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ABSTRACT 
Integrated nutrient management (INM) has been a popular area of investigation in crop production research, with varied concepts and 
applications. Better responsiveness of soil microbial biomass over a chemically available nutrient pool to nutrient input has led to an 
increased interest in measuring the quantum of nutrients held microbially. This has advocated the possibility of using changes in microbial 
biomass and soil enzymes (phosphatase, catalase, and urease) as potential diagnostic tools to measure soil fertility. The differential 
efficacy of two conventional methods of fertilization (soil versus foliar application) has undoubtedly helped in improving the yield and 
quality of both, although of late, continuous fertilization has failed to maintain the same yield expectancy on a long-term basis due to the 
depletion of soil carbon stock. Consequently, the occurrence of multiple nutrient deficiencies raised serious concerns about sustained crop 
production, irrespective of soil type. The gradual shift from purely inorganic to organic fertilization started to gain wide-scale use for 
enhanced biogeochemical nutrient cycling. These later formed the basis for INM involving three basic components viz., microbial 
inoculants (biofertilizers), inorganic and organic fertilizers. The approach involving multiple microbial inoculation along with enrichment 
of organic manures or crop residues by loading with inorganic fertilizers, the substrate, is increasingly been shown to modulate nutrient 
dynamics within the rhizosphere. The present review highlights the research work on various issues of INM-based production 
management, targeting several popular annual and perennial crops. 
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INTRODUCTION 
 
Demographic pressure of a burgeoning population has kept 
researchers on their toes to find possible alternatives of 
raising productivity per unit land area and time. On the 

other hand, achieving a balance between crop nutrient 
requirements and nutrient reserves in the soil is essential for 
maintaining high yield and soil fertility, besides safeguar-
ding environmental degradation. Such an objective becomes 
further difficult to accomplish due to shrinking per capita 
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land availability, more so in the developing world. Globally, 
soil nutrient deficits are estimated at an average of 18.7 N, 
5.1 P, and 38.8 (kg ha-1 year-1) with an annual total nutrient 
deficit of 5.5 Tg (1 Tg = 1012 g) N, 2.3 Tg P and 12.2 Tg K 
coupled with a total potential global production loss of 1136 
Tg year-1 considering four major (rice, wheat, maize, and 
barley) cereal crops (Tan et al. 2005). 

Integrated nutrient management (INM) is an approach 
that seeks to both increase quality of production and protect 
the environment for posterity. It relies on nutrient applica-
tion and conservation, new technologies to increase nutrient 
availability to plants, and the dissemination of knowledge 
between farmers and researchers (Palm et al. 2001). In the 
past, nutrient management had been driven by the need for 
maximizing production. But now, nutrient management that 
is sustainable involves maximizing production, preventing 
on-site soil degradation, and minimizing off-site involve-
ment of applied nutrients (Tagaliavini and Marangoni 2002). 

There are three concepts of nutrient management often 
used in relation to each other (Raychaudhuri 1977; Roy and 
Ange 1991): i) IPNS (integrated plant nutrient supply sys-
tem) is a concept which aims to maintain or adjust supply to 
an optimum level for sustaining desired crop productivity 
by optimizing benefit from all possible sources of plant nut-
rients in an integrated manner, ii) IPNS is a method to 
achieve the objective of ‘IPNS’. In the latter is embedded a 
philosophy with social, economic, and technological com-
ponents, while the former provides a strategy to achieve the 
said objective, and iii) INM, the actual technical and mana-
gerial component of achieving the objective of IPNS under 
a farm situation. It takes into account all the factors of soil 
and crop management including the management of all 
other inputs such as water, agrochemicals, etc. besides nut-
rients. In the light of above three concepts, in order to ad-
dress present or future nutritional problems, only two strate-
gies, a strategic or diagnostic approach is chosen. In strate-
gic INM, potential problems on farms are characterized that 
fit into particular category, and recommendations are then 
accordingly made for each category. In the diagnostic ap-
proach, the problem of each soil type is diagnosed sepa-
rately, and the remedies are then tailored as per soil type 
(Srivastava and Singh 2006; Srivastava et al. 2008). 

According to Angers (1997), a simplified mode of INM 
uses five major concepts: i) immobilized capital of plant 
nutrients, ii) working capital of plant nutrients, iii) annual 
investments in plant nutrients, iv) plant nutrient losses, and 
v) plant nutrient outputs. The most important hurdle is how 
to integrate the various components of the INM decision. 

External agricultural inputs such as mineral fertilizers, 
organic amendments, microbial inoculants, and pesticides 
are applied with the ultimate goal of maximizing producti-
vity and economic returns, while side effects on soil orga-
nisms are often neglected (Katyal 2003). Mineral fertilizers 
have limited direct effects, but their application can enhance 
soil biological activity via increases in system productivity, 
crop residue return, and soil organic matter (Hartz et al. 
2000; Sankar et al. 2009). Another important indirect effect 
especially of nitrogen (N) fertilization is soil acidification, 
with considerable negative effects on soil organisms 
(Chhonkar 2003). The outcome of a long-term fertilizer 
experiment in rice established that a balanced application of 
N, phosphorus (P) and potassium (K) promoted microbial 
biomass through improved diversity of the microbial com-
munity (Zhang and Wang 2005). 

