Detection of Peanut-Specific IgE using Functionalized Nanoparticles

Karisma Fernandes¹ · Yousef Haik²*¹

¹ Center for Research Excellence in Nanobiosciences, University of North Carolina at Greensboro, 321 McIver St., Greensboro, NC 27402, USA
² Department of Mechanical Engineering, United Arab Emirates University, P O Box 17555, Al Ain, United Arab Emirates

Corresponding author: * Y_haik@ung.edu

ABSTRACT

The diagnosis of patients with clinically reactive food allergies is extremely crucial and remains a challenge for all allergists. The current technology available to diagnose the presence of peanut-specific immunoglobulin E (IgE) are highly invasive, expensive, time consuming and need trained personnel and specialized equipment for the test to be conducted. In this study we present a new technique for detecting the presence of peanut specific IgE by coating allergens on magnetic nanoparticles. Upon the isolation of the peanut specific IgEs from the sample, a colorimetric detection is utilized to assess the severity of the allergy. To evaluate the feasibility of the new technique, the functionalized particles were utilized to detect the presence of peanut specific IgE in 50 μl plasma of an allergic individual using only 100 μg of functionalized nanoparticles. Other evaluations were conducted in spiked plasma samples. The selectivity and sensitivity of the developed assay was highly specific for the peanut-specific IgE in plasma and more sensitive than conventional ELISA.

Keywords: food allergy, magnetic assay, nanoparticles, peanut allergy
Abbreviations: ELISA, Enzyme-linked immunosorbent assay; IgE, immunoglobulin E; SPT, skin prick test

INTRODUCTION

The National Institute of Allergy and Infectious Disease (NIH 2007) reported allergy as a major cause of illness in the United States, effecting millions of Americans and compromising their daily life. The National Center for Health Statistics reported in 2007 that three million US children under the age of 18 years (3.9%) have food or digestive allergy and the food allergy rate among all children younger than 18 years was 18% higher than in 1997. During the 10-year period 1997-2006, food allergy rates increased significantly among both preschool-aged children and older children (Braman and Lukacs 2007). Severe food related allergic reactions result in an estimated 30,000 emergency room visits, 2,000 hospitalizations and 150 deaths annually (Sicherer et al. 2004). Furthermore, clinical data and surveys have observed an increase in the prevalence of allergy, including food allergy, over the years (Grundy et al. 2002; Sicherer et al. 2003; Braman and Lukacs 2007).

The most severe and life threatening adverse reactions to foods are associated with immunoglobulin E (IgE)-mediated hypersensitivity (Zarkadas et al. 1999; Jackson 2003). An allergic reaction occurs due to an abnormal immune system response to specific antigens or proteins present in food (Sampson et al. 1999). There are two phases involved in an allergic reaction, an initial phase called “sensitization” occurs when a susceptible individual produces IgE antibodies against a specific allergen present in food. The second phase is “elicitation”, which is a robust allergic reaction in the sensitized individual on subsequent re-exposure of the same allergen. During this phase the allergen binds to IgE molecules on basophiles and mast cells, and activates these cells causing the release of inflammatory molecules, such as histamine, into circulation.

The clinical manifestations of food allergies range from mild irritations to life threatening respiratory distress and shock. Symptoms occur within few minutes to hours after consumption of the allergen present in food and generally progresses on a continuum from mild to severe reaction (Sampson et al. 2005). Peanut allergy poses an enormous problem and has been shown to be the third most common food allergy in young children (Bock 1987), and the most common food allergy in older children, adolescents and adults (Sicherer et al. 1999; Braman and Lukacs 2007). Furthermore, it has been implicated as an allergen most capable of causing severe, life-threatening and fatal allergic reactions (Sampson et al. 1992; Bock et al. 2001). The severity and persistence of peanut allergy, and the growing prevalence of peanut allergies (Sampson 2002), emphasizes the need for the development of assays that can rapidly detect and diagnose the onset of an allergic reaction in an individual.

Currently there are three major approaches being used in the diagnosis of allergies; they are 1) Skin test or skin prick test (SPT), 2) Assays of serum IgE levels and 3) Histamine release test. The major drawbacks of these tests were that they may result in false negative or positive results, low sensitivity, and are highly invasive. Additionally, they require the detection to be done by trained personnel in controlled environments, which results in a considerable increase in cost. Hence there is an urgent need to develop reliable assays to detect the onset of food allergies in a rapid, sensitive and less invasive way that does not involve highly trained personnel and expensive equipment, making the assay cost effective.

