the same species or on other pri-
mary parasitoids (Hunter and Kelly 1998). E. tricolor is a 
native European species which has showed promising re-
sults in biological control. Native populations can enter 
greenhouses and rarely cause negative effects on whitefly 
control (Del Bene and Landi 1991). E. pergandiella has 
been released in areas of the Mediterranean basin and can 
contribute to the biological control of whitefly (Giorgini 
and Viggiani 2000). However, it has been reported to be 
detrimental to the successful control of whitefly by other 
parasitoids (Gabarra et al. 1999). The combined use of E. 
formosa and E. pergandiella resulted in an increased 
effectiveness in comparison with the release of each single 
species (Heiz and Nelson 1996). Therefore the use of these 
hyper-parasitic species is worthwhile, but only under strict 
conditions (Loomans et al. 2002). 

 
Predators 
 
Macrolophus spp. 
 
Among the predators of whiteflies in greenhouse solanace-
ous crops, Macrolophus pygmaeus Rambur (Hemiptera: 
Miridae; Fig. 1A) and M. melanotoma (M. caliginosus), are 
considered to be the principal ones (Albajes and Alomar 

1999). They are widely used on commercial scale in re-
leases against whiteflies and other pests on vegetable green-
house crops (Hommes and Horst 2002; van Lenteren 2003b). 
These species are native to the Mediterranean region. They 
are polyphagous, feeding on several soft-bodied pests such 
as the whiteflies, aphids, thrips, leafminers, mites, eggs and 
larvae of the Lepidoptera. They feed on their prey by inser-
ting the stylets of their mouthparts and sucking out the body 
contents of the prey. Macrolophus pygmaeus exhibits phy-
tophagous habits that allow it to develop successfully with-
out prey on eggplant, tomato, cucumber, pepper and beans, 
whereas eggplant and tomato can support a low rate of ovi-
position in the absence of prey (Perdikis and Lykouressis 
2000, 2004). M. melanotoma can also complete its nymphal 
development feeding on plant sap of vegetables (Tavella 
and Arzone 1996). Phytophagy is a main characteristic of 
their biology, which permits them to survive on the crop for 
a relatively extended period. M. melanotoma remained for a 
relatively much longer period on the plant than other pre-
dators, even when only a very low number of whiteflies 
were present and this could have positive impacts on its 
effectiveness in biological control (Montserrat et al. 2004). 
Feeding on plants could be related to damage induction. 
However, this potential has been reported only by Sampson 
and King (1996) for M. melanotoma on cherry tomatoes in 
the UK. 

M. pygmaeus performed very well feeding on T. vapo-
rariorum on tomato and eggplant showing an intrinsic rate 
of population increase of 0.104 and 0.0981 d-1 respectively, 
at 27.5°C. The incubation period of the eggs was 11 d on to-
mato at 25°C (Perdikis and Lykouressis 2002). This preda-
tor completed its nymphal development feeding on nymphs 
of the greenhouse whitefly on eggplant, tomato and beans 
in a period of 15.21, 17.05 and 17.01 d at 25°C (Perdikis 
and Lykouressis 2000). Its fecundity on tomato was 146.85 
eggs and longevity of females 49.25 d (Perdikis and Lykou-
ressis 2002). Studies on predation rates of Macrolophus 
species have proven their ability to reduce whitefly num-
bers. Laboratory experiments on M. melanotoma at 22°C on 
bean plants showed that predation on T. vaporariorum 1st 
instar nymphs reached about 166 per day (Enkegaard 2001). 
M. melanotoma actively consumed the eggs and nymphs of 
B. tabaci and particularly of T. vaporariorum (Barnadas et 
al. 1998). This predator preferred feeding on older nymphs 
of B. tabaci (Bonato et al. 2006). However, it preferred T. 
vaporariorum to B. tabaci (Barnadas et al. 1998; Bonato et 
al. 2006). 

M. pygmaeus has shown a high potential in biological 
control on solanaceous crops (Perdikis and Lykouressis 
1996; Hilbert et al. 2001; Hommes and Horst 2002). The 
method used for the introduction of Macrolophus predators 
is mostly periodic releases (i.e. Malausa and Trottin-Caudal 
1996). An improvement of this method has been demonstra-
ted to be their release in parallel with the addition of highly 
suitable food (usually eggs of Lepidoptera) on the crop 
plants. This aims at increasing the rate of predator establish-
ment on the plants (Nannini et al. 2006) because this pro-
cess may be slow under certain circumstances such as low 
prey availability (Castañé et al. 2006). Another method, fo-
cusing on more effective establishment of the predators in 
the crop, has been proposed by Lenfant et al. (2000). Accor-
ding to this, predators are released in the nursery together 
with additional food. The predators lay eggs on the young 
plants and after their transplantation, the predator nymphs 
that emerge on the plants, become distributed within the 
crop in relatively high numbers. 

A cultural practice with negative effects on predator po-
pulation establishment is leaf and lateral stem removal, 
which may cause a loss of 74% of young nymphs (Bonato 
and Ridray 2007). Therefore, it is strongly advisable, the cut 
stems or leaves to be retained in the greenhouse for a long 
enough period so that the neonate nymphs to hatch and 
move to the crop plants. 

The natural colonization of greenhouse solanaceous 
crops with Macrolophus predators and their persistence and 
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abundance in field margins, have stimulated studies to 
explore the potential of native vegetation or selected non-
crop plants as a means to introduce the predators into green-
house crops or support the conservation of their populations 
around the solanaceous crops. The use of alternative host 
plants for this purpose has been evaluated with positive re-
sults for the mirid predator Dicyphus hesperus Knight (He-
miptera: Miridae) in greenhouse tomato crops. This preda-
tor was invariably found to be more common in greenhouses 
where the alternative host plants (mullein plants, (Verbas-
cum thapsus L.)) had been introduced and the predator po-
pulation was maintained on these plants when prey on to-
mato was scarce (Sanchez et al. 2003). 

Conservation of polyphagous mirid predators has been 
shown to be an efficient strategy regarding the natural regu-
lation of whiteflies, aphids and Lepidoptera pests (Albajes 
and Alomar 1999; Gabarra and Besri 1999; Lykouressis et 
al. 1999, 2000). The colonisation rate of the polyphagous 
predators Dicyphus tamaninii Wagner and M. melanotoma 
has been shown to increase in fields where there is a pre-
sence of winter refuges. However, it is likely that immigra-
tion from distant sources also contributed to the coloniza-
tion of the tomato fields (Alomar et al. 2002). 

The main natural reservoirs of M. pygmaeus and M. 

melanotoma in slanaceous crops are the non-cultivated 
plants Solanum nigrum L. (Solanaceae) and Dittrichia vis-
cosa (L.) W. Greuter (Asteraceae) respectively (Alomar et 
al. 1994; Lykouressis et al. 2000). In the case of M. pyg-
maeus and M. melanotoma recent data have shown the pot-
ential of non-crop plants as suitable food sources (Perdikis 
et al. 2007; Lykouressis et al. 2008). In particular, D. vis-
cosa was suitable for M. melanotoma and S. nigrum for M. 
pygmaeus. M. pygmaeus did not perform well on D. viscosa. 

Alomar et al. (2002) and Castañé et al. (2004) reported 
that the colonization of tomato crops by M. melanotoma 
was higher in fields surrounded by complex environments. 
However, the key elements of natural vegetation that sup-
port dispersal of Macrolophus to tomato crops remain un-
clear (Alomar and Albajes 2003). These relatively limited 
and inconclusive data could be associated with the vague 
discrimination between M. melanotoma and M. pygmaeus 
(Goula and Alomar 1994). Recent studies using hybridiza-
tion and molecular DNA analysis have proven that M. mela-
notoma and M. pygmaeus are different species, the first re-
corded on D. viscosa and the latter on S. nigrum and tomato 
plants (Perdikis et al. 2003; Martinez-Cascales et al. 2006), 
whereas in a comparative study using different scale experi-
ments (petri dishes, caged plants, greenhouse plots) it was 
proved that only M. pygmaeus can colonize tomato (Perdi-
kis et al. unpublished data). All these reports have important 
implications for the correct identification and nomination of 
the Macrolophus species involved in the biological control 
of pests on solanaceous crops and their commercial produc-
tion and use. 
 
Nesidiocoris tenuis 
 
Nesidiocoris tenuis (Reuter) (Fig. 1B) is another mirid pre-
dator that is effective in the control of whitefly populations 
on tomato greenhouse crops. It is common in tropical and 
subtropical areas. It feeds mainly on whiteflies, but also on 
other pests such as spider mites, leafminers and early instars 
of Lepidoptera (Torreno 1994; Carnero et al. 2000; Vacante 
and Benuzzi 2002; Urbaneja et al. 2005). It can naturally 
colonize tomato crops and substantially contribute to the 
control of whiteflies (Calvo and Urbaneja 2003; Sanchez et 
al. 2003). Its population trends followed those of whiteflies, 
showing its potential in biological control (Sanchez 2008). 
This bug seems to have little potential to complete develop-
ment in the absence of prey, feeding only on a plant diet, al-
though tomato was favored more than eggplant and pepper 
(Urbaneja et al. 2005). 

