Effects of Cultivar, Harvesting Date and Chemical Treatments on the Quality and Soluble Carbohydrate Contents in Rose (Rosa hybrida)

Naser Alemzadeh Ansari* • Mozghan Zangeneh

Department of Horticulture, Faculty of Agriculture, Shahid Chamran University, Ahwaz, 61357-14891, Iran

Corresponding author: * ansari_n@scu.ac.ir

ABSTRACT

Cut rose flower quality decreases after 3-4 days from harvest. To reduce postharvest losses, this experiment was conducted on two rose cultivars (‘Ilona’ and ‘Noblesse’), which grow under subtropical climatic conditions in Khuzestan province of Iran. Each rose cultivar was harvested on three dates two years apart. Chemical treatments included benzyladenine (BA) (10, 20 and 30 mg l⁻¹) and silver thiosulfate solution (STS) (0.2, 0.4 and 0.6 mM) with a combination of 300 mg l⁻¹ 8-hydroxyquinoline citrate and 2% sucrose for 24 h. The effect of these treatments on vase life and flower quality of cut rose flowers was evaluated daily. The effects of chemical treatments were investigated by a pulsing method. Vase life, flower diameter, bud opening, concentration of leaf and petal soluble carbohydrate content of cut rose flowers treated with STS and BA increased, and bent neck decreased. Maximum and minimum vase life and quality were in the first and third harvesting date, respectively. Vase life and quality of cv. ‘Noblesse’ was better than ‘Ilona’.

Keywords: bent neck, benzyladenine, silver thiosulfate, vase life

INTRODUCTION

Rose is the most popular cut flower in Iran and throughout the world. The Khuzestan province is an important area of agriculture production. Cut rose flowers are produced there for over three months a year for export to other provinces of Iran and to other countries. Vase life is one of the most important factors to assess the quality of cut flowers. The longevity of cut rose flowers varied among various cultivars (Bhattacharjee and Pal 1999). The vase life of ‘First Red’ and ‘Saphir’ is much longer than ‘Red Velvet’ and ‘Sonia’ (Kim and Lee 2002a). Often bent neck is a symptom of the end of the vase life. Cultivars with a short vase life have lower water contents of neck, upper stem and lower stem than those with a longer vase life, also these with a longer vase life have high total sugar contents at and after harvest (Kim and Lee 2002). Cultivars with a short vase life showed frequent bent neck, whereas those with a longer vase life did not show bent neck during senescence (Lee and Kim 2002). The harvest stage is very important because flowers harvested at earlier stages have a weak neck strength, which caused flower necks to bend earlier (Lee and Kim 2001). The bending of the flower neck is considered to be caused by vascular occlusion, which inhibits water supply to the flowers (de Stigtger 1980; van Doorn 1997; reviewed extensively by Balas et al. 2006). The nature of the occlusion in the stems, however, is not clear. Vascular occlusion is caused by multiplication of bacteria (Zagory and Reid 1986; van Doorn et al. 1989; Jones and Hill 1993), air emboli or physiological responses in the stem that are induced by cutting. When 8-hydroxyquinoline citrate (HQC) was added to the vase water, hydraulic conductance of stem segments was higher than in controls. HQC is known to inhibit ethylene at the cut surface of rose stems (van Doorn et al. 1989).

Cut rose flowers are often harvested before full development. The formation of a mature flower depends on carbohydrate supply. Before harvesting, flowers are supplied with carbohydrates by photosynthesis that occurs in the green organs of the plant. Postharvest light intensity is usually low and therefore the production of carbohydrates by photosynthesis in cut flowers generally is negligible. A lack of carbohydrates can cause the bud of a cut rose flower not to open (van Doorm et al. 1996). Sugar can be used to compensate for lack of carbohydrates solution (Ichimura and Hiraya 1999), but sucrose alone has not been usually used because sugar treatment without germicides promotes bacterial proliferation, leading to shortening of the vase life. Silver thiosulphate (STS) treatment has been recommended for maintaining the vase life of several cut flowers. This material in low amounts inhibits ethylene production and acts as an antimicrobial agent in the vase solution. For example, Mor et al. (1989) found that STS-treated cut rose flowers had better quality than the water controls. In addition, Ichimura et al. (1998) reported that STS and sucrose treatment in cut rose flower had better quality than the water controls.

