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ABSTRACT 
The objective of this study was to investigate the effects of amide nitrogen compounds, mainly L-asparagine or L-glutamine (0-5 mM) on 
growth, pigment content and metabolism of intact Phaseolus vulgaris plants in vivo, at two stages (seedling and vegetative) of plant 
growth and development. All growth parameters – specifically chl a and b and carotenoid contents, total carbohydrates and its fractions – 
were increased by 1 and 2 mM asparagine or glutamine but decreased in response to other concentrations (3, 4 and 5 mM) and to the 
control (i.e. untreated plants), during both stages of development. Treatment with any concentration of asparagine or glutamine to plants 
grown in vivo generally induced a marked increase in amide nitrogen, total nitrogen and protein content and a decrease in ammonia, 
peptide and total soluble nitrogen during both stages. Ion content (K+, Na+, Ca2+ and Mg2+) increased significantly when treated with 1 
mM asparagine or glutamine and decreased markedly when other concentrations were used. Both asparagine and glutamine treatments 
increased and decreased growth promoter (auxins, gibberellins and cytokinins) level at low and high concentrations, respectively, but a 
reverse trend was observed for abscisic acid. The activity of several enzymes (asparagine synthetase, glutamine synthetase, nitrate reduce-
tase and protease) decreased when asparagine or glutamine concentrations were increased during both stages of P. vulgaris development. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
Nitrogen is an essential element for growth and develop-
ment and it is an indispensable element incorporated in 
most important structural and functional macromolecules, 
such as proteins and for biological molecules such as amino 
acids, nucleotides, proteins and DNA (Redinbaugh and 
Campbell 1991; Crawford 1995; Suarez et al. 2003). Kings-
ton-Smith et al. (2006) found that plants of white clover 
(Trifolium repens) could be grown from seed when supplied 
with a nutrient solution containing 2.5, 5.0, 7.5 or 10 mM 
nitrate. Protein, free amino acid and protease activity were 
determined in leaves. They found that, regardless of nitrate 
supply, 50% of the protein was degraded in 6 h and 80% 
after 24 h. As the extent of protein decrease was determined 
by initial protein content, more protein degradation oc-
curred in those plants grown with the highest nitrate supply. 

The importance of nitrogen in plant biology extends far 
beyond its role as a nutrient. It is now clear that several dif-
ferent nitrogen compounds and some products of their as-
similation exert strong regulatory effects on both plant me-
tabolic and developmental pathways (Forde and Clarkson 
1999; Stitt 1999; Zhang and Forde 2000; Coruzzi and Bush 
2001; Coruzzi and Zhou 2001; Tabatabaei et al. 2008). Nit-
rogen assimilation is a vital process controlling plant growth 
and development. Inorganic nitrogen is assimilated into the 
amino acids glutamine, glutamate, asparagine and aspartate, 
which serve as important nitrogen carriers in plants (Lam et 
al. 1996). Nitrogen-fixing plants can be classified as amide 
exporters or ureide exporters based on the xylem fluid col-
lected from excised nodules or nodulated root systems 
(Green et al. 1990; Ireland 1990). The amide exporters trans-
port asparagine, glutamine or 4-methylene glutamine while 
ureide exporters transport either allantoin or citrulline. As-
paragine and glutamine appear to be the most common nit-
rogen-transport compounds and are particularly prevalent in 
the xylem sap of root NO3

 assimilators, plants assimilating 

soil NH4
2+ and most temperate nitrogen-fixing species (Bol-

lard 1960; Lea and Miflin 1980; Pate 1980). 
There is now clear evidence that soluble asparagine ac-

cumulates in most if not all plant organs during periods of 
low rates of protein synthesis and a plentiful supply of 
reduced nitrogen. The accumulation of asparagine occurs 
during normal physiological processes such as seed germi-
nation and nitrogen transport. However, in addition, stress-
induced asparagine accumulation can be caused by mineral 
deficiencies, drought, salt, toxic metals and pathogen attack. 
The properties and gene regulation of the enzymes involved 
in asparagine synthesis (AS) and breakdown in plants are 
discussed in detail by Lea et al. (2007). 