Thus, the objective of this study was to develop a novel assay using nanotechnology as a platform to detect the presence of peanut specific IgE in plasma. In this study we choose to obtain plasma from sensitized individuals as they are at maximum risk of experiencing life threatening symptoms when exposed to peanut allergens. Based on the data from this study, we report that the magnetic assay developed using nanoparticles (NPs) that were functionalized with peanut protein extract was successfully able to detect peanut specific IgE in plasma. Additionally, when the sensi-
tivity of magnetic assay was compared to that of a traditional ELISA, magnetic assay was found to be nearly 2-fold more sensitive. Moreover, this degree of sensitivity was achieved by using only 100 μg of NPs and 50 μl of plasma.

EXPERIMENTAL METHODS

This study reports the feasibility of utilizing allergen-coated magnetic NPs to evaluate the severity of allergic attack.

Synthesis of iron oxide nanoparticles

Iron oxide NPs were synthesized in house in three main steps as described by Chatterjee et al. (2003). Briefly, ferrous chloride and ferric chloride were co-precipitated by sodium hydroxide. The mixture of ferrous chloride and ferric chloride were then mixed in a molar ratio of 1:2 in deionized water at a concentration of 0.1 M iron ions. Next, a highly concentrated solution of sodium hydroxide (10 M) was added and the solution was stirred continuously for the ions to be co-precipitated. The solution with the precipitates was stirred in a high speed for 1 hr at 20°C and subsequently heated to 90°C for 1 hr with stirring. The iron oxide dispersion was then sonicated for 10 min at 50% amplitude using an Ultrasonic homogenizer. Next, the ultrafine magnetic particles obtained were peptized by nitric acid (2 M). The precipitate was washed repeatedly with deionized water, filtered, and dried in vacuum to obtain fine iron oxide particles. The particle size distribution was tested using a transmission electron microscopy and was found to be 9 ± 2.5 nm. The charge of the particles was measured using a Zetasizer (Malvern Instruments, UK) and was found to be anionic.

Functionalization of nanoparticles

The produced NPs were functionalized by coating them with a positively charged polymer, polyethyleneimine (PEI). The average thickness of the coat as measured by scanning electron microscope (Hitachi S-4800) imaging was 17 nm. The charge on the coated particles was verified by measuring zeta potential with the Zetasizer, nano series (Malvern, UK). The zeta potential of coated NPs was found to be 6.04 mV. The positively coated particles were then coated with whole peanut extract, by incubating the particles and extract in a 1:1 ratio for 3 hrs at 37°C. The peanut extract was obtained by procedure outlined in (Koppelman et al. 2001). The coated particles were then magnetically separated from the peanut extract using a permanent magnet. The supernatant was collected and the particles, left behind, were washed five times with phosphate buffered saline (PBS), pH 7.4. After the last wash the particles were suspended in PBS to have the needed concentration of nanoparticles (Hitachi S-4800) imaging was 17 nm. The charge of the coated particles was measured using a Zetasizer (Malvern Instruments, UK) and was found to be anionic.

RESULTS

Optimizing the amount of functionalized nanoparticles needed to detect peanut-specific IgE in plasma

These experiments were carried out in microfuge tubes that had been blocked with protein free blocking buffer T-20 solution (Pierce). Briefly, different concentration (ranging from 0 to 400 μg) of the functionalized particles were incubated with the appropriate volume of plasma from an allergic individual (Plasma Lab International, WA), for 2 hrs to facilitate the capture of peanut specific IgE. Excess substrate was washed with phosphate buffered saline and tween-20 (PBST) and the particles along with the captured IgEgs were isolated with a permanent magnet. The particles were then incubated with an anti human-IgE that was conjugated to alkaline phosphatase (Sigma-Aldrich, MO). This incubation was carried out for 1 hr. The excess anti human-IgE was washed away with three PBST washes. Alkaline phosphate substrate solution, 1-step pNPP (paranitrophenolphosphate) (Thermo Fisher Scientific, IL), was added and the tubes were incubated in the dark. After 15 min of incubation the NPs were pulled aside with a permanent magnet and 100 μl of the solution was pipetted into a 96-well plate (Thermo Fisher Scientific, IL). For each sample, in every experiment carried out, appropriate controls were run. The absorbance of the solution was read at 405 nm in a BIO-tek microtiter plate reader (BIO-tek powerwave XS, VT). Fig. 1 shows that 25 μg of functionalized NPs was sufficient to detect the presence of peanut-specific IgE in plasma. Additionally, a dose-dependent increase in absorbance as the amount of functionalized NPs increased from 0 to 200 μg and then stabilized at 400 μg.