Exogenous ethylene inhibits floral opening in cut rose flower, and promotes opening bud in cv. ‘Samantha’, but ethylene production rate differs depending on the cultivar (Tan et al. 2006). Gibberellic acid (GA₃) was effective in extending vase life of cut roses by delaying the onset of tepal fading and wilting and delaying senescence-associated proteolysis (Eason 2002) and benzyladenine (BA) caused protein levels to increase in petals and ovaries of water-held roses (Łukaszewska 1986).

The objective of this study was to evaluate the quality and quantitative characters of two cultivars of Rosa hybrida grown in Khuzestan province, Iran at harvesting date and supplemented with various levels of STS and BA in holding solutions.

MATERIALS AND METHODS

Research was conducted on two cut rose (Rosa hybrida L.) cultivars, ‘Ilona’ and ‘Noblesse’, grown in Khuzestan province of Iran.
The mature buds were harvested for selling in markets at the normal harvest time in December 3, 2005, January 3, and February 3, 2006 and were immediately carried to the Physiology Lab. of the Horticulture Department, Shahid Chamran University, Ahwaz, Iran. At first, the flower stems were trimmed to 60 cm and all leaves except for the upper leaves were removed. For every replication, four cut flowers were placed in 500 ml beakers with 250 ml of preservative solutions containing STS (0.2, 0.4 and 0.6 mM) and BA (10, 20 and 30 mg l\(^{-1}\)) supplemented with 2% sucrose and 300 mg l\(^{-1}\) HQC and tap water as the control. The cut flowers were kept at 23 ± 2°C under 70% RH and a 12 h photoperiod. The pulse treatment of each solution was kept for 24 h and then transferred to tap water. In this study, several parameters were evaluated to select the suitability of cultivars, harvest date, and levels of STS and BA to determine the best solution. The vase life and the degree of flower opening, based on the standards by Pearson-Mims (1990) was recorded daily (score 4, fully open flowers, score 3: 50% of petals opened, score 2, 20% of petals opened, score 1, one or two petals opened, score 0, tight, floral buds wilted). Flower diameter, percentage of bent neck, and concentration of leaf and petal soluble carbohydrate pretreatment were examined after 3 and 6 days. The experiment was conducted in a factorial experiment design completely randomized with three replications; the results were tested for significant differences by Duncan’s Multiple Range Test, at a probability of 5%. Data were analyzed statistically with MSTATC.

RESULTS AND DISCUSSION

Results of this experiment showed that cultivar, harvesting date, BA, STS and the interaction effects of cultivar and harvesting date impacted the vase life of cut rose flowers, bud opening, percentage bent neck, flower diameter, and petal and leaf soluble carbohydrate concentration (p = 0.05). Others interactions and factors did not show a significant effect.

Vase life

The vase life of cv. ‘Noblesse’ was longer than that of ‘Ilona’ (Table 1). This result is supported by another study (Ichimura et al. 2002) which showed that the shortest vase life is in cv. ‘Bridal Pink’ (3.8 days) and the longest in cv. ‘Calibra’ (14.5 days) when vase water was supplemented with 200 mg l\(^{-1}\) 8-hydroxyquinoline sulfate (HQS) and 20 g l\(^{-1}\) sucrose. Variation between cultivars may be due to their ability to produce ethylene, stress after harvesting and the cultivar-specific reaction to these compounds. BA increased vase life more than the control (Table 1). BA led to a delay in the decrease of chlorophylls, while the vase life of cut rose flowers increased (Jordi et al. 1994, 1996). At the third harvesting date, the general vase life of cut rose flowers was half that of the first harvesting date. The temperate environment in early autumn caused carbohydrates to accumulate in the stem, leaves, and petals but in a relative cold environment in the middle of winter and decreased sunlight hours, carbohydrate levels and vase life decreased. Maximum and minimum vase life was observed for cv. ‘Ilona’ harvested in December and February, respectively (Fig. 1). Cv. ‘Ilona’ could not tolerate changes in the environment as well as cv. ‘Noblesse’ and was less firm. Monteiro et al. (2001) also showed the effects of cultivar and harvesting date on vase life: cv. ‘Meijikatar’ miniature rose flowers harvested in spring and summer had a longer vase life then those harvested in autumn and winter.