Sivasankar and Oaks (1996) reported that the amide as-
paragine is important both as a protein amino acid and as a 
major nitrogenous transport and storage compound. They 
also discovered that in legumes it is known to be synthe-
sized in high levels in cotyledons of germinating seedlings, 
roots and nitrogen-fixing nodules. Asparagine is also syn-
thesized by leaves, and its synthesis is more active in ma-
ture leaves than in growing leaves; in contrast the utilization 
of asparagine is more active in the growing leaves than in 
mature leaves (Yoneyama 1984). El-Saht (1994) found an 
increase in all growth parameters (root length, shoot length, 
fresh weight, dry weight and water content) of both Phaseo-
lus vulgaris and Vicia faba seedlings grown on 1 and 3 mM 
asparagine. On the other hand, Geisler (1985) noted that the 
leaf area, root surface area and total dry matter of two-
weeks-old seedlings of spring barley, field bean and maize 
were reduced by increasing nitrogen concentration in the 
soil. He also found that the shoot and root dry matter were 
related to the root surface. Zhang et al. (1999) stated that 
ammonia and glutamine can serve as alternative nitrogen 
sources for Arabidopsis, although, at high concentrations (� 
1 mM), they can inhibit growth. Moreover, Schubert (1983) 
showed that asparagine could act as an amide group donor 
similar in role to glutamine. de Pinheiro Henriques and 
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Marcelis (2000) found that there was an increase in leaf dry 
matter percentage of lettuce at low nitrogen supply, and at 
high nitrogen supply dry matter was closely related to plant 
nitrogen concentration. Menéndez et al. (2002) enriched 
water with distinct forms of nitrogen to study the effect of 
dissolved nutrients on growth, nutrient content and uptake 
rates in Chaetomorpha linum. They observed that nitrogen 
enrichment was followed by an increase in chlorophyll (chl) 
content after 4 days of treatment and that this was followed 
by an increase in biomass after 10 days. Furthermore, Na-
kano et al. (1998) studied the effect of different nitrogen 
concentrations on chl content of rice and P. vulgaris and 
observed that nitrogen treatment – particularly at lower con-
centrations – led to a decrease in chl content in rice but not 
in P. vulgaris. Martin et al. (2002) detected a significant re-
duction in Arabidopsis seedling chl when treated with low 
levels of nitrogen (0.1 mM). On the other hand, Tremblay et 
al. (1999) stated that when P. vulgaris and sweet corn were 
grown at different nitrogen concentrations, the chl contents 
of both were not correlated to nitrogen application. Wheat 
and maize, when grown for 21 days in nutrient solution 
containing 10 mM asparagine, plastid pigment (chl a and b 
and carotenoids) content was higher than untreated plants 
(Stancheva and Dinev 1995). Sagi et al. (1998) reported an 
increase in cations in Lolium multiflorum following the ad-
dition of nitrogen at 0.5, 4.5 or 9.0 mM to the growth me-
dium. Moreover, Kubik-Dobosz and Buczek (1999) ob-
served that Pisum sativum plants supplied with 1 mM glu-
tamine or asparagine took up ammonium and potassium at a 
rate lower than that of control plants. They also found that 
the efflux of NH4

+ and K+ from root to ambient solution 
was enhanced under these treatments. Mercier and Kerbauy 
(1998) studied the effect of two nitrogen sources, glutamine 
and ammonium nitrate, on the auxins and cytokinin levels 
of 3 bromeliad species with different growth habits and 
found, in general, that the highest IAA level was obtained 
with NH4NO3. However, in Tillandsia pohliana the highest 
IAA content and the largest amounts of total cytokinin were 
obtained in plants cultivated with glutamine. For Pitcairnia 
flammea and Vriesea philippocoburgii, the largest amounts 
of total cytokinins were found when the bromeliads were 
cultivated with glutamine. 

AS is the primary enzyme involved in the production of 
asparagine in plants. It catalyzes a reaction where aspara-
gine is biosynthesized from aspartic acid using an ATP-de-
pendent amide group with either glutamine or ammonia as 
the nitrogen source (Romagni et al. 2000). Glutamine syn-
thetase (GS) is necessary for the biosynthesis of nucleic 
acids, proteins, complex polysaccharides, and various coen-
zymes. In this respect, Zhang et al. (1998) noted that in rice 
cv. ‘IR72’ leaf GS activity was greater than root GS activity, 
regardless of nitrogen application. Root and leaf GS gene-
rally declined as plants aged, and the decline was greater in 
root than leaves. Ogawa et al. (1999) proved that after the 
addition of glutamine to nitrate-containing medium, nitrate 
reductase (NR) activity in cultured spinach cv. ‘Hoyo’ cells 
was repressed. Lu and Peng (2001) showed that in forage 
rice NR and GS activities decreased as the grain matured. 
However, proteinase activity increased during the late stage 
of grain maturity. 

Here we study the effects of some different amide 
compounds (L-asparagine and L-glutamine) at five levels (1, 
2, 3, 4 and 5 mM) on the growth of French bean (Phaseolus 
vulgaris cv. ‘Contendor’) during two developmental stages. 
The effect on certain metabolic activities such as pigments, 
carbohydrates, and nitrogen, protein, ion as well as plant 
growth regulators (PGRs) (auxins (IAA), gibberellic acid 
(GA3), cytokinin (cyt) and abscisic acid (ABA)) contents 
were assessed. In addition, the activities of certain related 
enzymes (AS, GS, NR) and protease) were determined 
during these phases of development. 