Optimizing the amount of peanut protein needed to effectively capture peanut-specific IgE in plasma

Particles corresponding with different amounts of peanut protein were incubated with a fixed amount of plasma from an allergic individual as described above and absorbance obtained was plotted relative to the amount of peanut protein coated on the particles. Results as depicted in Fig. 2 demonstrated that 6 μg of peanut protein coated onto the NPs was sufficient to detect peanut-specific IgE in the given volume of plasma. Additionally, with increasing
amount of peanut protein there was an increase in the ability to detect peanut-specific IgE. However, this increase leveled off at 50.8 μg and higher concentrations, suggesting saturation in the ability of the functionalized NPs to detect peanut-specific IgE present in the given volume of plasma.

Optimizing of the volume of plasma needed for the assay to detect peanut-specific IgE

A fixed amount (100 μg) of functionalized NPs was incubated with different volumes of plasma from an allergic individual (Plasma Lab International, WA). These experiments were done according to the protocol described above and the absorbance obtained was plotted for each volume of plasma. The data indicated a dose-dependent increase in absorbance as the volume of plasma increased from 0 to 200 μl (Fig. 3A). Moreover, 50 μl of plasma was sufficient to detect significant differences between the particles incubated in the absence or presence of plasma by 450%. For experiments henceforth, 50 μl of plasma was used to further optimize the assay. The amount of peanut-specific IgE present in the allergic individuals plasma was determined by an immuno CAP assay and found to be approximately 61.5 kU/L. Using this as a reference value, the approximate amount of peanut-specific IgE present in plasma was calculated for the different volumes of plasma incubated with 100 μg of functionalized particles. These data, depicted in Fig. 3B, clearly indicated that the assay had the ability to detect peanut-specific IgE as low as 0.385 × 10⁻³ kU/L by 100% as compared to the negative control.

Testing the specificity of the functionalized nanoparticles to detect peanut-specific IgE in plasma of an allergic individual

100 μg of functionalized particles were incubated either in the absence of presence of 50 μl of plasma from the allergic individual. This experiment was repeated in triplicates and the average absorbance obtained are shown in Fig. 4 along with its standard deviation. As can be seen, the absorbance in presence of allergic plasma was 600% times more than the absorbance in the control composed of buffer solution without allergic plasma. These data demonstrated that the absorbance obtained from the samples incubated with allergic plasma was not due to the non-specific binding on anti-human IgE to the functionalized particles and the signal is extremely specific for peanut IgE present in plasma.
Advanced tremendously through the years, there are major routine diagnostic tools, especially in a clinical setting. Alleotraumatic to the patient and poses many safety issues (Perry 2007; Fernandez-Rivas Sun 2004). These concerns make it less suitable to use as a traditional ELISA.

DISCUSSION

The gold standard for the diagnosis of food allergy is the double-blind placebo-controlled food challenge (DBPCFC) (Bock et al. 1988; Brounjeel-Koemen et al. 1995; Pineda 2007; Fernandez-Rivas et al. 2008) accompanied with a detailed history and physical examination. However, DBPCFC is an extremely laborious procedure which can be time-consuming. It takes days or even weeks to obtain results from these tests and amounts to precious time lost for crucial intervention for the patient. These tests are sensitive and correlate well with the skin prick test, but involves the use of radio-labelled Abs which needs the highly skilled professional to perform the test. Additionally, the facility where such test can be conducted must be equipped appropriate facilities to handle radioactive and need specialized equipment, like the gamma counter (RIA), to measure radioactivity. The need for trained personnel and specialized training, equipment and facility, increases the cost of this technique. In contrast to the RAST assay, the magnetic assay presented in this study is much more simple and does not call for the tagging of IgE with radiolabeled isotopes. This has two major advantages: firstly at a commercial level it is more cost effective since there is no need for specialized equipment and facilities. Secondly, it keeps the Abs and allergens in its most natural forms, reducing the possibility denaturing the protein and altering its biological activity. The synthesized NPs are functionalized to have an appropriate charge, opposite to the charge of the allergen that was coated onto the particles. Opposite charge on the particle and allergen, caused a strong binding of the two. This was also confirmed by three independent methods including the change in the zeta potential of the particles before and after the allergen was coated on the NPs, the change in protein concentration of the extract before and after the particles were coated and the change in protein concentration of the particles itself.

