RAPD and SCAR Marker Linked to the Sterility Mosaic Disease Resistance Gene in Pigeon Pea (*Cajanus cajan* L. Millsp.)

Lakki Reddy Prasanthi* · Bommu Veera Bhaskara Reddy · Kokkanti Rekha Rani · Yeturu Sivaprasad · Thovi Rajeswari · Konreddy Raja Reddy

Acharya N.G. Ranga Agricultural University, Regional Agricultural Research Station, Tirupathi -517502, Andhra Pradesh, India

Corresponding author: prasanthi64@rediffmail.com

Received: 15 December, 2008. **Accepted:** 23 February, 2009.

Abstract

The present study was undertaken to identify random amplified polymorphic DNA (RAPD) primers and to develop a sequence characterized amplified region (SCAR) marker associated with pigeon pea sterility mosaic disease (PPSMD) resistance in pigeonpea cross ICPL-7035 x ICPL-5863. Bulked segregant analysis was employed to identify the RAPD primer linked to PPSMD and to develop a SCAR for the PPSMD resistant gene of ICPL-7035, a known resistance source to different isolates of PPSMV and vector. A total of 200 random decamers were surveyed for identification of polymorphic markers between the DNA of resistant and susceptible parents. Amplification of individual DNA samples out of the bulk with putative marker, OPA18800 only revealed polymorphism in resistant and susceptible lines, indicating that the marker OPA18 was associated with PPSMD resistance in ICPL-7035. Their end sequences were used to design allele-specific sequence characterized amplified region (SCAR) marker SCAR 81616f/r, which was present in all generations (parents, F₁ and F₂) and would help to identify the transfer of the SMD resistance gene to susceptible lines.

Keywords: bulked segregant analysis, dominant, polymorphism, recessive, selection

Introduction

Pigeon pea (*Cajanus cajan* L. Millsp.; family Fabaceae) is a major grain legume crop, whose seed supplies dietary protein requirements to large numbers of people living in the semi-arid tropics of the Indian subcontinent (Saxena et al. 2002). Sterility mosaic disease (SMD), a major constraint to pigeon pea production, was first described in 1931 from Bihar State, India (Mitra 1931) and subsequently from several states of India and from Bangladesh, Nepal, Thailand, Myanmar, and Sri Lanka. SMD, caused by an eriophyid mite-transmitted *Pigeon pea sterility mosaic virus* (PPSMV), is the major disease of pigeon pea in the Indian subcontinent. SMD is responsible for yield loss of worth >US $300 million (Jones et al. 2004). In 1984 yield losses in India due to SMD were over 205,000 tons of grain per annum (Kannaiyan et al. 1984). Plants infected at an early stage of the crop growth result in 0-10% flowering; late infection results in 40-70% flowering, and poor quality seed (Kumar et al. 2001).

In screening trials initiated in 1975, ICRISAT and the Indian Council of Agricultural Research stations identified few resistant lines but their resistance elsewhere in Indian subcontinent was less effective (Reddy et al. 1993). Analysis of mite population and vector isolates obtained from India, Nepal and Myanmar indicated that the breakdown in SMD resistance in pigeon pea genotypes is not influenced by variation in the mite population but mainly due to virus variation. Based on the symptoms on these genotypes, the PPSMV isolates were grouped as, ‘B’ ‘C’ and ‘P’ types from Bangalore (Karnataka), Coimbatore (Tamilnadu) and Patancheru (Andhra Pradesh) respectively (Kumar et al. 2000). Among these isolates of PPSMV occur in India, the B-types are highly virulent and can overcome host-plant resistance selected against P-types. The B-types occur in northern and southern regions, and P-types occur in central regions of India. Host-plant resistance to B-type isolates is scarce and very few pigeon pea genotypes withstand infection. The majority of lines resistant to PPSMV following inoculations with viruliferous mites were susceptible by graft inoculation, suggesting that vector resistance is conferring resistance to infection with PPSMV (Lava Kumar et al. 2003). To assess the possibility of virus variability as the cause of break down, a set of different genotypes were planted at different locations and found no SMD symptoms (severe mosaic and sterility, mild mosaic with partial sterility and chlorotic ring spots) in ICPL-7035 to three isolates of PPSMV, which is a landrace in Madhya Pradesh, collected under germplasm by ICRISAT, Andhra Pradesh in 1973 (Kulakarni et al. 2002). SMD resistance in ICPL-7035 is highly stable because it is resistant to three isolates of PPSMD as well as its vector, eriophyid mite *Aceria cajani* confirmed through ELISA (Jones et al. 2004). This mite is highly host specific and is restricted to pigeon pea and a few of its wild relatives.

