Water Relations of Kochia (*Kochia scoparia* (L.) Schrad) under Different Salinities of Irrigation Water

Majid Jami Al-Ahmadi¹ • Mohammad Kafi²

¹Faculty of Agriculture, the University of Birjand, P.O. Box: 97175/331, Birjand, Iran
²College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Corresponding author: mjamialahmadi@birjand.ac.ir

ABSTRACT

In order to estimate kochia (*Kochia scoparia*) water use efficiency (WUE), an experiment was performed in Birjand, a dry and saline area in South Khorasan, Iran, by using irrigation water of three different salinity levels, i.e. 1.5, 8.6, and 28.2 dSm⁻¹. Several measurements were conducted during the growth season to determine radiation fraction passed through canopy and leaf area index, thereby ground cover percentage was calculated. Reference crop evapotranspiration calculated using Hargreave’s method, corrected by FAO, and after drawing crop coefficient curves, crop evapotranspiration was determined. Ultimately, crop WUE in different salinity levels was calculated for forage and seed yields. Evaluation of crop coefficient curves showed that salinity caused a delay in initial season growth and forced plant maturity in late season. The mean crop evapotranspiration between salinity treatments was equal to 915 mm. WUE was affected by forage and seed yields. WUE for seed yield in 1.5, 8.6, and 28.2 dSm⁻¹ were 2.92, 2.42, and 2.44 kg ha⁻¹ per each mm evapotranspiration, respectively. As forage use is the main purpose of kochia production, it seems that its biomass production have a high tolerance to water and soil salinity.

INTRODUCTION

Agricultural production is dependent on meeting the water requirements of crops. In most arid and semi-arid areas of Iran, more than 80% of exploited water is used to irrigate agricultural crops and the salinity of this water is increasing high due to excessive water harvesting and saline water influx from surface reservoirs (Jahani 1994). The predicted increased demand for irrigation in semi-arid climates, as a result of the population increase and climate change, is likely to increase the extent of secondary salinization, with a consequent threat to food security of the population in these regions.

Salinity influences the water use efficiency (WUE) of plants in different ways, e.g. reducing soil water availability due to its effects on the soil water potential (Richards 1992) or forcing stomata to close, cause WUE to increase due to water loss reduction. Salinity also reduces leaf area, leaf water potential, evapotranspiration, and, finally, crop yield (Richards 1992; Katerji et al. 2003). It is apparent that WUE of some species, especially halophytes, increases as salinity increases (McCree and Richardson 1987). Sustainable exploitation of saline water and soil resources requires the reassessment of environmental resources and non- or less-utilized plants.

There are many opportunities to improve WUE in agriculture through the manipulation of biological and environmental components of the system and/or by optimizing management decisions. Crop selection is the main factor determining water use. Cultivation of some palatable mesophytic or halophytic plants under drought or salinity stress, using existing water for irrigation, is a promising solution for the forage shortage problem in arid and semiarid regions. Kochia (*Kochia scoparia* L. Schrad) is a plant that establishes well in high saline soils (Sherrod 1971), and produces a protective short-lived plant cover. Therefore, kochia can be used as an alternate forage crop, especially in salt affected areas and in arid and semiarid regions with forage scarcity. The main objective of the present study was to take advantage of the halophytic nature of kochia and investigate its response to saline water irrigation, with respect to evapotranspiration and water use efficiency.

MATERIALS AND METHODS

The required data were collected from an experiment conducted during growth season of 2003 at the Experimental Station of the University of Birjand (13° 59′ N, 53° 32′ E), South Khorasan, Iran. The experimental design was done as a randomized complete block design (RCBD) with three replications, in which kochia plants were irrigated with different levels of salinity (1.5, 8.6 and 28.2 dSm⁻¹). The seeds were obtained from a land race of kochia, and due to its small seed size, they mixed with fine sands and then sown in 20 m² plots on 30 March, with flooding irrigation, which was performed weekly. Before planting, fertilizers including super phosphate (120 kg ha⁻¹) and nitrogen (150 kg ha⁻¹) were used (Zahran 1993).

Two levels of saline water (1.5 and 8.6 dSm⁻¹) were provided from two separate wells at the farm. The high level of saline water (28.2 dSm⁻¹) was supplied from a seasonal river, 3 Km from the farm. Three tanks (20 KL each) were installed and water of each treatment stored in a separate tank. Saline water was applied weekly as flooding irrigation, using the pipes which already installed under soil surface between experimental plots and tanks. Water entrance volume was similar between all plots, controlled by a volumetric counter. To insure a good stand, all plots were irrigated with moderate saline water (5.5 dSm⁻¹) until thinning and after that (about 40 days after sowing), the salinity treatments were exerted.