However, the status of this species is controversial as it 
may also cause damage to tomatoes (El Dessouki et al. 
1976). This damage is related to the induction of necrotic 
rings on the stems (Fig. 1C-E) and leaves, flower drop and 
fruit blemishing. Damage due to feeding on the shoots does 
not seem to be important, although it may reduce the vigour 
of the plants, but flower abortion might be serious (Sanchez 
et al. 2006). In a study where a 10-20 N. tenuis adults or 
nymphs were left to feed for a period of 48 h on a single 
caged lateral tomato stem, caused damage that disappeared 
later, indicating that harm to the crop might not be signifi-
cant (Arnó et al. 2006). Damage potential of several densi-
ties of this predator on caged tomato plants without prey, 
showed that this pest inflicted necrotic rings on the upper 
part of the stems but only in very low numbers, whereas 
flower abortion was not recorded (Perdikis et al. unpublished 
data). As stated by Sanchez (2008) the number of necrotic 
rings on tomato plants under greenhouse conditions was 
closely correlated with temperature but not with relative hu-
midity. Consequently, temperature might be related to the 
observed flower abortion. Thus, further studies are required 
to qualify more closely the potential of this mirid to cause 
different types of damage and loss of yield, particularly 
with reference to the physiological state of the plants, the 
ambient conditions, the level of prey availability and pre-
dator’s densities. This approach could be similar to that fol-
lowed for D. tamaninii, another effective predator against 

A B 

C D

E 

Fig. 1 Insect predators in greenhouse tomato crops. (A) Adult Macro-
lophus pygmaeus; (B) Adult Nesidiocoris tenuis; (C) Adult Nesidiocoris 
tenuis feeding on a tomato stem; (D) Nymph of Nesidiocoris tenuis feed-
ing on a tomato stem; (E) Damage induced by Nesidiocoris tenuis on a 
tomato leaf. 
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whiteflies on tomato. D. tamaninii feeds on fruits and cause 
yellow spots. In this case, a tolerance population threshold 
has been proposed, according to which spraying is recom-
mended when the pest population (whitefly) is less than 20 
adults per tomato plant and the respective number of D. 
tamaninii individuals is higher than 4 per plant (Alomar and 
Albajes 1996). 
 
Dicyphus spp. 
 
Predatory bugs that belong to the genus Dicyphus (Hemip-
tera: Miridae) are widespread and repeatedly reported on 
solanaceous vegetable crops in Mediterranean and North 
America. The most commonly reported are D. tamaninii, D. 
errans (Wolff) and D. hesperus. D. tamaninii can readily 
colonize greenhouse tomato crops and usually becomes 
established and contribute substantially to the control of 
whiteflies and other pests (Alomar and Albajes 1996; Cas-
tañé et al. 2004). D. errans is commonly recorded towards 
the end of the summer and in the autumn in greenhouse 
tomatoes and eggplants in Greece (Lykouressis et al. 2000). 
D. hesperus is an effective predator and is used for the bio-
logical control of the greenhouse whitefly in greenhouses in 
Canada (Sanchez et al. 2003). 
 
Other predators 
 
Apart from the mirids, an effective predator of whitefly is 
the coccinelid Delphastus catalinae Horn. (formerly D. 
pusillus (LeConte)) (Coleoptera: Coccinellidae). This spe-
cies is an oligophagous predator feeding on whitefly eggs 
and nymphs and can be very effective in reducing local high 
densities of whitefly. Feeding on B. tabaci, this predator 
was found to perform better at 22 and 26°C, while at 30°C 
it failed to complete development (Legaspi et al. 2008). 
After life-table studies, the optimum temperature for mass 
rearing of D. catalinae proved to range between 25 and 
30°C (Kutut and Yigit 2007). 

This predator showed a reduced potential to survive at 
low temperatures. In laboratory experiments eggs hatched 
at a percentage of 48% at 15°C. Similarly, larvae failed to 
survive to the pupal stage at 15°C. In comparison, at 25°C, 
98% of eggs hatched and 86% of the larvae survived to the 
adult stage (Simmon and Legaspi 2007). The relative humi-
dity was proved to have a serious effect on the population 
of the predator. It was found that approximate to 60% of the 
newly hatched larvae survived to the adult stage at 25% RH, 
whereas 50% survived to the adult stage at 10% RH, in 
comparison to 90% that completed development at 95% RH 
(Simmons et al. 2008). Delphastus catalinae larvae fed on 
parasitized B. tabaci nymphs but, interestingly, when used 
together with the parasitoid Encarsia sofia (Girault and 
Dodd) (Hymenoptera: Aphelinidae), the suppressing effect 
was increased in comparison to single natural enemy treat-
ments (Zang and Liu 2007). 

Insect predators belonging to the genus Orius (Hemip-
tera: Anthocoridae) are common on vegetable crops. The 
change of the predation rate of Orius majusculus (Reuter) 
and O. laevigatus (Fieber) in response to the increasing den-
sities of the greenhouse whitefly showed they did not res-
pond well in comparison to mirid predarory bugs. However, 
they have shown a potential to contribute to the control of B. 
tabaci when co-occurs with thrips, Frankliniella occidenta-
lis Pergande (Thysanoptera: Thripidae) (Arnó et al. 2008), 

Apart from insect predators, related studies have shown 
that the mite predator Amblyseius swirskii Athis-Henriot 
(Acari: Phytoseiidae) is an efficient natural enemy of both B. 
tabaci and T. vaporariorum (Nomikou et al. 2001; Hooger-
brugge et al. 2005). This predator feeds on pollen and there-
fore it can be released in pollen-producing crops, such as 
sweet pepper, before the emergence of the pest, (Hooger-
brugge et al. 2005). Experiments have proved the effective-
ness of this predator on protected sweet peppers in Southern 
Spain (Calvo et al. 2006). Because it benefits from feeding 
on a mixed diet of thrips (F. occidentalis) and greenhouse 

whitefly, A. swirskii is potentially effective in the control of 
both species, a potential that worth further experimentation 
(Messelink 2008). However, it seems to have a relatively 
low potential for whitefly control on tomatoes due to the 
dense trichomes on this plant, which make foraging difficult. 
Another predator Typhlodromalus limonicus Garman & 
McGregor has been reported as promising for the control of 
whiteflies and thrips on tomatoes, but further research is 
needed in the greenhouse environment (van Houten et al. 
2005). Experiments in southern Spain showed that this mite 
has the potential to be a key biological control agent against 
B. tabaci on sweet pepper, cucumber and eggplant (Calvo et 
al. 2008). 
 
Entomopathogenic organisms 
 
The use of entomopathogenic fungi is a major alternative 
for whitefly control. Various fungi, Beauveria bassiana 
(Balsamo) Vuillemin, Paecilomyces fumosoroseus (Wize) 
Brown and Smith, and Lecanicillium lecanii (Zimmermann) 
Gams and Zare [Verticillium lecanii (Zimmermann) Viégas], 
have been shown a high potential for whitefly control (see 
Fargues et al. 2003 and references therein). Recent develop-
ments in production process and usage of pathogenic fungi 
have resulted in improvements in biopesticides of V. lecanii, 
and new products of P. fumosoroseus and B. bassiana. Des-
pite this potential, the main obstacle to the wider use of 
such products is their slow action, potentially negative inter-
actions with fungicides and dependence on favourable envi-
ronmental conditions. In order to enchance their efficacy 
major suggestions are the early application when the white-
fly populations are very low, and under more favourable 
environmental conditions (Faria and Wraight 2001). 

The pathogenic fungi are sprayed on to the plants and 
the spores are deposited on the body of the host, where they 
germinate to produce hyphae that penetrate the host’s body, 
multiply and finally re-emerge outside the body to sporulate. 
The transfer to a new host is achieved by water or physical 
contact. These fungi are effective at high densities of the 
pest and under conditions of high RH. For effective estab-
lishment and control, it has been reported that 90% RH is 
needed, which in some cases could also encourage the de-
velopment of fungal infestations of plants. It has been pro-
posed that the sprayings should be conducted in the eve-
ning; with the windows to remain closed for two nights V. 
lecanii has been successfully used against greenhouse infes-
tations of whitefly, aphids, and thrips. It has been proved 
that this fungus can be effective under conditions of high re-
lative humidity (Ekbom 1981), but Drummond et al. (1987) 
showed evidence for variation in the requirements of dif-
ferent V. lecanii isolates. This researcher proved that V. le-
canii could be highly effective at 70% RH providing a 96-h 
incubation at >95% RH. The humidity conditions prevailing 
at the insect–fungus level close to the leaf surface could 
compensate the adverse effect of dry conditions (Vidal et al. 
2003) and should be considered in biocontrol (Fargues et al. 
2003). In the effort to enhance its effectiveness several ma-
terials have been evaluated for their potential to favor the 
germination of conidia and infection of the greenhouse 
whitefly. Among them, sugars showed a potential for en-
hancing field efficacy of V. lecanii (Shi et al. 2006). 

According to Mayoral et al. (2006), the fungus B. bas-
siana can be 72.3-82.8% effective against whiteflies on 
tomato and eggplant. Results of Fargues et al. (2003) agree 
with those of Wraight et al. (2000) that a high control pot-
ential of B. bassiana and P. fumosoroseus can occur under 
ambient dry conditions, in laboratory assays (56–75% mor-
tality at 49–54% RH) and in small-scale field trials (76% 
control at 39–85% RH). 