Inheritance of resistance to SMD indicates dominance of susceptibility over resistance (Singh et al. 1983; Sharma et al. 1984 and Nagaraj et al. 2004). Monogenic inheritance of resistance was observed in some crosses (Sharma et al. 1984; Srinivas et al. 1997a). Resistance was recessive and appeared to be governed by two independent non-allelic recessive genes exhibiting complementary epistasis and the presence of at least one gene conferring resistance to the disease, in homozygous recessive condition was found to be necessary to express the resistance phenotype (Srinivas et al. 1997b; Nagaraj et al. 2004) Development of high-yielding SMD grain type of different groups is important to stabilize pigeon pea yields in areas of the country where this disease is endemic.

In breeding for SMD resistance in pigeon pea traditional methods are based on crosses between susceptible and resistant genotypes followed by phenotypic selection for resistant genotypes by artificial screening (stapling or grafting methods). The out-crossing nature, long life cycle, difficulty in accurate phenotyping and linkage drag are some of the problems faced in traditional breeding (Saxena 2008). Molecular markers linked to resistance are useful in marker-assisted selection (MAS) breeding. By means of
molecular markers linked to a trait of interest, selection can be performed at early seedling stages of development, and true breeding genotypes identified with relative ease (Kotresh et al. 2006). Hence, identification of molecular markers closely linked to SMD resistance facilitates the identification and breeding of new lines by reducing the time required.

RAPD are generated by amplification of genomic DNA using a single primer of arbitrary nucleotide sequence to drive the amplification reaction. The most useful application of RAPD marker is, however, to quickly generate markers within a genomic region of interest using near isogenic lines (NILs) (Penner et al. 1993). However, several generations of back crosses are required to create NILs and several regions of the donor genome can be co-introgressed into the NILs. An alternative method called bulked segregant analysis (BSA) was proposed by Michelmore et al. (1991). It aims to replace the NILs by two bulked samples collected from individuals identical for alleles at a specific locus in a single population, each bulk being homozygous for one or the other allele of the gene of interest. The advantage of this technology is that markers are targeted to a smaller region within the genome and likelihood of identifying false positive markers is small using NIL or BSA strategies a number of RFLP or RAPD markers linked to dominant gene have been identified in rice, rape seed, sunflower and rye (Maniyan and Muralidharan 2003). Molecular markers closely linked to major resistance gene will facilitate the breeding of new resistant lines in pigeonpea. To overcome the problems associated with RAPD analysis and to improve their utility in MAS application, RAPD markers can be converted into SCAR markers (Paran and Michelmore 1993). The SCAR markers are generally allele specific and their amplifications is much less sensitive to reaction conditions. A SCAR marker is developed by cloning and sequencing the ends of the amplified RAPD product, generating extended primers specific to the targeted sequences and amplifying DNA samples under higher stringency conditions. They can be developed into dominant markers that generate a single condition of presence or absence, or as potentially co-dominant markers. This strategy has been widely and successfully used to develop markers for various traits in wheat (Myburg et al. 1998) and common bean (Melatto et al. 1996). Development of resistant varieties against the SMD is complicated due to presence of PPSMV strains of varying virulence. For major diseases like Fusarium wilt and SMD in pigeon pea development of dominant SCARs will be affectively used in a breeding programme as it gives a quick plus or minus assay to identify a locus. Since only a single fragment is amplified, post amplification electrophoresis can be eliminated because the PCR products can be detected directly by staining with ethidium bromide in a microtiter plate or by measuring DNA concentration with a spectrophotometer. This would decrease the cost and increase the speed of the analysis.