 
 
 
 

MATERIALS AND METHODS 
 
Time course experiment 
 
A homogenously-sized lot of Phaseolus vulgaris (French or com-
mon bean) seeds were selected. The seeds were surface sterilized 
by soaking in 0.01% HgCl2 solution for about 3 min, then washed 
thoroughly with continuously flowing tap water for about 1 h. 
After this, 25 seeds were allowed to germinate in plastic dishes 
(length: 30 cm; width: 20 cm; height: 12 cm), covered with What-
man filter paper No. 1 and watered with equal amounts of Hoag-
land’s nutrient solution (Arnon and Hoagland 1940). The nutrient 
solution used was ¼-strength of Pfeffer (1900) nutrient mixture of 
macroelements. Micronutrients were supplied to the nutrient solu-
tion at concentrations used by Arnon and Hoagland (1940). All 
chemicals used were of the purest grade available commercially 
(El-Gomhouria company for chemicals, Cairo, Egypt). The pH 
value of this nutrient solution was 5.7 ± 0.3. 

The dishes were incubated in the dark at 25 ± 1°C to allow 
seeds to germinate. After 48 h six uniform seedlings (the length of 
the radical was about 2 cm; leaves had not yet differentiated) were 
placed in black-painted beakers (600 ml) containing ¼-strength 
Hoagland’s nutrient solution either alone or supplemented with 
asparagine or glutamine at 1, 2, 3, 4 or 5 mM; Plate 1A-D). The 
beakers were placed in a growth chamber adjusted at optimum 
growth conditions: temperature: 28 ± 2°C; light intensity: 3000-
5000 lux; relative humidity: 60-70%; continuous aeration from an 
air pump at a rate of 2 L/h/beaker according to Steing Rover 
(1983). 

Throughout the experimental period, various growth para-
meters and metabolic activities (pigments content, carbohydrate 
fractions, nitrogen fractions, protein and ion content), in addition 
to levels of PGRs (total auxins, GA3, total cytokinin and ABA) 
and activities of certain enzymes (asparagine synthetase, gluta-
mine synthetase, nitrate reductase and protease), were measured 
after 6 and 15 days from sowing, which represent the seedling and 
vegetative stages, respectively. 

Data from the different groups of seedlings were statistically 
analyzed and comparison among means was carried out using 
Statgraphic Ver. 4.2, Display (one-tailed ANOVA), as described by 
Snedecor and Cochran 1980). 
 
Estimation of photosynthetic pigments 
 
The protocol to measure the plant photosynthetic pigments (chls a 
and b and carotenoids), which were determined at both stages of 
plant development, is based on the method of Arnon (1949) for 
chls and that of Horvath et al. (1972) for carotenoids as adopted 
by Kissimon (1999). 
 
Estimation of carbohydrates 
 
Total soluble sugars and sucrose were extracted and determined 
using modifications of the procedures of Yemm and Willis (1954) 
and Handel (1968), respectively. The method used for estimation 
of polysaccharides was that of Thayermanavan and Sadasivam 
(1984). 
 
Estimation of nitrogenous constituents 
 
The method used in this study was essentially that adopted by 
Yemm and Willis (1956). Ammonia-N was estimated spectropho-
tometrically by the method adopted by Delory (1949) using Ness-
ler’s reagent as modified by Naguib (1964). The method used for 
estimation of amide-N was that recommended by Naguib (1964). 
Estimation of peptide nitrogen was according to Kwon et al. 
(2000). Total soluble nitrogen was determined by the conventional 
semi-micromodification of Kjeldahl method (Pirie 1955).  Total 
nitrogen was determined by the conventional semi-micromodifica-
tion of the Kjeldahl method of Chinbal et al. (1943). 
 
Estimation of protein 
 
The method of protein extraction adopted was that of Scarponi and 
Perucci (1986). Protein content was determined spectrophotomet-
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rically by using a double beam recording spectrophotometer ac-
cording to the Bradford (1976) method. 
 
Determination of K+, Na+, Mg++ and Ca++ ions 
 
Flame spectrophotometry was used to determine K and Na, while 

Ca and Mg were measured by atomic absorption spectrophoto-
metry according to the method described by Chapman and Pratt 
(1978). 
 
Determination of enzyme activities 
 
Determination of AS activity 
 
The method used in the present study was essentially that of Ravel 
(1970) where the enzyme is most easily measured by substituting 
hydroxylamine for ammonia then the amount of aspartyl hydroxa-
mic acid formed is determined colorimetrically with ferric chloride 
reagent. 
 
Determination of GS activity 
 
The method used in this investigation is as described by Sadasi-
vam and Manicham (1992). Glutamine synthetase catalyses the �-
glutamyl transfer reaction. Hence, it can be assayed by measuring 
the production of �-glutamyl hydroxamate. �-Glutamyl hydroxa-
mate reacts with ferric chloride to produce a brown colour in aci-
dic medium. When the activity is measured in the presence of 
Mn++, it represents total glutamine synthetase activity (adenylated 
and unadenylated forms). The biologically active unadenylated 
form may be measured by inhibiting the adenylated form by the 
addition of 60 mM Mg++. 
 
Determination of NR activity 
 
The method of Hageman and Reed (1980) was employed. 
 