To determine the soil coverage percentage and the fraction of...
radiation interception, about 12 measurements of incident radiation were made during the growth season, so that a proper distribution of measured radiation at different leaf area indices (LAI) was obtained. The measurements of incident radiation were made using a linear solarimeter (Sunsan, ΔT) from 1100 to 1300 h. These data were used to determine the fraction of radiation absorption by plant canopy during growth season using the method described by Goudriaan and van Laar (1993).

The reference crop evapotranspiration was calculated based on Hargreaves’s method (Allen et al. 1998; Villalobos et al. 2002). Hargreaves’s method was developed in 1985 for use when climatic data are not easily accessible. This method provides reasonable estimations of ETO with a global validity between empirical models, and is also authorized by the Food and Agriculture Organization (FAO) (Allen et al. 1998) as:

\[E_{\text{To}} (\text{mm day}^{-1}) = 9.338 \times 10^{-6} RA(T_{\text{max}} + 17.8)(T_{\text{max}} - T_{\text{min}})^{0.5} \]

where \(T_{\text{max}} \), \(T_{\text{min}} \), and \(T_{\text{mean}} \) are maximum, minimum, and mean daily temperatures, respectively, and \(RA \) is extraterrestrial radiation (MJ m\(^{-2}\) day\(^{-1}\)).

The initial crop coefficient (\(K_{\text{C ini}} \)) was calculated as a function of irrigation frequency and reference crop evapotranspiration (Villalobos et al. 2002):

\[K_{\text{C ini}} = 2(IL)^{0.60} \exp[-0.02 - 0.04 \ln IL] E_{\text{To}} \]

where \(IL \) is the irrigation interval (day), and \(E_{\text{To}} \) is average reference crop evapotranspiration during the initial period. Calculating \(K_{\text{C}} \) for other growth stages was done based on the FAO recommended method (Allen et al. 1998). Considering these parameters, crop evapotranspiration (Etc) can be calculated by:

\[\text{Etc} = \text{ETO} \cdot K_{\text{C}} \]

All calculations and drawing figures were done using Genstat (9th Edn) and Excel software.

RESULTS AND DISCUSSION

With increasing LAI, plant light absorption increased and at a LAI of 4.5–5, plants absorbed 95% of the incident radiation (Fig. 1).

Fig. 2 shows that as the season progresses and the temperature increases, reference crop evapotranspiration increases, and its cumulative value follows a sigmoidal trend. The relationship between yield and evapotranspiration, plants at 1.5 dSm\(^{-1}\), with more evapotranspiration, produced lower their evaluated species that salinity decreased the initial rate of water loss by plants, leading to an increase in total carbon gain and a proportional increase in WUE.

In forage production, an increase in salinity up to 8.6 dSm\(^{-1}\) increased WUE slightly; however, a further rise in salinity caused WUE to decrease strongly (Fig. 5). To produce one tonne of dry forage, a total of 8.7 and 8.4 cm water were required at 1.5 and 8.6 dSm\(^{-1}\), respectively (2.9 and 2.8 cm for fresh forage). Although a reduction in salinity from 28.2 to 8.6 dSm\(^{-1}\) caused a linear increase in the relationship between yield and evapotranspiration, plants at 1.5 dSm\(^{-1}\), with more evapotranspiration, produced lower...
yield than those of 8.6 dSm$^{-1}$ (Fig. 6). Of course, the severe stress imposed on plants at the highest salinity should be considered, which caused a deviation in plant responses from the expected trends. A comparison of Figs. 4 and 5 indicates that salinity influenced WUE more than evapotranspiration, confirming the general conclusion of Katerji et al. (2003) in a study of different crops, in which an increase in WUE in response to moderate salinity is a common physiological phenomenon. Richards (1992) stated that the possible reasons for this response are the reduction in stomata conductivity without a related loss in the assimilation capacity, and apparent increase of WUE due to salt accumulation in leaves. Thus it seems moderate salinity can stimulate growth and increase water use efficiency of kochia, leading more forage per applied water.

REFERENCES

Sammis TW (1981) Yield of alfalfa and cotton as influenced by irrigation. Agronomy Journal 73, 323-329