Applications of entomopathogenic nematodes have also 
shown a considerable potential for the biological control of 
whiteflies. Experiments have proved that they are effective 
against B. tabaci (Head et al. 2004; Cuthbertson and Wal-
ters 2005). In laboratory and greenhouse experiments the 
entomopathogenic nematode Steinernema feltiae (Filipjev) 
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caused high mortality of second instar of B. tabaci (> 90% 
and > 80%, respectively) and thus, it has been considered as 
showing a significant potential for use in management of 
this pest (Cuthbertson et al. 2007). These nematodes move 
through a thin film of water on the leaf surface. Therefore, 
conditions that affect the maintainnance of this film are cru-
cial for the effectiveness of the nematodes. In order to opti-
mize efficacy, favorable conditions should be kept for a pe-
riod of 6-8 h after their application (Cuthbertson and Wal-
ters 2005). 
 
Supplementary measures 
 
In the control of pests by biological control agents, the ap-
plication of sanitary and precautionary measures can be of 
significant supporting value. These target low initial levels 
of crop infestation, which are considered to be fundamental 
for the subsequent success of biological control. Releases of 
the parasitoid E. formosa should be initiated before the T. 
vaporariorum population exceeds the density level of 10 
adults per 100 tomato plants (Ekbom 1977). The aim of low 
initial pest population levels in the crop is supported by the 
use of exclusion nets that cover the greenhouse openings 
and the construction of double doors, both focusing on the 
prevention of entry of pests into the crop. The use of nets 
has been experimentally evaluated and proved to be effec-
tive in reducing the pest inocula (Hanafi et al. 2002). The 
nets should be installed before planting (Trottin-Caudal et 
al. 2006) and possible adverse effects on RH, with the risk 
of increased fungal disease, must be taken into considera-
tion (Chyzik et al. 2005). Yellow sticky traps are the most 
widespread method for the detection and monitoring of 
whiteflies in greenhouses, as their catches show a strong re-
lationship with the whitefly population in the greenhouse. 
Further research has focused on the development of an 
appropriate sequential monitoring plan so as to improve the 
efficacy of yellow sticky traps for the timely application of 
the control measures. In the study of Kim et al. (2001), it 
was shown that cylindrically shaped yellow sticky traps 
should be placed at least 12.5 m apart to obtain a spatially 
independent, unbiased estimation of mean of T. vaporario-
rum densities in greenhouse cherry tomato crops. 

Plastic cup traps equipped with light-emitting diodes 
have shown a high potential in the monitoring of adult B. 
tabaci with little negative effect on the released parasitoids 
(Chu et al. 2003). 

An alternative method that has recently been evaluated 
against several pests in greenhouse crops is the use of plas-
tic covers that exclude UV radiation. The lack of UV caused 
difficulties in whitefly flight orientation and reduced disper-
sal activity (Antignus et al. 2001; Doukas and Payne 2007). 
However, it has been shown to influence the flight behavi-
our of parasitoids as well (Chiel et al. 2006). Thus, although 
the use of this method has positive results against pests, on 
the other hand, it may negatively affect the natural enemies. 
Further studies are required as it could also affect pollina-
tors making its use questionable for crops such as tomatoes 
(Hemming et al. 2006). 
 
APHIDS 
 
Aphids are serious pests of the Solanaceae and other vege-
tables crops. The most common species are the melon or 
cotton aphid Aphis gossypii Glover, the green peach aphid 
Myzus persicae (Sulzer) and the potato aphid Macrosiphum 
euphorbiae (Thomas) (Homoptera: Aphididae). They are 
major pests because they can reproduce asexually, complete 
several generations within a growing season and they ac-
tively feed on the plant sap by inserting their stylets into the 
phloem, which leads to a loss of plant vigor and producti-
vity. Aphids excrete large amounts of honeydew, which pro-
motes the growth of sooty molds, causing a reduction in 
photosynthesis and the market value of the fruit. They are 
extremely polyphagous and this makes the infestation of the 
new crops easier. They are also effective vectors of plant 

viruses. In particular, M. persicae is able to transmit more 
than 100 plant viruses, for example cucumber mosaic virus 
(CMV) which is one of the most important and damaging 
viruses of vegetable crops. Moreover, aphids are a difficult 
group to control because they relatively easily develop 
resistance to insecticides (Foster et al. 2000; Critini et al. 
2008). This attribute was a main motivation for the change 
from chemical to biological control (Devonshire 1988). 
Aphids are attacked by several natural enemies, including 
parasitoids, predators and entomopathogens. 
 
Parasitoids 
 
Aphid parasitoids belong to the families Aphidiidae and 
Aphelinidae of the Hymenoptera. The adults of the Aphidii-
dae are usually 2-3 mm long. Their colour can be partially 
black, brown, yellow or orange. The adults feed on honey-
dew. Females of the aphidiids insert a single egg (solitary 
parasitoids) in the abdomen of the aphid victim (host). The 
larva of the parasitoid develops inside the host body consu-
ming its fluids and later the tissues. The host can continue 
to feed and develop (koinobiont parasitoids). The larva com-
pletes its development inside the host and pupates inside the 
host. At the pupation time the host is killed, having been en-
tirely emptied as the larva consumes all the internal tissues 
of the host. At this stage, the host skin hardens and swollen 
and becomes a ‘mummy’ (Rabasse and Wyatt 1985). The 
fully developed larva cuts a hole in the underside of the host 
and attaches it to the plant by silk. The adult emerges 
through a round hole that is created in the dorsal side of the 
abdomen of the host, in the region close to the siphunculi. 
Parasitized aphids are not easily distinguished from healthy 
ones during the early stages of the parasitoid’s development. 
Later, they become less mobile and more rounded (swollen) 
in shape. 

Usually young aphids are preferred for oviposition, al-
though all instars can be accepted (Rabasse and Wyatt 
1985). The preference for smaller hosts can be related to 
their less developed defence behaviour (Chau and Mac-
kauer 2000; Walker and Hoy 2003). However, in koinobiont 
parasitoids the suitability of a given host is not based only 
on its size, since the host continues feeding during parasiti-
zation, and this may result in a variable availability of nu-
trients, irrespective of the host’s size at parasitization (Har-
vey et al. 2000, 2004; Colinet et al. 2005). The aphidiids 
can enter diapause at the larval or pre-pupal stages in the 
host. Aphidius ervi (Haliday) entered diapause under a pho-
toperiod of 12 h light:12 h dark, at a higher proportion at 
12°C than at 15°C, whereas the second larval stage of the 
parasitoid was more sensitive (Christiansen-Weniger and 
Har-die 1999). 

Although there are many parasitoid species that attack 
aphid species in the open field, only a few of them have 
shown potential to control aphids in greenhouse environ-
ments. Among four aphid parasitoids (Aphidius colemani 
Viereck, Ephedrus cerasicola Stary, Lysiphlebus testaceipes 
Cresson and Aphidius matricariae Haliday), A. colemani 
was the most effective against A. gossypii in laboratory ex-
periments (van Steenis 1995). The fecundity of A. colemani 
was 302 eggs at 20°C and 388 eggs at 25°C, and the deve-
lopmental period lasted 12.7 and 10.0 days, respectively. 
The intrinsic rate of population increase was comparable to 
that of A. gossypii (van Steenis 1993). This parasitoid can 
parasitize all instars of M. persicae and A. gossypii, and 
prefers the younger ones. Hosts parasitized at the 1st and 2nd 
instars become mummified before reaching the adult stage 
(Perdikis et al. 2004). This preference may have considera-
ble implications for biological control, considering that 
aphids parasitized early in their life do not reach adulthood 
and thus do not produce offspring (van Steenis and El-Kha-
wass 1995), while young aphids are more abundant at the 
early stages of an aphid population increase (Lykouressis 
1982; Lykouressis and van Emden 1983) and in effective 
biological control, it is crucial to suppress the pest popula-
tion at its early stage of establishment on the crop. In the 
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search for effective natural enemies of aphids in protected 
crops in Brazil, the native parasitoids A. colemani and L. 
testaceipes proven to prefer A. gossypii to M. persicae 
(Bueno et al. 2006). The optimum temperature for the 
development of A. colemani on A. gossypii was 22°C and 
the lowest developmental temperature threshold was 5.94°C, 
whereas mummies were not produced at 31°C (Sampaio et 
al. 2007). 

Aphidius colemani is widely used in biological control 
programmes against A. gossypii on eggplant and cucumber. 
Apart from its introduction by periodic release, open-
rearing units (banker plants) based on maize, wheat and 
ryegrass plants infested with aphid species that do not infest 
the vegetable crops showed a high potential as a strategy for 
the introduction of the parasitoid in glasshouse cucumbers 
(Jacobson 1998; Yano 2006). 

The use of banker plants for the control of insect pests 
in vegetable greenhouses offers several benefits, such as 
lower cost, increased efficiency, early release of biological 
control agents and constant release of natural enemies in the 
greenhouse. Continuous release has a stabilizing effect on 
the aphid-parasitoid system, but problems may arise due to 
parasitization of secondary parasitoids, that is detrimental to 
the population of the primary parasitoids i.e. the parasitoids 
that control aphids, and aimed to be established in the green-
house (such as A. colemani). Thus, another system based on 
an aphid predator is being developed on banker plants 
(Yano 2008). 