Determination of protease activity 
 
The method of Colowick et al. (1951) was used. The assay of pro-
tease activity is essentially that of Basha and Beevers (1975) and 
Salmia et al. (1978). 
 
Extraction, separation and bioassay of growth 
bioregulators 
 
Extraction and separation were performed according to Shindy and 
Smith (1975) and as adopted by Haroun (1985). 

Auxins (IAA) were bioassayed by using the straight-growth 
test of Hordeum vulgare cv. ‘Giza 118’ coleoptile sections (Foda 
and Radwan 1962). 

Gibberellins (GAs) were bioassayed by the growth of Lactuca 
sativa (cv. ‘Roumine’) hypocotyls, which can be used to bioassay 
a number of GAs and GA-like substances (Frankland and Wareing 
1960; Crozier et al. 1970). 

Cytokinin was bioassayed by assessing the growth of the coty-
ledon tissue of Xanthium brasilicum seeds, which expresses a ra-
pid cytokinin response which can be obtained in solutions of very 
small volumes (Esashi and Leopold 1969). 

ABA was bioassayed by using Triticum aestivum L. grains, 
which were germinated in the dark for 70 h at 25°C, according to 
the procedure used by Wright (1956). 
 
RESULTS AND DISCUSSION 
 
Plant organs contain numerous compounds, which generally 
correspond to minor quantities. Therefore, they often clas-
sified among “secondary plant products” (Mothes 1980; Ali 
2000). Arora (1982) stated that a significant fraction of 
these secondary products consists of non-protein nitroge-
nous compounds. Many of them have been reviewed such 
as the case of purine and pyrimidine derivatives, non-pro-
tein or uncommon amino acids, amines, amides and alka-
loids (Finar 1986; Lea 1993). 

Schröder et al. (2005) stated that pyrimidines are par-
ticularly important in dividing tissues as building blocks for 
nucleic acids, but they are equally important for many bio-
chemical processes, including sucrose and cell wall poly-
saccharide metabolism. 

N availability in the root zone is crucial in determining 
productivity under intensive plantation culture, given ade-

A

D

C

B

Control     1 mM 2 mM 3 mM 4 mM 5 mM
Plate 1 Effect of different asparagine (A, B) or glutamine (C, D) concen-
trations on growth of Phaseolus vulgaris plant at the seedling (A, C) or 
vegetative (B, D) stage. 
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quate soil moisture. Responses of growing plants to N ferti-
lization indicate increases in leaf area and plant biomass 
(Heilman and Eu-Guvang 1993), shoot/root ratios (Pregitzer 
et al. 1990), light-dependent photosynthetic capacity (van 
Hove et al. 1989), leaf nitrogen and Chl content (Mulligan 
1989). Whereas biomass accumulation and photosynthetic 
capacity can be promoted under high N concentrations, high 

N plants may also be more susceptible to environmental 
conditions (Mazzoleni and Dickmann 1988). Physiological 
responses to N availability may also be modified by envi-
ronmental conditions (Liu and Dickmann 1993) since high 
plant N levels enhance the rate of physiological processes 
but the promotive effect of N is dependent on soil-water sta-
tus, plant species, culture conditions and duration of the ex-
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Fig. 1 Effect of increasing concentrations of asparagine or glutamine on five (plant/seedling length, fresh weight) growth parameters of Phaseolus 
vulgaris at seedling and vegetative stages. Vertical bar = the value of LSD at 0.05. 
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periment (Liu and Dickmann 1992). Controlled environ-
mental studies can be used to define physiological interac-
tions among soil resources and ultimately provide initial 
guidelines for management trails in test plantations (Liu and 
Dickmann 1996; Ali 2000). 

As stated in the introduction, the main goal of the pre-
sent investigation was to assess the possible effects of the 
two different amide-N compounds (asparagine and gluta-
mine) on growth, the content of pigment, carbohydrate, N, 
protein, ion, and PGRs and the activity of some related en-
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area; B = dry weight, water content) of Phaseolus vulgaris at seedling and vegetative stages. Vertical bar = value of LSD at 0.05. 
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zymes to amide metabolism such as AS, GS, NR and prote-
ase in the intact French bean seedlings (in vivo). 

The analysis reported in this study is indicative of the 
extent to which growth parameters and different metabolite 
contents as well as enzyme activities were perturbed by the 
different amide treatments. 
 
Changes in growth parameters 
 
Different growth parameters of intact Phaseolus plant 
(shoot length, root length, fresh and dry weights, water con-
tent and leaf area) and bean (vegetative length, fresh and 
dry weights and water content) showed a general significant 
increase by 1 mM asparagine or glutamine (Figs. 1, 2A, 2B). 
This increase may thus be directly related to the increased 
flux of amide to the leaf and/or to the subsequent reduction 
processes involved, which were described by Sprent and 
Thomas (1984) and Sutherland et al. (1985). 