Bud opening

Cv. ‘Noblesse’ had a better bud opening score than cv. ‘Ilona’. Ichimura et al. (2002) indicated that the cut flowers of various rose cultivars had different bud opening scores. For example, some cultivars showed very early bud opening while in others the bud remained closed, and were eventually rejected. At first harvesting date the bud opening score was higher than later harvesting. Kanok et al. (2004) also indicated that at the suitable time for growth (spring and summer), cut flowers had more carbohydrates and were of better quality than those harvested from an unsuitable time for growth (autumn and winter). The interaction effect of cultivar and harvesting date showed that cv. ‘Noblesse’ harvested in December and cv. ‘Ilona’ harvested in February showed the maximum and minimum bud opening score, respectively (Fig. 2).

Bent neck percentage

Cv. ‘Ilona’ had a higher percentage bent neck than cv. ‘Noblesse’. Minimum and maximum bent neck percentages were observed in December and February, respectively (Table 1). After harvest, in general, the percentage bent neck increased when the storage period was increased (Fig. 3). Using STS in pretreatment solutions prevented vascular occlusion through its bactericidal effect and BA led to a decrease in the percentage bent neck. Lee and Kim (2001) and Kim and Lee (2003) indicated that by using bactericide material in holding solutions resulted in stronger flower necks and decreased the percentage of bent neck.

Flower diameter

Cv. ‘Noblesse’ had a higher flower diameter than cv. ‘Ilona’. Flower diameter flower is affected by genotype (Ichimura et al. 2002). Using STS in pretreatment solutions prevented vascular occlusion through its bactericidal effect and BA led to a decrease in the percentage bent neck. Lee and Kim (2001) and Kim and Lee (2003) indicated that by using bactericide material in holding solutions resulted in stronger flower necks and decreased the percentage of bent neck.

Table 1 Mean simple effect of cultivars, harvesting date, benzyl adenine, and silver thiosulfate on some of morphological, and biochemical characters rose at postharvesting stage.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Vase life (days)</th>
<th>Opening bud (scoring)</th>
<th>Neck bent (%)</th>
<th>Flower diameter (cm)</th>
<th>Leaf carbohydrate (mg/g)</th>
<th>Petal carbohydrate (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noblesse</td>
<td>7.54 ± 0.20a</td>
<td>3.08 ± 0.05a</td>
<td>29.03 ± 1.00a</td>
<td>6.78 ± 0.31a</td>
<td>3.78 ± 0.03a</td>
<td>2.45 ± 0.13a</td>
</tr>
<tr>
<td>Ilona</td>
<td>6.64 ± 0.25b</td>
<td>3.00 ± 0.05b</td>
<td>33.23 ± 1.16b</td>
<td>6.14 ± 0.11b</td>
<td>3.54 ± 0.03b</td>
<td>2.12 ± 0.21b</td>
</tr>
</tbody>
</table>

Harvesting date						

December	9.88 ± 0.23a	3.13 ± 0.04a	18.91 ± 0.99c	7.46 ± 0.11a	4.13 ± 0.03a	2.80 ± 0.05a
January	6.56 ± 0.16b	2.42 ± 0.09b	33.70 ± 1.29b	6.21 ± 0.12b	4.08 ± 0.03b	2.73 ± 0.12b
February	4.82 ± 0.08c	2.04 ± 0.1c	40.78 ± 1.47a	5.71 ± 0.12c	3.07 ± 0.23c	1.72 ± 0.11c