The apheliniid parasitoids (Hymenoptera: Aphelinidae) 
of aphids belong to the genera Aphelinus Dalman and Mesi-
dia Forster. They are smaller that the aphidiids (usually less 
than 1 mm in length) and are koinobiont solitary endopara-
sitoids. The host is transformed into a mummy, but in this 
case the mummies are black and elongated (Hagen and van 
den Bosch 1968). Adults feed on honeydew, but they also 
feed on the host’s fluids (Stary 1988). The female inserts 
her ovipositor in the host’s body and feeds on the fluid that 
emerges from the wound. The host afterwards fails to sur-
vive. Aphelinus abdominalis (Dalman) shows a longer life 
span than the aphidiids as it completes its development 
within a period of 23.5 days at 20°C (Haart and Holler 
1992). Its fecundity was 158 eggs on M. euphorbiae on 
eggplants at 26°C (Jarosik et al. 1996). However, host mor-
tality due to the consumption of body fluids (host-feeding) 
might not be important, as in another species each female 
killed only one host per day (Bai and Mackauer 1990). 
Aphelinus abdominalis is used against the aphid M. euphor-
biae in greenhouses with positive results (Holler and Haardt 
1993). This parasitoid could establish in unheated tomato 
greenhouses and contributed to the control of M. euphor-
biae (Alomar et al. 1997). The evaluation of the parasitoid 
Aphelinus asychis (Walker) againt A. gossypii, M. persicae 
and M. euphorbiae showed that this species could be an ef-
fective biological control agent against these pest aphids 
and therefore further evaluations should be undertaken (Tat-
sumi and Takada 2005). 
 
Predators 
 
Aphid populations are suppressed by a high number of pre-
dators. In greenhouse vegetable crops the predators that are 
used in aphid biological control are the predatory midges 
(Diptera: Cecidomyiidae), chrysopids (Neuroptera: Chryso-
pidae), coccinellids (Coleoptera: Coccinellidae) and mirids 
(Hemiptera: Miridae). 

Predatory midges belong to the insect order Diptera. 
The adults are brown-red with a length of about 2.5 mm 
(Nijveldt 1988). Predators of aphids occur within the family 
Cecidomyiidae. Although this family includes mainly phy-
tophagous species, there are a few exceptions. Aphidoletes 
aphidimyza Rondani feeds only on aphids and is highly 
polyphagous as it feeds on more than 80 aphid species (Yu-
kawa et al. 1998). Its life cycle includes the egg, the larval 
stage (3 instars), the pre-pupa, pupa and the adult. The eggs 
and larvae are orange in colour. The fully developed larvae 

reach 2.5 mm in length, and pupate in the ground by crea-
ting a cocoon from soil particles. 

The larvae are predaceous on aphids and feed by pier-
cing the aphid body with their mouthparts. This paralyzes 
the aphid and the body fluids are sucked out. The adults 
feed on honeydew to support the maturation of the eggs 
(Uygun 1971). Adults are nocturnal (Uygun 1971). 

The females actively search and efficiently locate the 
aphid colonies (El Titi 1974). The honeydew presence aids 
them to locate the aphid prey. Females of this predator 
showed an olfactory response to honeydew excreted by M. 
persicae under laboratory conditions. Female midges laid 
more eggs on pepper plants infested with higher densities of 
M. persicae (Choi et al. 2004). Generally, the females pre-
fer to lay eggs in dense aphid colonies or nearby as the lar-
vae move for only short distances. Oviposition rates were 
proven to increase with density of the aphid M. euphorbiae 
(Lucas and Brodeur 1999). Aphidoletes aphidimyza has 
been proven effective against M. persicae on tomato, egg-
plant and sweet pepper (Markkula et al. 1979; Meadow et 
al. 1985). 

Aphidoletes aphidimyza enters diapause in response to 
short day conditions in autumn. Diapause is induced in the 
last larval instar and in the pupual stage. At photoperiods 
below 15 h, 100% of the larvae entered diapause. However, 
the use of low intensity radiation during the night prevented 
diapause (Gilkeson and Hill 1986a). Extensive research was 
successful to find and commercialize non-diapausing bio-
types (Gilkeson and Hill 1986b). Diapausing larvae have 
been used as a suitable storage stage of the predator with 
promising results (Koš�ál et al. 2001). The predator showed 
a reduced potential for establishment when the glasshouse 
floor was covered with plastic, as this is a barrier to the pu-
pation of larvae. For this reason some kind of protection by 
the addition of peat or other material could be considered 
(Gilkeson 1990a). The pupation of the predator in the soil 
also has important consequences in the development of its 
rearing techniques. In mass rearing, normally the larvae 
develop within dense colonies of aphids and when they ma-
ture they fall from the plants to the soil or a suitable sub-
strate to pupate. The substrate is such that enables the easy 
removal of the pupae. Pupae are durable to the transport 
conditions and this is the stage which is suitable for com-
mercialization and release of the predator. The potential for 
long-term low-temperature storage of this natural enemy is 
crucial for its wider use. Larvae in diapause (in their co-
coons) could be stored for 3 months at 4°C with a RH of 
100%, with a mortality of 25% (Havelka 1980). Diapausing 
or non diapausing larvae stored at 5°C for a period of 
8 months survived showing less than 9% mortality (Gilke-
son 1990b). Variation in diapause intensity of different po-
pulations can be associated with the variability of the re-
sults of the low-temperature storage and cold hardiness in 
populations of A. aphidimyza (Koš�ál et al. 2001). 

The green lacewing, Chrysoperla carnea (Stephens) 
(Neuroptera: Chrysopidae), is the most important lacewing 
used in aphid control (New 1988). It passes through the egg, 
larva (3 instars), the pre-pupa, pupa and the adult stage 
(Canard and Principi 1984). The longevity of the adults can 
be several months (Canard and Principi 1984). One female 
can produce up to several hundred eggs (Chang et al. 2000). 
The presence of aphids is not a perquisite for the selection 
of an egg-laying site. The larvae feed on aphids, and the 
adults on pollen and honeydew. A single larva can kill about 
400 aphids, of which 80% are consumed in the third instar 
(Scopes 1969). Chrysoperla carnea consumed 292.4 or 
272.6 late instar nymphs of A. gossypii or M. persicae res-
pectively, during developmet. The proportions of aphids 
consumed by each larval instar was 3.9-7.1% by the first, 
12.0-16.8% by the second, and 78.1-83.9% by the third 
instar (Liu and Chen 2001). Prey preference of the preda-
tory lacewing Dichochrysa prasina Burmeister (Neurop-
tera: Chrysopidae) was investigated among various prey 
and it was demonstrated that nymphs of M. persicae were 
among the most favorable for enhancing development and 
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adult longevity and fecundity (Pappas et al. 2007). 
The prey is recognized by direct contact and prey search 

is random (Canard and Duelli 1984). The larvae cannot 
distinguish between the parasitized and non-parasitized 
aphids, and therefore they consume both (Bay 1993). In 
periods of prey absence, cannibalism occurs (Canard and 
Dueli 1984). In short photoperiods, the adults enter dia-
pause and the larval is the most sensitive stage (Canard and 
Principi 1984). Larvae of C. carnea have been successfully 
used to control aphids on peppers and eggplants (Hassan 
1977; Castaldi 1999). On cucumber the results were not sa-
tisfactory as the leaf trichomes interfere with the searching 
activity of the larvae (Scopes 1969). In general, the results 
of the application of this predator were better on plants with 
dense foliage and evenly spread prey (Tulisalo 1984). 

Ladybirds (Coleoptera: Coccinellidae) are major preda-
tors of aphids. The adults and the larvae are predacious, but 
adults can also feed on pollen, nectar or fungi. However, 
feeding on aphid prey is required for egg production (Sund-
by 1968). In general, four larval instars are present. Fecun-
dity depends on the aphid species, while voracity depends 
largely on the age of the predator and the age and species of 
the aphid prey. During development a single larva can con-
sume several hundreds of aphids and particularly in the last 
larval instar. The use of coccinellids against aphid infesta-
tions in greenhouse environments has been evaluated in 
certain cases. Final-instar larvae of Semiadalia undecimno-
tata (Schneider) were released against Aulacorthum solani 
(Kaltenbach) (Homoptera: Aphididae), M. euphorbiae and 
M. persicae, on eggplants. Although there was a considera-
ble reduction on the aphid numbers the application of the 
method in large scale was questioned due to several cons-
traints such as the the need for large numbers of predators’ 
larvae but also the adult mobility. It was proposed that the 
problem of adult mobility could be overcome if better adap-
ted exotic strains or less mobile predators were used (Ferran 
and Larroque 1984). As it was proposed by Hodek and Ho-
n�k (1996) coccinellids may be more suitable for releases 
when large numbers of aphids have been developed on the 
plants that might occur in cases of failure of control mea-
sures. The use of the convergent lady beetle Hippodamia 
convergens Guerin-Meneville and the Asian lady beetle H. 
axyridis for aphid biological control in greenhouse crops 
has given variable results, mainly due to their tendency to 
emigrate. This tendency is stronger when the prey in the 
greenhouse cannot cover the nutritional needs of the preda-
tors (Obrycki and King 1998). To reduce this potential, lar-
vae of the predators were released in the greenhouses in-
stead of adults, but in this case there was a failure in popu-
lation build up or delayed dispersion within the greenhouse 
(Lommen et al. 2008). Efforts to avoid these discrepancies 
include the rearing of flightless H. axyridis adults (Tourni-
aire et al. 2000). Lommen et al. (2008) used naturally oc-
curring Adalia bipunctata L. flightless morphs against 
aphids on pepper plants, and the results showed that the 
effectiveness of these predators was higher than that of the 
winged conspecifics, as they remained for a longer time on 
the plants. However, the aphid population was not eradi-
cated and thus further research is required to investigate the 
effectiveness of flightless morphs under more realistic con-
ditions. 