Proietti and Tombesi (1996) indicated that asparagine 
and glutamine stimulated growth of olive (Olea europaea 
L.) and they suggested that asparagine and glutamine may 

be involved in the inductive process as messengers in rela-
tion to the assimilate reserves in the plant. Lee and Rudge 
(1986) indicated that after about 6 days, young barely (Hor-
deum vulgare L.) plants depend on an external supply of N 
sustaining their maximum rate of growth. Moreover Keller 
et al. (2001) found that vine (Vitis vinifera L.) leaf area in-
creased in response to N application at 100 kg/ha. 

On the other hand, treatment with 3, 4 and 5 mM of as-
paragine or glutamine significantly decreased the above 
mentioned parameters (Fig. 2A, 2B). Geisler (1985) also 
stated that two weeks-old seedlings of maize (Zea mays L.), 
spring barely (Hordeum vulgare L.) and field beans (Vicia 
faba L.) which were grown under different N concentra-
tions (10, 20, 30 μM) ammonia nitrogen showed a general 
reduction in leaf area, and root surface area with increasing 
N concentration (30 μM). de Pinheiro Henriques and Mar-
celis (2000) stated that the effect of N (10 μM NO3¯) on 
growth was mediated by its effect on leaf area development 
and hence on light interception. 

The negative effect of amide on root and shoot fresh 
weight might be due to the fact that amide decreases water 
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uptake and relative water content as suggested by Vassilev 
et al. (1997) using young barely plants. 

The importance of leaf area in controlling plant dry 
matter and growth rates has long been appreciated (Alde-
suquy 2000). 

The increase and decrease of different growth para-
meters (Fig. 2A, 2B) in response to asparagine or glutamine 
treatments may be mediated by a change in the level of 
naturally synthesized hormones (Fig. 8A, 8B). Groot et al. 
(2003) found that relative growth rate increased sharply 
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with increasing plant P and N concentrations of young to-
mato plants (Lycopersicon esculentum Mill. cv. ‘Capita’). 
Thus in the present study, it can be concluded that an ade-
quate amount of amides (asparagine or glutamine), after 
being applied to the media, were taken up in the root tissues 
as such and consequently translocated and assimilated with-
in French bean and hence caused the observed changes (Fig. 
2A, 2B) in the various growth parameters. 
 
Changes in pigment contents 
 
Further evidence of the role played by asparagine and glu-
tamine modifying plant metabolism can be obtained from 
the data of changes in pigments (Fig. 3A, 3B) which clearly 
demonstrated that the biosynthesis of chls in treated French 
bean plant was markedly activated by low level (1 mM) and 
inhibited by the higher levels (3, 4, 5 mM) of intact seed-
lings and vegetative stages of french bean plants. In accord 
with those results, Keller et al. (2001) demonstrated an in-
crease in chl content and photosynthesis of vine plant by 
high soil nitrogen. On the other hand, Martin et al. (2002) 
observed a significant reduction in chl content in Arabi-
dopsis seedlings grown in low nitrogen concentration. 

The observed progressive increases as well as the prog-
ressive decreases (Fig. 3A, 3B) in pigment contents (chls a 
and b, carotenoids and total chl) of French bean throughout 
the entire periods of experiments treated with different con-

centrations of either asparagine or glutamine are in good 
support to the growth rate (Fig. 2A, 2B) as well as to the 
change in carbohydrate content (Fig. 4A, 4B) of the same 
tissues. In this sense, Wettlaufer and Obendorf (1991) stated 
that, treatment of soybean with glutamine or asparagine (at 
62 mM) resulted in increasing fresh weight and retention of 
green colour. 

The non-significant responses in pigments content by 2 
mM asparagine or glutamine (Fig. 3A, 3B) are in harmony 
with those obtained by Tremblay et al. (1999) who applied 
nitrogen fertilizers at 5 rates (0, 15, 30, 60 and 120 kg N/ 
ha) and stated that chl content was not correlated with nitro-
gen application. 
 
Changes in carbohydrate content 
 
The experimental data in Fig. 4A, 4B show that there is a 
significant increase in glucose, sucrose, total soluble sugars 
and total carbohydrate with 1 and 2 mM asparagine or glu-
tamine; the magnitude of increase was most pronounced at 
a lower concentration (1 mM asparagine or glutamine). In 
accord with these results Nakano et al. (1998) determined 
starch and sucrose content in rice and P. vulgaris when both 
species were grown at different N concentrations and stated 
that starch and sucrose contents in both species were in-
creased at lower nitrogen rates, but the amount of accumu-
lated starch in P. vulgaris was much greater than in rice 
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(Oryza sativa L.). Also, glutamine was utilized as a major 
carbon source by the pea embryo (Murray and Cordova-
Edwards 1984). 