ELISA overcame the need for radio-labeled antibodies, but must have the allergen or antigen immobilized to a solid surface. Most commonly the ELISAs are performed in a 96 well plate, where the antigen is coated onto the plate and then incubated with the patients serum to detect the presence of specific IgEs (Engvall and Perlmann 1972; Messingham et al. 2009). The detection part of the assay contains an enzyme that is either directly linked to the primary Ab or introduced through a secondary Ab that recognized the primary antibody. One major drawback of the ELISA is that it needs multiple primary Abs that cannot be re-used; this made the assay expensive and time consuming. The most commonly used ELISA is the sandwich assay. In such an ELISA, the analyte to be measured is captured between two Abs, the capture Ab and the detection Ab. Additionally, there is a need for a secondary Ab conjugated to a substrate that can bind to the detection Ab. The process of generating not one, not two but three different Abs for each food allergen to be tested tremendously increases the cost of the assay. Furthermore there is a large amount of waste generated and with this the possibility of stericle distortion and non-specific reactions or cross-reactions of the Abs are also greatly increased. It is important to note that while generating an immunodetection assay that involves the use of Abs, the affinity and specificity of an Ab is the backbone of the assay and the Ab has to be thoroughly examined for such reactivities. Moreover, using more than one Ab may make the assay more prone to false positive results and decrease the sensitivity of the assay. The magnetic assay cur-
cumvented the need for using two or more Abs and successfully detected the presence of peanut specific IgE in plasma using only one secondary Ab that had been conjugated to alkaline phosphatase. Furthermore, the results (Fig. 4) have demonstrated that the functionalized NPs are highly specific in detecting the presence of peanut specific IgE in allergenic plasma as compared to the absence of allergic plasma.

Additionally, as compared to the ELISA, where the assay is coated to the bottom of the well making the assay two dimensional, in the magnetic assay the coated NPs are three dimensional spheres. This naturally increases the sensitivity of the assay as the functionalized particles can closely interact with the incubated substrate/sample and capture the specific IgE. As can be seen in Fig. 5, the magnetic assay was much more sensitive as compared to the traditional ELISA.

During the 1990s, in response to the drawbacks of the RAST tests, came the second-generation of IgE Ab assays which included the Pharmacia CAP system (Ewan and RASt tests, came the second-generation of IgE Ab assays like the CAP system took about 5 hrs for the assay to give results. Initially the RAST tests took a couple of days to receive their diagnosis. The second generation assays like the CAP system took about 5 hrs for the assay to be completed. With the magnetic assay, the current results were obtained in less than 1 hr (with a pre-labeled magnetic NPs). Further studies are still underway to optimize conditions for the total assay to be completed in a few minutes.

Thus, as compared to currently available assays to determine the presence of food specific IgE in plasma, the magnetic assay offers a more simple and easy assay to detect the presence of these IgEs. Moreover, as magnetic assay is developed using a nanotechnology platform it is much more sensitive as compared to a traditional ELISA.

A magnetic assay with ability to detect for specific IgE in plasma have been developed. The assay makes use of a single antibody to detected the presence of specific IgE in a 50 μg of plasma using 100 μg of functionalized NPs. The new assay offers a rapid, sensitive, specific and relatively inexpensive root to detect for specific allergy markers.

REFERENCES

Bock SA, Munoz-Furlong A, Sampson HA (2001) Fatalities due to anaphylactic reactions to foods. Journal of Allergy and Clinical Immunology 107, 191-193

Ewan PO, Coote D (1990) Evaluation of a capsulated hydrophilic carrier polymer (the ImmunocAP) for measurement of specific IgE antibodies. Allergy 45, 22-29

NIH (2003) National Institute of Allergy and Infectious Disease, Airborne Allergens, NIH publication No. 03-7045

Pineda P (2007) Biological standardization of hazeinun extract in selected patients with DBPCFC. Journal of Allergy and Clinical Immunology 119, S196

allergy in the United States determined by a random telephone survey. *Journal of Allergy and Clinical Immunology* 114, 159-165

Zarkadas M, Scott FW, Salminen J, Pong H (1999) Common allergenic foods and their labeling in Canada – A review. *Canadian Journal of Allergy and Clinical Immunology* 4, 118-141