Predatory bugs of the family Miridae are considered to 
be effective in aphid control (Albajes and Alomar 1999; 
Lykouressis et al. 1999-2000). Predation rates have been 
studied against the main aphid pests in solanaceous green-
house crops. Macrolophus pygmaeus showed high preda-
tion rates on M. persicae and relatively lower on M. euphor-
biae, a result that was mostly attributed to the larger size of 
the latter species (Lykouressis et al. 2007). This predator 
feeds on all instars of both aphid species showing a prefer-
ence to the smaller ones (Lykouressis et al. 2007). The rate 
of population increase of M. pygmaeus when feeding on M. 
persicae on tomato was 0.0981d-1 at 27.5°C (Perdikis and 
Lykouressis 2002). The potential of this predator to develop 
a population when feeding on A. gossypii, on cucumber 

proven to be low in laboratory experiments (Perdikis and 
Lykouressis 2003). However, on eggplant with A. gossypii 
it completed development at a period similar to that when 
feeding on M. persicae (Perdikis and Lykouressis 2000). 
Temperature also had a significant effect on the predation 
rate of the mirid predator M. pygmaeus, being highest at 
30°C, whereas the 5th instar nymphs and the females showed 
a higher predation rate than the younger nymphs and the 
males (Perdikis et al. 1999). Macrolophus melanotoma 
(previously named M. caliginosus) also feeds actively on M. 
persicae, M. euphorbiae and A. gossypii (Alvarado et al. 
1997). Dicyphus tamaninii has been also proven to cause a 
significant impact on the population densities of A. gossypii 
as it can consume a high number of A. gossypii individuals 
and particularly those of the young nymphal instars (Sen-
gonca and Saleh 2002). 

In addition, the predatory bugs Anthocoris nemorum 
(L.) and Anthocoris nemoralis (Fabricius) (Hemiptera: An-
thocoridae) showed potential as biological control agents of 
aphids, particularly M. persicae, on which they showed a 
higher predation rate than on other aphid species (Meyling 
et al. 2003). The predatory bug Orius similis Zheng (Hete-
roptera, Anthocoridae), originated in China, showed a high 
potential to utilize aphids such as A. gossypii (Sengonca et 
al. 2008). 
 
Entomopathogenic fungi 
 
The entomopathogenic fungi that can be used against 
aphids are B. bassiana, Metarhizium anisopliae Metchni-
koff and V. lecanii (Lipa and Smits 1999). The effectiveness 
of pathogens is greatly affected by the humidity levels. V. 
lecanii requires 90% RH for at least twelve hours in the 
microenvironment of the spores and maximum infection 
occurs at 100% RH (Milner and Lutton 1986). The opti-
mum temperature range for spore germination is 20-25°C 
(Hall 1981) and natural infestations occur at high aphid 
densities. Six applications of V. lecanii at 14 day intervals 
successfully controlled A. gossypii in greenhouses where 
the RH was kept at sufficiently high levels (Heyler 1993). 
In formulations, a substrate is added to support sporulation 
on the insect surface. This fungus has been shown to be 
more effective against M. persicae than A. gossypii (Hall 
1985). 

RH has a great influence on the germination /sporula-
tion of B. bassiana (Wraight et al. 1998). Shipp et al. 
(2002) showed by cage trials that this fungus can be effec-
tive in greenhouses not only against A. gossypii, but also 
against F. occidentalis and T. vaporariorum on tomato and 
cucumber. The percentage of pest infection was 81-96% at 
85-91% RH. However, to achieve sufficient control, repea-
ted applications of the fungus should be conducted. The use 
of a fungus can interfere with the use of parasitoids. For 
example, females of the parasitoid A. ervi were unable to 
discriminate between infected and healthy hosts of the fun-
gus Pandora neoaphidis (Remaudière and Hennebert) Hum-
ber, until the host was dead and sporulation had started 
(Baverstock et al. 2005). 
 
LEAFMINERS 
 
Leafminers of the genus Liriomyza Mik (Diptera: Agro-
myzidae) are important pests of vegetable crops. These spe-
cies are polyphagous, have developed resistance and are 
widely distributed in regions outside their area of origin. 
The main species are Liriomyza trifolii Burgess, Liriomyza 
bryoniae Kaltenbach and Liriomyza huidobrensis Blanchard. 

L. trifolii was reported from the eastern United States 
(Spencer and Steyskal 1986), but later dispersed to several, 
distant areas of the world (Minkenberg 1988). L. huidobren-
sis is an American species (Spencer and Steyskal 1986) 
which in the late 1980s was recorded in Europe, mainly due 
to the import of infested plant material. L. bryoniae is a spe-
cies native to the arctic region. This species has been 
mainly related to tomato, but is in fact a polyphagous spe-
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cies (Spencer 1990). 
The females feed on the drops of plant sap that emerge 

from the wounds they create on the leaves using their ovi-
positors. The males also feed on these fluids. The wounds 
are easily recognized on the leaves, and particularly the 
younger ones. They are considered to be the first sign of the 
presence of the pest in the greenhouse. These punctures 
could reduce photosynthesis and also provide enter points 
to pathogens (Matteoni and Broadbent 1988). The larvae 
feed inside the leaf tissue and create mines that are elongate 
and narrow but widening as the larva grows. The larva 
passes through 3 instars and then pupates on the leaf or in 
the ground. In beans, the pupae can remain on the leaves as 
they are stacked by the trichomes. The colour of the pupae 
can vary between the winter and summer periods. 

The optimum temperature for the development of L. 
huidobrensis is 25°C and the lowest developmental thres-
hold is 8°C (Minkenberg and Helderman 1990). L. trifolii is 
less adapted to low temperatures as population increase 
occurs at temperatures higher than 16°C (Minkenberg 1988). 
The rates of natural population increase of L. trifolii at 25°C 
on tomato and melon were 0.1607 and 0.1429, respectively 
and its population growth rate was highest at 25°C (Ozawa 
et al. 1999). L. bryoniae and L. huidobrensis were able to 
overwinter outside the greenhouses (van den Linden 1993). 
The ability of leafminers to survive winter in conjunction 
with their polyphagy indicates that phytosanitary measures 
within and in the close proximity of the greenhouses are es-
sential to reduce the damage potential of these insect pests. 

The damage that leafminers cause is primarily a lower-
ing of the photosynthetic potential of the plants, but the 
seriousness of this damage is difficult to assess because the 
plants may have the ability to compensate for the loss of 
photosynthesis by increasing that of the remaining leaves. 
Ledieu and Heyler (1982) showed that the yield of plants 
heavily damaged by leafminers was only 17% lower than 
the controls. It appears that the effect of the infestation is 
related to the location of the damaged leaves on the plants. 
Damage to the lower leaves is of minor importance, but 
damage to the leaves close to the tomato truss, when the 
fruits are less than half developed, can be significant (Wyatt 
et al. 1984). For example, in this case, damage levels of 30 
mines per leaf resulted in a yield reduction of 10%. 
 
Natural enemies 
 
Leafminers have several natural enemies, which are mostly 
parasitoids. The natural enemies that are commercialized 
for leafminer control are the parasitoid species Diglyphus 
isaea Walker (Hymenoptera: Eulophidae), Dacnusa sibirica 
Telenga (Hymenoptera: Braconidae) and Opius palipes 
Wesmael (Hymenoptera: Braconidae). 

Diglyphus isaea is an ectoparasitoid that lays its eggs in 
the mine, beside the leafminer larva. The female lays 1-5 
eggs in each mine but finally only one larva completes its 
development. The females paralyze their hosts with venom 
and prefer to oviposit on or near hosts of the 2nd or 3rd instar 
(Ode and Heinz 2002). The parasitoid larva is clearly seen 
in the mine by the aid of backlighting. An important charac-
teristic of this parasitoid, with significant value for its ef-
fectiveness as a biological control agent, is the host feeding. 
The female pierces the leafminer larva body with her ovipo-
sitor and feeds on the fluids that are excreted. As a food 
source, it uses larvae of the 1st or 2nd instar of the leafminer 
(Ode and Heinz 2002). Host feeding can contribute 15-40% 
of the total mortality of the pest population (Minkenberg 
1989). At 15°C, larvae of D. isaea needed about 28 days to 
complete development on L. huidobrensis and about 27 
days on L. trifolii. At 25°C, parasitoid development was 
completed within about 10 days. The theoretical threshold 
was 9.2°C and optimum temperatures for female and male 
development on L. trifolii were 33.3 and 32.3°C, and on L. 
huidobrensis 32.6 and 31.0°C, respectively (Bazzocchi et al. 
2003). 

The mass production of D. isaea has attracted interest 

for the collection of data on its ecological aspects. This is 
because, despite its effectiveness, it was relatively expen-
sive to produce due to the high proportion of males in the 
progeny. Host stage- dependent sex ratio studies revealed 
that the larval stage of the host (small and large larvae given 
together) should be used for the production of a higher ratio 
of females in the progeny (Chow and Heinz 2005). 

Natural parasitism can be important in the regulation of 
leafminers, as there are several natural enemies indigenous 
to the areas of origin of these pests (Benuzzi and Radoni 
1992). Parasitism of L. sativae Blanchard on cucumber was 
found to reach 39% in unsprayed greenhouses, with D. 
isaea the most common species in Iran (Fathipour et al. 
2006). Their natural parasitism is low early in the season, 
but increases considerably later (Parella 1987). 

Dacnusa sibirica is a Palearctic, solitary endoparasitoid 
that lays its egg in the body of the leafminer larva and the 
adult emerges from the host pupa. It prefers to oviposit on 
larger hosts although all instars are accepted (Hendriske et 
al. 1980). This species is less adapted at higher tempera-
tures as its fecundity and longevity were found to be similar 
between 20 and 25°C (Minkeberg 1990). 