An opposite pattern of changes was shown (Fig. 4A, 
4B) for the different carbohydrate compounds in French 
bean seedlings treated with 3, 4 and 5 mM asparagine or 
glutamine. Accordingly, an enhancement of protein content 
accompanied by parallel decrease in carbohydrates was 

observed with increasing nitrogen concentrations in the me-
dium of Anabaena variabilis cells (Sanz et al. 1995). The 
obtained results are in agreement with those of Druege et al. 
(2000) who found that increasing N supply (at 0.6,1.5 and 6 
g N) resulted in substantial lower starch level and higher 
sucrose concentration in leaves of two Chrysanthemum cul-
tivars (‘Puma’ and ‘Cassa’). Also they stated that fructan 
concentration was low and decreased with increasing N 
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levels. 
The observed changes in glucose, sucrose, polysaccha-

rides and total carbohydrates content in intact French bean 
seedlings treated with different levels of asparagine or glu-
tamine, namely 1 and 2 mM, throughout the entire period of 
the two experiments can be explained by (1) rapid decom-
position of polysaccharides (starch) by hydrolytic enzymes, 
(2) changes in net photosynthetic rates and (3) increased 
oxidative phosphorylation. In support of these results, As-
lam and Oaks (1975) in corn root, Aslam and Huffer (1984) 
in primary leaves of barley, and Oaks and Hirel (1985) in 
roots examined the relationship between enzyme carbohyd-
rate level and the component of leaf system to reduced N. 
They found that when carbohydrate levels were high, the 
nitrate reduction and the reduction of ammonia were also 
relatively high. A similar situation was apparent in roots. 
For example, when wheat seedlings were subjected to N 
starvation there was a relative increase in carbohydrates and 
a corresponding enhanced capacity to reduce transport N 
(Talouise et al. 1984). 
 
Changes in N content 
 
Glutamine and asparagine are the key intermediates in the 
pathway of N assimilation (Pal’ove-Balang 2002). Thus, in 

this investigation, treatment of French bean plants with in-
creasing concentrations of either asparagine or glutamine 
induced a progressive significant increase in amide, protein 
and total N contents during seedling and vegetative stages, 
as compared with control values. On the other hand, am-
monia, peptide and total soluble N were found to decrease 
progressively with an increasing in concentration of either 
asparagine or glutamine through both stages of plant growth 
and development (Fig. 5A, 5B). 

In this respect, Youssefi et al. (2000) stated that leaf-N 
concentrations were related positively to concentrations of 
applied amino acids (especially asparagine and glutamine). 
At the same time the amino acid concentrations in phloem 
exudate and xylem sap were highest in trees of cv. ‘Mis-
sion’ almond (Prunus dulics L.), when grown under the 
highest N fertilizer regime. It is suggested that the high 
amino acid concentrations in phloem and xylem saps are in-
dicative of a large pool of amino N cycling throughout the 
vasculature of high N status trees. On the other hand, in-
creasing the N supply to Z. mays led to an increase in the 
activity of certain enzymes, starch and the levels of N com-
pounds (total N, soluble protein and free amino acids) and 
decreased the levels of carbon metabolites (sucrose and 
reducing sugars) in the tested plant (Cazetta et al. 1999). 

Sawaguchi (1987) found that increasing fertilizer N 
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Fig. 5 Effect of increasing concentrations of asparagine or glutamine on carbohydrate parameters (A = ammonia nitrogen, amide nitrogen and 
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application increased N content in Vigna angularis. Also, 
the increase in ammonia and amino acids was the result of 
protein degradation (Vincent et al. 1997). In addition, Stoer-
mer et al. (1997) found that total N content of Picea abies 
was increased by N fertilizers. 

In conclusion, N metabolism is expected to be influ-
enced by the two applied amide-N compounds (asparagine 
and glutamine) used in the present study (Fig. 5A, 5B), 
because the treatments involve the biosynthesis of proteins 
and/or amino acids and ammonia. Ammonia is considered to 
be the unit of N metabolism from which different amino 
acids are produced, these being further incorporated in the 
protein synthesis. For its role in N metabolism and protein 
synthesis, ammonia liberated from hydrolysis of amides has 
been found to be very important for plant survival if could 
be utilized by the plant cell. Instead, its accumulation with-
out being utilized would be harmful to the plant tissues (Fig. 
5A, 5B). 
 
 

Changes in protein content 
 
The results presented in Fig. 5B showed that a general sig-
nificant increase in protein content, in Phaseolus plant, at 
seedling and vegetative stages, when asparagine or gluta-
mine concentrations were increased. In agreement with this, 
Awonaike et al. (1978) stated that asparagine stimulated 
protein synthesis in pea (Pisum sativum L.), up to three-fold. 