In the present study a dominant RAPD marker, OPA18 of, linked to resistance to SMD was identified by means of BSA of an intraspecific F2 population developed from a cross, ICPL-7035 x ICPL-8863. Cloning and characterization of this RAPD marker and development of an allele-specific SCAR, which can be used to quickly and accurately identify resistant genotypes for SMD resistance, was performed.

MATERIALS AND METHODS

Plant materials

ICPL-7035 was crossed as a female parent with ICPL-8863 and a segregating population was obtained by the selling a single resistant F1 plant identified through marker. 179 segregating F2 plants were obtained and were grown in a greenhouse in pots along with the parents. Each pot consisted of 20 plants. Normal cultural practices were followed, except that no insecticides were sprayed. ICPL-8863 and LRG-41 highly susceptible cultivars to PPSMD were maintained as sources for mites and disease. F2 plants were inoculated at the two-leaf stage with viruliferous mites by stapling SMD-affected pigeon pea leaves containing mites onto leaves of test plants (Nene and Reddy 1976). After 3 weeks, plants were assessed for disease symptoms (mild mosaic and small leaves). Asymptomatic plants were inoculated again by petiole grafting with SMD infected material collected from source plants (Reddy et al. 2002). Under grafting conditions, resistant plants did not show any pale green leaves while susceptible plants showed critical symptoms after 20-25 days (Fig. 1). The plants were classified as resistant (no symptoms) or susceptible (severe mosaic symptoms) by 7-8 weeks. The goodness of fit to Mendelian segregation of resistant and susceptible plants in the segregation population was tested by Chi-square test (Panse and Sukhatme 1961).

DNA extraction and amplification conditions

Genomic DNA was extracted from the leaves of parents, F1 and F2 plants at first tri-foliate leaf stage (15-20 days old) using the CTAB method (Murray and Thompson 1986) and this DNA was further purified from carbohydrates, proteins and RNA before actual use (Sambrook et al. 1989). Quantification and quality checking were done on a 0.8% agarose gel.

Polymerase chain reaction

The PCR reactions were performed in a 25 μl volume in 0.2 ml PCR tubes (Axgyen Pvt, Ltd., India). The reaction mixture contained 25 ng of template DNA, 1X amplification buffer (10 mM of Tris-HCL pH 8 (Fermentas), 2.5 mM of MgCl2, 0.2 mM of dNTPs, 0.5 μM primers (Operon) and 0.5 U Taq DNA polymerase (Fermentas). The reactions were performed in a Master Cycler Gradient 5331 (Eppendorf version, Germany). The reaction had an initial denaturation step at 94°C for 2 min, followed by 45 cycles of denaturation at 94°C for 1 min, 37°C for 1 min, 72°C for 2 min. The final extension step was at 72°C for 7 min. The PCR products were separated on 1% agarose gels in TBE (89 mM Tris-HCL, 89 mM boric acid and 2 mM EDTA, pH 8.0) buffer stained with ethidium bromide (0.75 μg/ml) and visualized under UV light using an Alpha Innotech Corporation gel doc system and the results were documented.

A total of 200 random oligonucleotide primers were surveyed for potential polymorphism between the DNA bulks of resistant
CONSTITUTION OF DNA BULK AND EVALUATION OF POLYMORPHISM

Equal quantities of DNA were bulked from 10 resistant and susceptible F2 plants. These bulks along with parents were screened with primer to identify the polymorphic marker which is present in resistant parent as well as resistant bulk and not in the susceptible parent and susceptible bulk. The linkage of the polymorphic marker was confirmed by using an individual segregating population from which the bulks were generated.

CLONING AND SEQUENCING OF RAPD MARKERS

RAPD primer OPA18 was used to amplify genomic DNA of the resistant parent ICPL-7035. Amplified fragments were separated on a 1% (w/v) low melting point agarose gel before being excised and purified by means of the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA). The purified DNA fragments were ligated and transformed with the pTZ57R/T Vector System. Cloned RAPD fragments were identified via Colony PCR with RAPD primer of OPA18 and confirmed by restriction digestion with EcoRI (Fig. 4).