A comparative study on the suitability of L. sativae, L. 
trifolii and L. bryoniae as hosts for the parasitoid O. pal-
lipes showed that it can be a useful biological control agent 
of L. trifolii and L. bryoniae, but is not able to control L. 
sativae (Abe et al. 2005). Results on the developmental 
time and offspring size of a solitary koinobiont parasitoid, 
Gronotoma micromorpha Perkins (Hymenoptera: Eucoili-
dae), indicated that L. trifolii and L. bryoniae are both ac-
ceptable and suitable hosts, and this parasitoid may be a 
useful biological control agent of both leafminer species 
(Abe 2006). 

Kaspi and Parella (2006) evaluated the potential of 
using D. isaea in parallel with the application of the sterile 
insect technique (SIT). In SIT a large number of sterilized 
mass reared insects (usually with radiation) is released 
under the aim the sterilized males to succefully compete 
with the wild ones for the copulation with the wild females. 
If succeded, then the number of the offspring in the next 
generation are highly reduced (Kaspi and Parella 2003). In 
the case of leafminers, a synergistic effect was found and 
control was more efficient than the use of either method 
alone. This was attributable to the fact that the numbers of 
adults are suppressed by the SIT and that of larvae with the 
parasitoids (Kaspi and Parella 2006). This technique has 
been tested in greenhouse experiements also against white-
flies but although the pest population was reduced it was 
not proven adequately effective (Calvitii et al. 1998). 

Foliar applications of entomopathogenic nematodes 
against leafminers have been tested and have been shown to 
be potentially effective (Williams and Walters 2000). They 
belong mostly to the genus Steinenerma, and can contribute 
to the control of the leafminers, but their co-use with the 
parasitoids is questioned as they may also infect the para-
sitoid larva. The combined use of the eulophid parasitoid 
wasp Diglyphus begini Ashmead and the entomopathogenic 
nematode Steinernema carpocapsae Weiser for control of 
the leafminer L. trifolii on chrysanthemums showed that it 
could be effective, but interspecific interference and intra-
guild was recorded and thus further research is required to 
investigate the proper time of application of the beneficials 
(Sher et al. 2000). 
 
THRIPS 
 
Thrips (Thysanoptera: Thripidae) are elongate insects of 
small size, with an adult length <2.5 mm and life stages 
comprising the egg, larval stage with 2 instars, the pre-
pupal and pupal stage and the adult. The kidney-shaped 
eggs are laid under the leaf surface. The larva feeds on the 
plant tissue which can be the leaf, flowers or fruits. The 
pupal stages are found on the plants but usually in the upper 
layer of the soil. The damage is caused by the adult and the 
larval stage. When feeding on the plants they destroy the 

134



Biological control of greenhouse pests of Solanaceous crops. Perdikis et al. 

 

plant cells and as a result the leaves can curl, and the 
photosynthetic capacity of the plant is reduced. They prefer 
to feed on the young developing tissues. They are com-
monly recorded on the flowers, where they feed on pollen 
and nectar and on the young developing tissues of the 
reproductive organs, resulting in fruit deformations. Some 
of these species can be very destructive as they are also vec-
tors of plant viruses of the family Tospoviridae. 

Only a very small number of species cause damage to 
protected crops. However, they are considered to be serious 
pests as they are polyphagous, damage the fruits, show a re-
latively high reproductive potential, have a short generation 
time, easily develop resistance to insecticides, vector plant 
pathogens, can be active during winter, are protected in the 
crevices or other concealed places on the plants, and certain 
life stages (e.g. eggs and nymphs) are protected in the plant 
tissue and soil, respectively. 

The major pest species of concern to vegetable crops in 
protected cultivation are the species Frankliniella occiden-
talis, Thrips tabaci Lindeman and Thrips palmi Karny (Thy-
sanoptera: Thripidae). F. occidentalis is considered to be the 
most important of these species. It originates from the wes-
tern USA, but in the 1970s and 1980s it was distributed to 
protected crops worldwide. It is considered to be a cosmo-
politan species. It can cause economic damage to green-
house crops by feeding or ovipositing on developing fruits 
and leaves. It is highly polyphagous, with a host list that 
includes more than 244 plant species from 62 families. It is 
a serious pest of more than 200 species of vegetables and 
ornamentals (Lewis 1997). It can relatively easily develop 
resistance to insecticides (Brødsgaard 1994; Broadbent and 
Pree 1997) and is a very effective vector of tospoviruses, 
such as the tomato spotted wilt virus (TSWV) (German et 
al. 1992). This virus causes bronzing of the young leaves 
that roll inward and turn chlorotic. On fruits, spots 10 mm 
in diameter develop with concentric, circular markings. The 
spread of this virus might not be avoided by chemical treat-
ments as the adults can successfully transmit the virus before 
they die (Momol et al. 2004). However, biological control 
combined with other methods (trapping, exclusion nets, 
sanitary measures) can substantially aid in the control of the 
pest in the greenhouse environments (Jacobson 1997). 

Thrips tabaci is a species that originated in the Middle 
East but subsequently has become widespread worldwide. 
Thrips palmi originates from south eastern Asia, but has re-
latively recently become distributed to other areas, such as 
North America and the Caribbean (Cannon et al. 2007). 
 
Natural enemies 
 
For the control of thrips, careful application of phytosani-
tary measures is essential. These include the transplantation 
of plants that are free of the pest, prevention of an invasion 
by adults in the greenhouse and the avoidance of emergence 
of thrips from the soil where it may have survived from the 
previous growing season. 

The main biological control agents of thrips in protected 
vegetable crops are predatory mites, heteropteran bugs and 
entomopathogenic fungi, but also nematodes and parasitic 
wasps. In many cases more than a single agent is used. Pre-
datory mites are the most commonly used means of biologi-
cal control of thrips. They belong mostly to the family Phy-
toseiidae. The phytoseiid predators were primarily consi-
dered to be mostly related to spider mites, but proved to be 
effective against thrips. The reasons for their effectiveness 
relate to their potential to utilize alternative food sources 
and their numerical response to the prey population (Sabelis 
2008). 

A major biological attribute that make phytoseiids use-
ful in biological control is their utilization of pollen. Their 
phytophagous habits enable these predators to maintain 
populations on the plants in the absence of thrips and there-
fore existing populations can control thrips at the initial 
phase of crop colonization. Peppers are particularly compa-
tible with the use of phytoseiid mites because they continu-

ally produce a high amount of pollen. 
To aid establishment, the predators are released in the 

greenhouse within sachets, which are rearing units where 
stored product mites are available as food for the predators. 
This technique enabled the use of the predators on plants, 
such as eggplant or cucumber, which are less efficient pol-
len producers. The addition of pollen on cucumber as an 
alternative food source can facilitate the establishment and 
reproduction of predatory mites (van Rijn et al. 1999). 

The range of hygrothermal conditions that might occur 
in the greenhouse can influence the rate of predation of 
Neoseiulus cucumeris Oudemans on F. occidentalis (Shipp 
et al. 1996). Iphiseius degenerans Berlese proved to be 
more effective than N. cucumeris when released at the same 
rates in sweet pepper, and was more efficient than N. cucu-
meris in reducing the numbers of thrips on the flowers (van 
Houten and van Stratum 1995). Neoseiulus cucumeris feeds 
mainly on first instar larvae and thus, thrips’ population 
could continue to increase (Bakker and Sabelis 1989). There-
fore, late release of the predator may resut in insufficient 
control of the pest due to lack of sychronization (Shipp and 
Wang 2003). 

A new thrips predator that is being evaluated and mass 
reared is the phytoseiid Typhlodromips montdorensis Schi-
cha, which showed promise against T. tabaci on cucumber 
and has recently become commercially available (Steiner 
and Goodwin 2002). 

The predatory mite, Amblyseius swirski has shown ef-
fectiveness against F. occidentalis (van Houten et al. 2005). 
It was introduced to the market in 2005 for the control of 
thrips (Bolckmans 2005). This predator can reach places 
where the thrips are sheltered, but mostly kills 1st-instar 
larvae (Chow et al. 2008). Immatures of this predatory mite 
fed upon first larval instars of both F. occidentalis and T. 
tabaci whereas females readily accepted first instar larvae. 
However, less than one-third of immature reached adult-
hood and females oviposited less than one egg per day at 
25°C. Therefore, its effectiveness against thrips should not 
be closely associated with the suitability of thrips as food 
source for the predator but possibly to other factors such as 
the simultaneous availability of other prey (such as white-
flies) on the plants (Wimmer et al. 2008). However, the po-
tential of this mite in thrips control requires further exploi-
tation. 