On the other hand, Ogawa et al. (1999) detected low 
levels of protein when glutamine was added to the medium 
of cultured Spinach cv. ‘Hoyo’ cells. Izmailov et al. (1981) 
reported that in maize seedlings grown in sterilized sand 
and given 14C-asparagine and 14C-glutamine through the 
roots, asparagine was slowly transformed into amino acids, 
mainly transport and storage nature, whereas glutamine 
served as an active metabolic source. Moreover, the effect 
of different N supply on amino acid export to the phloem 
was studied in young wheat (Triticum aestivum L.) plants 
(Caputo and Barneix 1997). They stated that this N is used 
for the synthesis of leaf protein when the supply is low, ex-
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Fig. 6 Effect of increasing concentrations of asparagine or glutamine on carbohydrate parameters (A = K+ and Na+ contents; B = Ca++ and Mg++ 
contents) of Phaseolus vulgaris at seedling and vegetative stages. Vertical bar = value of LSD at 0.05. 
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ported to phloem when supply is adequate, and accumulated 
in the storage pool when supply is above plant demand. 

Recently, Lea and Azevedo (2006) highlighted the latest 
developments in the isolation and characterisation of the 
genes involved in the uptake of N from the soil, normally 
present as nitrate or ammonium ions, and the utilisation 
efficiency, the ability of the plant to transfer N to grain, pre-
dominantly present as protein. 

The nitrogen use efficiency (NUE) of crop plants can be 
expressed very simply as the yield of N per unit of available 
N in the soil. This NUE can be divided into two processes: 
uptake efficiency, the ability of the plant to remove N from 
the soil. 
 
Changes in ion content 
 
In general, all determined elements (K+, Na+, Mg++ and 
Ca++ ions) of French bean increased significantly with 1 and 
2 mM asparagine or glutamine (Fig. 6A, 6B), while there is 
a general significant decrease at higher concentrations (3, 4 
and 5 mM). 

The magnitude of decrease in mineral contents was 
most pronounced with the increase in asparagine or gluta-
mine concentrations. Kubik-Dobosz and Buczek (1999) 
supplemented Pisum sativum plants with 1 mM glutamine 
or asparagine and found that plants took up ammonium and 
K at a rate lower than control plants. On the other hand, 
Keller et al. (2001) stated that N supply (100 kg/ha) in-
creased the translocation of K+ and Ca++ in grape vines. 

As regards Fig. 6A, 6B, the magnitude of increase and 
decrease in inorganic ion contents (K+, Na+, Mg++ and Ca++) 
at low and high concentrations, respectively by asparagine 
or glutamine is expected to be influenced by amide-N com-
pounds on protein synthesis as shown in Fig. 5B, in French 
bean. 

Proteins are required to transport protons, inorganic 
ions and organic solutes across the plasma membrane and 
tonoplast at rates sufficient to meet the needs of the cells 
(Schroeder et al. 1999). Membranes contain different types 
of transport proteins, ATPases or ATP-powered pumps, 
channel proteins and cotransporters (Lalonde et al. 1999; 
Sze et al. 1999). ATPase utilizes the energy released upon 
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hydrolysis of ATP to move ions across the plasma mem-
brane against chemical and electrical gradients. Channel 
proteins facilitate the diffusion of water and ions down 
energetically favorable gradients. Cotransporters, the third 
class of membrane-transport proteins, can move solutes 
either up or down gradients (Sze et al. 1999). 
 
Changes in growth regulators 
 
The relation between N metabolism and endogenous hor-
mones is reciprocal. In this study, for French bean, there 
was a significant increase in PGRs (IAA, GA3 and Cyt) 
with 1 and 2 mM asparagine or glutamine while a signifi-
cant decrease occurred with higher concentrations (3, 4 and 
5 mM; Fig. 7A,7B). 

On the other hand a reverse situation occurred in the 
ABA level where 1 mM of asparagine or glutamine caused 
a significant decrease while 2, 3, 4 and 5 mM caused an in-
crease in ABA content in French bean shoots. The magni-
tude of decrease in promoters and increase of inhibitor is 
most pronounced by increasing the concentrations of aspa-
ragine or glutamine. Zhang et al. (1999) suggested an over-
lap between the N and auxin response pathways. They 
found that high rates of nitrate supply to the roots had a sys-

temic inhibitory effect on lateral root development that 
acted specifically at the stage when the laterals had just 
emerged from the primary root, apparently delaying final 
activation of the lateral root meristem. 

Mercier and Kerbawy (1998) studied the effect of gluta-
mine on auxin and cytokinin levels of three bromeliad spe-
cies and detected significant increases in these PGRs in res-
ponse to glutamine treatment. They also found a positive 
correlation between these increases and the promotion of 
shoot growth. This correlation supports our results: the pro-
motion of growth (in response to low amide levels) oc-
curred concurrently with increasing levels of IAA, GA and 
Cyt and decreased ABA content, whereas opposite changes 
in these PGRs were found to also inhibit growth (Fig. 2A). 

In this study, the application of amides obviously 
caused an increase in ABA levels in two stages of plant 
growth and development. This increase in ABA content 
may probably be due to its biosynthesis within seedlings or 
it may possibly be translocated from the leaves. From an-
other point of view, amides may act by interference with 
hormone metabolism by preventing ABA catabolism in 
French bean plant (Walton 1980). On the other hand, the 
decrease in IAA as a result of amide, particularly the 5 mM 
treatment, might be due to amide stimulating the formation 
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Fig. 7 Effect of increasing concentrations of asparagine or glutamine on carbohydrate parameters (A = total auxins and GA3 contents; B = 
cytokinin and ABA contents) of Phaseolus vulgaris at seedling and vegetative stages. Vertical bar = value of LSD at 0.05. 
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of IAA-oxidase and peroxidase leading to destruction of 
IAA in French bean plant and/or due to a decrease in IAA 
biosynthesis in plant tissues (Torrey 1976). 