SCAR PRIMER DESIGN AND AMPLIFICATION

On the basis of the sequence of cloned RAPD product (GenBank Accession No. FJ215867), oligonucleotide primer pairs of 14 to 18 bases were designed using Oligo Explorer 2.0 software for specific amplification of the loci identified by selected RAPD marker (Table 2). Each primer contained the original 10 bases of the RAPD primer sequence plus the next 4, 6 and 8 internal bases. Each primer contained the original 10 bases of the RAPD primer sequence plus the next 4, 6 and 8 internal bases. Care was taken to avoid possible primer dimer or secondary structure formation. Primers were synthesized by Operon Technologies, Inc. SCAR amplification of ICPL-7035, ICPL-8863 and LRG-41 genomic DNA was performed in 25 μL reaction volumes containing the same components used for RAPD analysis except for the concentration of MgCl2 (2.0 mM) and SCAR primers (1 μM). PCR amplification consisted of 35 cycles of 1 min at 94°C, 1 min at 56°C, and 1 min at 72°C followed by a final extension of 10 min at 72°C. The amplified products were resolved by electrophoresis on 1% (w/v) agarose gels in 0.5% (v/v) TBE buffer and stained with ethidium bromide.

RESULTS AND DISCUSSION

In this study a total of 200 random oligonucleotide primers were surveyed for potential polymorphism between the DNA bulks of resistant and susceptible parents. Primer OPA18 was found to produce putative markers which differentiated resistant parent and susceptible parent from susceptible parent and susceptible bulk (Figs. 2, 3). The same was confirmed through grafting. Co-segregation analysis of the putative marker in the F2 population confirmed the association of OPA18 marker with the SMD gene (Table 1).

Table 2 SCAR primers designed based on the sequence of RAPD marker and the size of amplicon observed.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence (5' – 3')</th>
<th>Length (mer)</th>
<th>Annealing temp. (°C)</th>
<th>Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCAR1-F</td>
<td>AGG TGA CGG TGC TAG A</td>
<td>16</td>
<td>56</td>
<td>816</td>
</tr>
<tr>
<td>SCAR1-R</td>
<td>AGG TGA CGG TGC GAG T</td>
<td>16</td>
<td>54</td>
<td>750</td>
</tr>
<tr>
<td>SCAR2-F</td>
<td>AGG TGA CGG GTC TA</td>
<td>14</td>
<td>55</td>
<td>700</td>
</tr>
<tr>
<td>SCAR2-R</td>
<td>AGG TGA CCT TCC GA</td>
<td>18</td>
<td>55</td>
<td>700</td>
</tr>
<tr>
<td>SCAR3-F</td>
<td>AGG TGA CGG TGC TAG AAC</td>
<td>14</td>
<td>55</td>
<td>700</td>
</tr>
<tr>
<td>SCAR3-R</td>
<td>AGG TGA CGG TCC GAG TAG</td>
<td>18</td>
<td>55</td>
<td>700</td>
</tr>
</tbody>
</table>
tern in above findings revealed digenic ratio of 7 resistant: 9 susceptible as resistant parent was differed from susceptible parent in respect of two gene pairs by Singh et al. (1983), Sharma et al. (1984) and Nagaraj et al. (2004).

Validation of RAPD and SCAR markers in parents and segregating population

The presence or absence of the OPA18 and SCAR 16/r marker with the SCAR1-F and SCAR1-R primers was investigated in parents, F1 and F2 plants of the cross ICPL-7035 x ICPL-8863. Absence of the marker in F1 plants (Figs. 5, 6) indicated that these F1 plants were susceptible. In the F2 generation the OPA18 marker was present in all SMD-resistant plants and absent in all the susceptible plants. The SCAR marker was specifically present in the resistant plants and resistant bulk and absent in the susceptible plants and susceptible bulk in F1 and F2 plants, like the original marker OPGA18 (Figs. 7, 8).

Co-segregation analysis of putative markers in the F2 population confirmed the association of OPGA18 800 by the primer with the SMD resistance gene. The SCAR marker with 16 base pairs designed from the sequence of resistant RAPD DNA fragment also produced consistent results (Table 1). This segregation ratio fits well with the expected ratio of 7 resistant and 9 susceptible and thus confirms that the resistance was controlled by two genes indicating the complementary nature of the two dominant genes for susceptibility. It is therefore postulated that susceptibility is under the control of two independent loci exhibiting complementary gene action. When loci 1 or 2, or both, occur in a homozygous recessive state a resistance reaction occurs, while dominant alleles at both loci would be necessary to result in susceptibility. Accordingly, resistance is expressed in the presence of recessive alleles in homozygous state at least at one locus.