Predatory bugs are also major biological control agents 
of thrips in greenhouse environments. The most important 
of these predators are the species of the genus Orius (He-
miptera: Anthocoridae). They are commonly recorded in 
flowers and thus they share the same niche as their prey, 
which indicates their potential in the control of thrips. They 
can also feed on pollen and then can be effectively estab-
lished in periods when their prey is not present. Nymphs of 
Orius insidiosus (Say) failed to complete development on 
bean leaves without prey or pollen; but when pollen was 
added they managed to complete developmet at a high rate 
(Kiman and Yeargan 1985; Richards and Schmidt 1996). 
This has been also proved for other species such as Orius 
tristicolor (White) (Salas-Aguilar and Ehler 1977). Control 
of thrips with the use of Orius was more effective on plants 
that produce a lot of pollen, such as sweet peppers. On 
plants that produce less pollen (e.g. cucumber) they face 
difficulties in establishing, with adverse consequences for 
the establishment of the second generation. However, Orius 
are less effective on tomatoes. Orius insidiosus failed to es-
tablish on tomato crops (Shipp and Wang 2003). This spe-
cies showed a poor functional and numerical response to 
thrips on tomato (Coll and Ridgway 1995). These resear-
chers suggested that Orius searching activity was serioudly 
imposed due to the presence of glandular trichomes on the 
tomato leaves and stems. Adverse effects of tomato on 
Orius species such as difficulties in foraging activity and 
walking speed to even the death of the nymphs or failure to 
reproduce, have been also reported in other studies (Coll et 
al. 1997; Lykouressis et al. 2002). 

Orius species feed not only on the larvae, but also on 
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the adults of thrips. Experiments on predation rates of the 
predator Orius sauteri Poppius showed that nymphs killed 
more T. palmi larvae than adults, but this difference was not 
recorded in adult predators (Nagai and Yano 2000). The 
predation rates of O. insidiosus were proven higher on 
second instar larvae than adults of F. occidentalis in arenas 
with pepper flowers. Predation of both larvae and adults 
was most likely to occur inside flowers (Baez et al. 2004). 

The biological characteristic of Orius that has to be 
taken into serious consideration when selecting the species 
to be used in biological control is their tendency to enter 
diapause under low temperatures and short day lengths. Ex-
posure of fifth instar of O. insidiosus to short photoperiods 
(10:14 L:D) resulted in the production of more than 50% of 
females with preoviposition period exceeded 14 days. The 
adults less than 14-d old also were sensitive to photoperiod 
(Ruberson et al. 2000). For this reason, a major research 
effort continues to be the search for new species or biotypes 
which are less vulnerable to photoperiodic induction. In this 
respect, Orius albidipennis Reuter is an interesting species 
because it does not enter diapause (Cocuzza et al. 1997). 
Another characteristic of O. albidipennis is that this is bet-
ter adapated to high temperature conditions than O. laevi-
gatus. The fecundity of the two predators was similar at 20, 
25 and 30°C, but at 35°C it was significantly higher for O. 
albidipennis (Sanchez and Lacasa 2002). 

The phytoseiids are more efficient in searching for 
thrips in concealed places of the flower whereas the bugs 
readily feed on the adults. In general, Orius can be more 
effective in reducing the pest population quickly as they 
feed on both the larvae and the adults and they show a 
higher predation rate than the phytoseiids. In small arenas 
the predation rates of O. laevigatus were proven higher than 
N. cucumeris and I. degenerans on F. occidentalis (Scott 
Brown et al. 1999). 

The combined use of Orius predators with phytoseiid 
mites provides more effective control of thrips because of 
their differences in feeding rates on the different stages, and 
also their searching efficiency in the different plant parts 
(Brodsgaard and Enkegaard 2005). The predatory bugs are 
released with the aim of becoming established and deve-
loping populations, whereas the phytoseiids are used with 
the aim of quick control. It has been reported that Orius 
should be released on pepper crops nearly one month after 
transplanting, when the plants start flowering (Tavella et al. 
1996). 

Orius species have been recorded on several non-culti-
vated host plants that offer refuges and places with alterna-
tive prey and pollen resources. Research recently focuses on 
the evaluation of native, non-crop host plants for the conser-
vation of Orius species. The aim is that populations already 
present can enter the greenhouse and establish on the crops. 
Orius niger and O. laevigatus can naturally colonize green-
houses and highly contribute to the control of thrips if not 
disturbed by chemical applications (van de Veire and Deg-
heele 1992; Tavella et al. 1996, 2003). 

Recent studies have proved the potential of native Orius 
species, such as O. sauteri to provide effective control 
against T. palmi. Orius strigicollis Poppius has been a main 
natural enemy used in the control of thrips due to its lower 
incidence of diapause and ease of mass production (Shi-
mizu and Kawasaki 2001; Yano 2004). Yano (2008) repor-
ted that the conservation of O. strigicollis on natural host 
plants rich in pollen had a positive impact on the biological 
control of thrips on eggplant and pepper. The main criteria 
for selection of the species most suitable for commerciali-
zation were their reproductive diapause and ease of mass 
production. Among these species O. sauteri has been most 
studied (Nagai and Yano 2000). Knowledge of the mini-
mum number of eggs required for mass rearing of the pre-
dator is considered to be an essential prerequisite for deve-
loping more suitable techniques for its mass rearing (Yano 
et al. 2002). 

In addition to the Orius species, predatory bugs of the 
genera Macrolophus and Dicyphus (Hemiptera: Miridae) 

have shown an important potential for the control of thrips 
on vegetable crops (Riudavets and Castañé 1998). 

Among fungal pathogens, V. lecanii can be an effective 
biological control agent of thrips (van der Shaaf et al. 1991). 
The major climatic condition that influences the effective-
ness of this fungus is the RH, and particularly the humidity 
on the plant surface (Shipp et al. 2003). The stage of the 
host is also a significant parameter in its effectiveness. The 
eggs are well protected under the leaf tissue. The larvae are 
little affected as they molt and by doing this most of the 
spores are removed before the hyphae enter the body (Ves-
tegaard et al. 1995). In addition the larvae exist mostly in 
the flowers and this dramatically reduces exposure to the 
pathogen. On the other hand, pupae are also protected under 
the substrate. For these reasons, this fungus should be used 
in combination with other means of control. In this concept, 
it becomes important to study their compatibility with other 
biological control agents. Related studies have shown that B. 
bassiana can be readily combined with the predatory mites 
and immature parasitoids (Jacobson et al. 2001). 

In thrips control there are also several biological control 
agents that in certain cases have shown a potential for 
effectiveness. Parasitoids of thrips have been evaluated in 
depth, but are proved to have a relatively low potential 
(Loomans 2003). The predatory mirid bug D. hersperus can 
reduce the population of F. occidentalis on greenhouse 
tomatoes. However, this predator may cause damage to the 
tomato fruit when the thrips population is low. The ratio for 
effective control and low risk of damage was 0.5-1:10 D. 
hesperus: F. occidentalis when the thrips population density 
ranged from 60-150 thrips per plant (Shipp and Wang 2006). 

Finally, entomopathogenic nematodes have shown a 
potential to reduce the population of thrips at the pupal 
stage (75-97% mortality) (Helyer et al. 1995). 
 
SPIDER MITES 
 
Spider mites belong to the family Tetranychidae. Some of 
these are serious pests of greenhouse and open field crops. 
The most important is the two-spotted spider mite (Tetrany-
chus urticae). The adult female two-spotted spider mite has 
a straw-yellow to green colour with two dark spots on both 
sides of the body. Young individuals are similar in appear-
ance to the adults. The lowest threshold for development is 
12°C (Jeppson et al. 1975). The female lays more than 100 
eggs (Shih et al. 1976). Most damage occurs on the under 
surface of the leaves but can be seen from above as pale 
areas. Severely damaged plants turn pale yellow and may 
be covered by webbing produced by the mites. Damage can 
result in defoliation, and even in the death of the plant. 
 
Natural enemies 
 
Biological control of the spider mite is mostly based on the 
use of predatory phytoseiid mites, the most important of 
which are the specialist predator Phytoseiulus persimilis 
and the generalist Neoseiulus californicus McGregor. Phy-
toseiulus persimilis is commonly used against T. urticae 
worldwide on cucumber, tomato and sweet pepper (van 
Lenteren and Woets 1988). The adult is red in colour and 
larger than the female of T. urticae. Its developmental rates 
on beans were optimum at 27°C (at 60-85% RH) and under 
these conditions the control of the spider mite was most ef-
fective in comparison to temperatures ranging from 15-
27°C. A considerable reduction in egg viability was recor-
ded at 27°C and 40%RH, conditions under which the preda-
tor proved to have a low potential for spider mite control 
(Stenseth 1979). Under high temperatures and low humidity 
conditions, spatial segregation has been observed between 
the spider mite and the predator as the former accumulate 
on the top of the plants and the latter in the lower parts. This 
results in a failure of mite control (Nihoul 1992). The 
effectiveness of P. persimilis has frequently been considered 
to be lower in plants that are covered with trichomes, such 
as tomato. Mortality of the predators increased under spring 
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and summer conditions and this was related to the pheno-
logy of the trichomes (Nihoul 1994). The predator faced 
serious difficulties moving on the tomato plants and for this 
reason it was proposed that it should be released only on 
plants that were already infested by the mite (Vanharen et al. 
1987). The rearing of the predators for 4 generations on to-
mato instead of bean has been shown to considerably in-
crease the performance and effectiveness of the predator on 
tomato (Drukker et al. 1997). 

Other phytoseiid mites that have been used in the con-
trol of spider mites are Neoseiulus barkeri Hughes, N. fal-
lacis Garman and N. californicus. Neoseiulus barkeri 
showed a high capacity to reduce the number of spider 
mites in laboratory experiments (Fan and Pettit 1994). It 
was also effective in the control of the spider mite in labora-
tory experiments (Karg et al. 1987). Neoseiulus californicus 
performance and particularly its egg viability were affected 
by the RH and this is a critical factor for its effectiveness in 
the control of the spider mites. The evaluation of different 
strains of the predator showed sufficient variability in their 
resistance to low RH and thus more efficient strains could 
be selected for use in biological control programmes (Wal-
zer et al. 2007). The intrinsic rate of increase of these pre-
dators was highest at 30°C (Gotoh et al. 2004). This species 
showed a high population increase when feeding on several 
mite species including T. urticae. However, the perfor-
mance of this predator and P. persimilis was considerably 
reduced when feeding on Tetranychus evansi Baker and 
Pritchard, a recently introduced pest in Europe and Africa 
(Escudero and Ferragut 2005). This potential requires fur-
ther investigation as the plant can play a significant role in 
the effectiveness of the predator (Koller et al. 2007). 