The noticeable decline in GAs of French bean plant 
caused by the application of amide may result from the 
conversion of free active GAs into bound inactive GA (Un-
garl and Binet 1975). 
 
Changes in enzyme activities 
 
AS and GS are key enzymes of N metabolism in higher 
plants (Muhitch and Felker 1994; Romagni et al. 2000). 
The activities of AS, GS, NR and protease, in general, de-
creased significantly with increasing asparagine or gluta-
mine concentrations in intact French bean during both sta-
ges of plant growth (Fig. 8A, 8B). 

Sivasankar and Oaks (1995) and Sivasankar et al. 
(1997) also found that the application of exogenous amides 
(asparagine or glutamine) to maize seedlings led to a de-
crease in NR activity. Also, after the addition of glutamine 
to nitrate-containing medium (in vitro), NR activity in cul-
tured spinach cv. ‘Hoyo’ cells was repressed (Ogawa et al. 
1999). 

Pal’ove-Balang and Mistrik (2001) examined NR acti-
vity in maize, and after treatment with two different concen-
trations (1 and 10 mM) of glutamine or asparagine they 
found that the low concentration used (1 mM) showed no 
effect on NR activity, while the higher concentration (10 

mM) stimulate this enzyme. The same result was obtained 
by Stancheva and Dinev (1995) on the same plant. In ad-
dition, Aslam et al. (2001) noted that pretreatment of barley 
with glutamine or asparagine had no effect on the subse-
quent induction of NR. They suggest that this inhibition is a 
result of the lack of substrate availability due to inhibition 
of the nitrate uptake system. 

GS is the enzyme responsible for the primary assimila-
tion of ammonium produced by nitrate reduction or fixation 
of dinitrogen as well as the reassimilation of ammonium re-
leased by photorespiration and other metabolic processes 
(Gomez-Maldonado et al. 2004). 

Furthermore, glutamine supplementation reduced GS 
activity of Asparagus officinalis L. (Seelye et al. 1995). 
Meanwhile, Ma and Li (2002) found that in root and leaves 
of sugar beet, GS and NR gradually increased with increa-
sing N treatment. 

It is interesting to mention that the decrease in enzyme 
activities are more pronounced in roots than in shoots of 
intact French bean (Fig. 8A, 8B). Zhang et al. (1998) found 
that in rice cv. ‘IR72’ plants treated with fertilizer N, GS ac-
tivity in leaves was greater than in roots, regardless of N 
application. 

GS functions as the major assimilatory enzyme for am-
monia produced from N fixation, and nitrate or ammonia 
nutrition. It also reassimilates ammonia released as a result 
of photorespiration and the breakdown of proteins and N 
transport compounds. GS is distributed in different subcel-
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lular locations (chloroplast and cytoplasm) and in different 
tissues and organs. This distribution probably changes as a 
function of the development of the tissues (Miflin and 
Habash 2002). Ke et al. (2001) stated that in forage rice cvs. 
‘Xiang zaoxian 24’ and ‘Zhong youzao 81’, NR, glutamine 
transferase (GT) and GS activities decreased but proteinase 
activity increased, as N degradation and transmission in-
creased. This is in agreement with the data of N fractions in 
this study (Fig. 5A, 5B). 

Lea and Azevedo (2007) stated that the genes control-
ling the enzymes of amino acid metabolism that may be in-
volved in transferring N to the protein in the grain. Evi-
dence is now accumulating from the use of knockout mu-
tants, of the role of individual isoenzymes involved in 
amino acid metabolism, which are encoded by specific 
genes that are often members of a multigene family. In ad-
dition, a significant number of overexpressing plant lines 

have been obtained, which have increased activities of cyto-
sol located, GS, asparagine synthetase and alanine amino-
transferase that appear to have improved NUE. 

Recently, Majerowicz and Kerbauy (2002), using Cata-
setum fimbriatum, demonstrated that glutamine treatment in 
vivo resulted in the accumulation of dry matter in shoots 
due to higher values of N assimilatory enzyme activities 
(NR, GS and glutamate dehydrogenase (GDH)) as well as 
free ammonia content. This was in harmony with our results 
(Fig. 2A, 2B; 5A, 5B). 

In conclusion, the changes in the different enzyme acti-
vities (AS, GS, NR and protease) by application of either 
asparagine or glutamine in French bean plants may be at-
tributed to the amide action on the biosynthesis of enzyme 
protein, enzyme activation and/or membrane permeability. 
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Vertical bar = value of LSD at 0.05. 
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