Many commercial pigeon pea varieties are susceptible to PPSMD and there is a need to identify tightly linked markers that could facilitate the transfer of resistant genes to popular cultivars using marker-assisted breeding. The use of molecular markers for resistance genes is particularly powerful as it removes delays in breeding programmes associated with the phenotypic analysis.

The essential requirement for MAS in a plant breeding programme is the identification of a linked marker and an efficient means for screening large populations in a reproducible manner. Marker validation is a process of examining the behavior of markers and the associated polymorphism in different genetic backgrounds (Gupta et al. 1999). Identification of flanking DNA markers located within 5-10 cM from a gene of interest has yielded high levels of selection accuracy for resistance (Hittmalani et al. 1995). The presence or absence of the RAPD and SCAR marker in diverse pigeonpea genotypes was investigated. The marker was consistently associated with the resistance phenotypes around the resistance locus is underway and would aid in isolating the PPSMD resistance at the molecular level. The SCAR marker identified will be utilized to develop cleaved amplified polymorphism markers.

Table 3 Phenotypic segregation ratio for reaction to SMD in F2 of ICPL-7035 x ICPL-8863 through grafting technique.

<table>
<thead>
<tr>
<th>Crosses</th>
<th>No. of plants</th>
<th>Susceptible</th>
<th>Resistant</th>
<th>Total</th>
<th>R:S</th>
<th>χ² probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>110</td>
<td>69</td>
<td>71</td>
<td>179</td>
<td>7:9</td>
<td>0.718 0.35-0.25</td>
</tr>
<tr>
<td>Expected</td>
<td>106.6</td>
<td>78.3</td>
<td>179.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5 Amplification products following PCR directed by primer OPA18 in parents and F1s. M, 1 KB marker; Lane R, ICPL 7035; Lane RB, ICPL 7035 bulk; Lane S ICPL 8863; Lane SB, ICPL 8863 bulk; Last 3 lanes, 3 F1 individual plants.

Fig. 6 Amplification profile of the marker SCAR 816 in parents and F1s. M, marker; Lane 1, ICPL7035 (R); Lane 2, ICPL 8863 (S); Lanes 3-6, F1s of cross ICPL7035 x ICPL 8863; Lane 7, ICPL 7035 (Res. bulk); Lane 8, ICPL 8863 (Sus. bulk).

Fig. 7 Amplification profile of the primer OPA18 in parents and F2 individual plants. M, marker; Lane P1, ICPL7035; Lane P2, ICPL 8863; Lane 3-12 F2 individual plants.

Fig. 8 Amplification profile of the SCAR 816 marker in parents and F1 individuals.
REFERENCES

Blondon AF, Sevignae M, Bannerot H, Don M (1994) SCAR, RAPD and RFLP markers linked to a dominant gene (Ar) conferring resistance to anthracnose in common bean. Theoretical and Applied Genetics 88, 865-870

Kulkarni NK, Kumar PL, Muniyappa V, Jones AT, Reddy DVR (2002) Transmission of pigeon pea sterility mosaic virus by the eriophyid mite. Plant Disease 86, 1297-1302

Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences USA 88, 9828 -9832

Murray MG, Thompson WF (1986) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8, 4321-4325

Myburg AA, Cawood M, Wingfield BD, Bolla AM (1998) Development of RAPD and CAR markers linked to the Russian wheat aphid resistance gene Dm2 in wheat. Theoretical and Applied Genetics 96, 1162-1169

Panse VG, Sukhatme PV (1961) Statistical Methods for Agricultural Workers (2nd Edn) ICAR, New Delhi, 365 pp

Saxena KB (2008) Genetic improvement of pigeon pea. Tropical Plant Biology 1, 159-178

Srinivas T, Reddy MV, Jain KC, Reddy MSS (1997b) Genetics of resistance of the patanchera isolates sterility mosaic pathogen in pigeon pea (Cajanus cajan L. Millsp.). Crop Improvement 24, 183-188