Iphiseius degenerans is another effective predator of spi-
der mite. Its threshold for development was found to be 
about 11°C and its intrinsic rate of increase was highest at 
25-30°C. This species seems to be well adapted to the high 
temperatures that occur in the Mediterranean region (Tsou-
kanas et al. 2006). 

Feltiella acarisuga Vallot (Diptera: Cecidomyiidae) is a 
gall midge that feeds on many species of spider mite. This 
species was considered to be effective in the control of spi-
der mite on cucumber (Wardlow and Tobin 1990). The lar-
vae have predatory habits and pupate near the veins of the 
leaves. Third-instar larvae consumed 87.2 T. urticae eggs 
daily, at 26.7°C. Development was completed in a period of 
17.4 days. Adult longevity was 13.0 d and fecundity was 
33.3 eggs (Mo and Liu 2007). This species responded to 
changes in prey density and showed a type II functional res-
ponse (Opit et al. 1997). However, extended periods of RH 
<60% can reduce the potential of the predator in suppres-
sing the population of the spider mite (Gillespie et al. 2000). 
It diapauses as pre-pupae but only a low incidence of dia-
pause was induced under a 8h photoperiod at 25°C and a 16 
h skotoperiod at 15°C (Gillespie and Quirring 2002). 

Stethorus punctillum Weise is a coccinellid predator of 
spider mites. This species was able to establish on cucum-
ber and pepper, but not on tomato (Raworth 2001). The 
activity of the predator increased as temperatures rose from 
20 to 25 and 30°C, whereas RH had no significant effect 
(33, 65 and 90%). It was most active on pepper (Rott and 
Ponsonby 2000). 

The predatory bug M. melanotoma has also been shown 
to be a voracious predator of spider mite eggs, which indi-
cates its potential for the control of this pest (Enkegaard et 
al. 2001). The life table characteristics of this predator were 
studied when fed on spider mites, and it was revealed that 
this prey was less suitable than other pests (e.g. whiteflies) 
for the population increase of the predator (Hansen et al. 
1999). A related study showed that M. pygmaeus can com-
plete its development feeding on T. urticae in a period simi-
lar to that when whitefly was used as prey on eggplant (Per-
dikis and Lykouressis 2000). Therefore, Macrolophus spe-
cies can contribute to the control of the spider mite. 
 
 

TOMATO RUSSET MITE 
 
The tomato russet mite Aculops lycopersici (Massee) is a 
cosmopolitan mite infesting many Solanaceae. It is a worm-
like mite of the family Eriophyidae, very small in size. The 
adults are about 0.2 mm long, not visible without magni-
fication. The data on their development varies. Rice and 
Strong (1962) stated that optimum conditions were 26.7°C 
and 30% RH. Threshold development is 10.5°C (Kawai and 
Haque 2004). It destroys the epidermal cells of the leaflet, 
resulting in a curling of the leaflet edges, a rusting of 
damaged tissue, desiccation and plant death (Keifer et al. 
1982; Royalty and Perring 1988). 
 
Natural enemies 
 
There are a few of predators that feed on the tomato russet 
mite, but most of them do not seem feasible for a biological 
control program yet. Bailey and Keifer (1943) observed that 
a predatory mite, Seiulus sp. was effective in home gardens 
but was not effective as a commercial biological control 
agent. Predatory mites reported in association with A. lyco-
persici are Typhlodromus occidentalis (Nesbitt), Pronema-
tus ubiquitus (McGregor) and Lasioseius sp. (Rice 1961). 

Since then, some predatory mites of the family Phyto-
seiidae have been tested for their predatory capability on A. 
lycopersici. De Moraes and Lima (1983) observed that Eu-
seius concordis (Chant) fed on tomato russet mite but its 
effectiveness was limited by the presence of Tetranychus 
evansi (problem encountered due to webbing of tetranychid 
mite). Studies of phytoseiid species by Brodeur et al. (1997) 
showed that Phytoseiulus persimilis had actually no preda-
tion on tomato russet mite, Amblyseius cucumeris deve-
loped successfully but failed to reproduce and only Ambly-
seius fallacis showed efficient predation, in laboratory con-
ditions. A. fallacis appears to posses several of the biologi-
cal attributes required to control the mite. It attacks all sta-
ges and displays excellent survival (92%), adequate rate of 
development (6.3 days at 22°C) and good reproductive ca-
pacity. 

Perring and Farrar (1986) reported a potential use of 
Homeopronematus anconai (Baker) as biological control 
agent, as this predator is effective in controlling the mite in 
the laboratory. Haque and Kawai (2002) also reported signi-
ficantly lower population of A. lycopersici in glasshouse 
tomato plants when H. anconai was present and later after 
studied its predatory effects suggested that it could be used 
as a bio-control agent against A. lycopersici (Haque and Ka-
wai 2003). An adult H. anconai consumed an average of 69 
A. lycopersici deutonymphs per day in laboratory (Kawai 
and Haque 2004). 

Osman and Zaki (1986) reported that Agistemus exser-
tus Gonzalez (Prostigmata: Stigmaeidae) at 30°C and 75% 
RH devoured 60.3 eggs and 45.3 individuals per day. 
 
BROAD MITE 
 
The broad mite, Polyphagotarsonemus latus (Banks) be-
longs to the family Tarsonemidae. The adult female is 0.2 
mm long, light yellow to amber in colour with an indistinct 
light median stripe. The hind pair of legs is reduced to 
whip-like appendages. It causes terminal leaves and flower 
buds to become malformed. The mite’s toxic saliva causes 
twisted, hardened and distorted growth in the terminal of 
the plant. Leaves turn downward and turn coppery or pur-
plish. Internodes shorten and the lateral buds break more 
than normal. The blooms abort and plant growth is stunted 
when large populations are present (Denmark 1980). 
 
Natural enemies 
 
Sixteen species of predators have been reported associated 
with P. latus (Pena et al. 1996), most of them belonging to 
the mite family Phytoseiidae. Moutia (1958) reported that 
Amblyseius ovalis Evans controlled P. latus populations 
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very effectively on chilli in Mauritius, by feeding on the 
eggs end larvae. In the laboratory A. ovalis eliminated the 
broad mite on chilli to 1:100 rate but could not overcome 
the pest at the ratio 1:150 (Hariyappa and Kulkarni 1989). 
Smith and Papacek (1985) reported that Euseius victoriensis 
(Womersley) afforded effective biological control of the 
pest on citrus in Queensland, and Wu (1984) stated that 
good results were obtained with Amblyseius nicholski Ehara 
and Lee in citrus in China. Efforts to identify predators of P. 
latus were undertaken by Badii and McMurtry (1984) who 
studied the feeding behavior of several phytoseiids. Typhlo-
dromus annectens De Leon, T. porresi McMurtry and T. 
rickeri Chant preferred prey larvae, while E. stipulatus fed 
on all but the nymphal stages. Kolodochka and Prutenskaya 
(1987) reported that Amblyseius agrestis prefers spider 
mites over the broad mite. 
 
CONCLUSIONS AND FUTURE PERSPECTIVES 
 
The use of biological control against insect and mite pests 
in Solanaceous crops has proven to be both effective and 
reliable. It shows advantages in comparison with conventio-
nal chemical control, such as practically zero resistance 
development, zero risk of pesticide residues in the produce 
and environmental protection. For these reasons it is expec-
ted that pest control in greenhouse solanaceous crops will 
increasingly rely on biological control. This trend is clearly 
shown by the considerable increase in adoption of biologi-
cal control in southern Europe and other countries world-
wide. 

The emerging challenges that biological control will 
continue to face in the future, as in the past, is the introduc-
tion of pests in new areas through expanding trade and in-
vasiveness due to climate change. Biological control has 
proved mostly effective against new pests. However, in the 
future, biological control agents should be mostly searched 
for among indigenous natural enemies, due to the potenti-
ally negative effects to the native fauna if exotic natural 
enemies are released in a new area. 

Conservation biological control is another perspective 
as several natural enemies occur within the Solanaceous 
agro-ecosystems. The exploitation of these beneficial orga-
nisms would be worthwhile due to the low cost of applica-
tion and the enhancement of sustainability, which is a major 
topic in modern agriculture strategies. 

Research focusing on new natural enemies may become 
a major topic, particularly due to the use of biological 
control in new areas with variable climatic conditions. In-
vestigations of new biotypes of already commercialized na-
tural enemies will continue further so as to provide improve-
ments in the efficacy of biological control programmes. 

The effort to reduce the cost of application of biological 
control through the development of more efficient mass 
rearing methods of natural enemies will be also a main ob-
jective. 

Studies on the relationships among natural enemies are 
also expected to expand as higher effectiveness could be 
achieved through the use of combined natural enemies, as 
opposed to a single natural enemy. 

Biological control will continue to provide solutions to 
pest problems in greenhouse crops in order to serve public 
awareness of enhanced sustainability in food production. 
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