Benzyl adenine (mg l\(^{-1}\))						
-------------------------------	------------------	-----------------------	--------------	----------------------	--------------------------	
0	6.77 ± 0.31b	2.60 ± 0.10a	34.17 ± 1.70a	5.65 ± 0.11c	3.66 ± 0.33c	2.32 ± 0.16d
10	7.55 ± 0.37a	2.65 ± 0.11a	33.13 ± 1.59b	6.50 ± 0.12b	3.76 ± 0.23b	2.42 ± 0.12c
20	6.94 ± 0.27b	2.60 ± 0.11a	28.75 ± 1.39c	6.73 ± 0.13ab	3.77 ± 0.13b	2.45 ± 0.10b
30	7.10 ± 0.37b	2.32 ± 0.11a	28.47 ± 1.47c	6.99 ± 0.19a	3.86 ± 0.02a	2.53 ± 0.06a

Silver thiosulfate (mM)						
-------------------------------	------------------	-----------------------	--------------	----------------------	--------------------------	
0	6.36 ± 0.26b	2.60 ± 0.11a	44.65 ± 1.74a	5.74 ± 0.15c	3.38 ± 0.12d	2.08 ± 0.03d
0.2	7.25 ± 0.35a	2.65 ± 0.10a	31.25 ± 1.32b	6.19 ± 0.14b	3.70 ± 0.14c	2.36 ± 0.12c
0.4	7.45 ± 0.32a	2.60 ± 0.10a	30.76 ± 1.55b	6.84 ± 0.14a	3.91 ± 0.13b	2.58 ± 0.11b
0.6	7.29 ± 0.35a	2.32 ± 0.12b	17.85 ± 1.12c	7.09 ± 0.16a	4.05 ± 0.02a	2.71 ± 0.10a

*Means ± standard deviations followed by the same letter do not differ significantly by Duncan’s Multiple Range Test, P = 0.05.
ACKNOWLEDGEMENTS

Tjosvold et al. (2002). Minimum and maximum flower diameter occurred in December and February, respectively (Table 1). Grossi et al. (2004) observed that many characters changed seasonally: if developmental changes were rapid, then measured characters were smaller, i.e. smaller flower diameter, more compact growth, and smaller leaf area. Our results show that flower diameter increased by increasing BA and STS in holding solution (Table 1). Liao et al. (2000) showed that the diameter of cut rose flowers increased by using a pulse treatment of STS at 0.2 mM for 2 h. Flower diameter was not significantly different between cultivars when harvested in December, but at other harvesting dates the flower diameter of cv. ‘Noblesse’ was greater than that of cv. ‘Ilona’ (Fig. 4).

Petal and leaf soluble carbohydrate concentration

Cv. ‘Noblesse’ had more petal and leaf soluble carbohydrates than cv. ‘Ilona’, with minimum and maximum concentrations being recorded in December and February harvests, respectively (Table 1). In a cold environment, soluble carbohydrate accumulation decreases in petals and leaves, but this depends on the cultivar. Adachi et al. (2000) showed that changes in the temperature of the environment caused changes in the carbohydrate content in capitula, stems, and leaves of cut chrysanthemum Kitamura ‘Seiun’ plants. In general, by increasing STS and BA in holding solutions petal and leaf soluble carbohydrate concentration increased. Tjosvold et al. (1994) showed that a combined BA and STS treatment greatly improved the postproduction quality of rose plant.

REFERENCES

Kanok BA, Saichol K, van Doorn WG (2004) Postharvest physiology of Car-
cuma alismatifolia flowers. Postharvest Biology and Technology 34, 219-226
Monteiro JA, Nell TA, Barrett JE (2002) Effects of exogenous sucrose on carbohydrate levels, flower respiration and longevity of potted miniature rose (Rosa hybrid) flowers during postproduction. Postharvest Biology and Technology 26, 221-229
Pearson-Mims CH, Lohr VI (1990) Fluoride injury to cut ‘Samantha’ roses may be reduced by pulsing with calcium nitrate. HortScience 25, 1270-1271