Inoculant application research, on the other hand, is 
increasing with a focus on co-inoculation with several 
strains or mixed cultures enabling combined niche exploita-
tion, cross feeding, complementary effects, and enhance-
ment of one organism’s colonization ability when co-inocu-
lated with a rhizosphere competent strain (Goddard et al. 
2001). The outcome of studies like population diversity 
analysis of fluorescent Pseudomonas within the plant’s 
rhizosphere, which helped to discriminate flax (Linum usti-
tatissinum L.) and tomato (Lycoperscion esculentum Mill.) 
isolates (Lemanceau et al. 1995), could be befittingly ex-

ploited to synthesize a rhizo-competent dynamic substrate 
suiting diverse requirements of a specific crop. Later studies 
(Johnson 2009; Siasou et al. 2009) established that AM 
inoculation in wheat increased the biocontrol efficiency of 
Pseudomonas fluorescens on account of increased synthesis 
of 2,4-diacetylphloroglucinol by the latter in the presence of 
soluble C in the soil. In another study, Rengel et al. (1996) 
observed that the total number of bacterial colony forming 
units were greater in the rhizosphere of Zn-efficient geno-
types of wheat under Zn-deficiency and in Mn-efficient 
genotypes under conditions of Mn-deficiency. In contrast, a 
Zn-deficiency treatment acted synergistically with the num-
ber of fluorescent Pseudomonas in the rhizosphere. 

Organic amendments such as manure, compost bio-
solids, and humic substances provide a direct source of C 
for soil organisms as well as an indirect source via in-
creased plant growth and plant residue return (Bunemann et 
al. 2006). Organic and integrated production systems offer 
alternatives to conventional production systems (Curl et al. 
2002; Peck et al. 2005). However, integrated production 
methods have yet to attain the same widespread farmers’ 
acceptance as organic production methods. In this review, 
efforts have been made to review various components of 
INM in relation to biological soil fertility management, 
besides quality production of crops. 
 
SOIL C AND NUTRIENT DYNAMICS 
 
Restoring soil fertility with inorganic fertilizers and main-
taining farm productivity with ever increasing inputs have 
been successful, but continued to result in a decline in soil 
organic C, a common feature especially under tropical or 
subtropical conditions (Watson et al. 2002). Organic C (car-
bon) in soil plays a key role in the C cycle, and has a poten-
tially large impact on the greenhouse effect (Lal and Kimble 
2000). The world soil total C reserve is estimated as 1500 
pg organic C pool and 750 pg as inorganic C pool to a 1-m 
depth; the present rate of annual enrichment of atmospheric 
concentration of CO2 is 3.3 pg (Kimble et al. 2002). With 
the knowledge that such an increase in atmospheric CO2 is 
affecting the global climate, and eventually the loss of or-
ganic C from farm lands in warm, humid, tropical countries 
at 40° either side of equator, a paradigm shift is needed in 
not only which improved farm productivity and monetary 
profit are looked at, but also the net profit, including the 
environmental benefit of sustainable farming system finds a 
place of due consideration. Organic C retained in soils is a 
function of soil N content (r = 0.98, p = 0.001) and the soil 
carbohydrate concentration (r = 0.96, p = 0.001), according 
to Dean et al. (2007). The occurrence of nutrient constraints 
explains the low C conversion efficiencies (Angers 1997). 
 
Soil C as a quality index 
 
Soil tests have long been used as a diagnostic tool to deter-
mine the available nutrients in soil (Srivastava and Singh 
2001; Esilaba et al. 2005). But, quite often, they are chal-
lenged in terms of: i) soil nutrients measured by a specific 
extraction method that fails to relate to plant availability of 
nutrients; ii) the critical levels of soil-available nutrients 
thus determined are affected by other soil properties such as 
clay content, mineral composition, and biological charac-
teristics; and iii) critical levels of soil-available nutrients 
vary greatly from year to year and between different crops 
(Srivastava and Singh 2001, 2002). 

Soil organic matter (SOM), nutrients, and biological ac-
tivity are important for productivity through soil structural, 
and fertility improvement (Palm et al. 2001). In recent years, 
the application of organic amendments with high SOM con-
tent, such as fresh and composted urban wastes, to fertility-
depleted soils has become a common environmental prac-
tice for maintaining SOM, reclaiming degraded soil, and 
supplying plant nutrients (García et al. 1997; Ros et al. 
2003). However, the influence of SOM on soil properties 
depends on the amount, type, and size of added organic 
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materials (Nelson and Oades 1988). The quality of soil is 
rather dynamic, and can affect sustainability in production. 
A minimum data set was proposed to measure soil quality 
and changes due to current soil management practices by a 
selection of key indicators such as soil texture, OM, pH, 
nutrient status, bulk density, electrical conductivity, and 
rooting depth (Mishra 2005). These properties were later 
expanded with a few biological aspects of soil quality, 
namely microbial biomass C and N, and soil respiration 
(Doran and Parkin 1994), because soil quality is strongly 
influenced by microbially-mediated processes (nutrient cyc-
ling, nutrient capacity, aggregate stability), whereby the key 
is to identify those components that rapidly respond to 
changes in soil quality (Scholes et al. 1994). Indicators, 
however, will vary according to the site geography and 
sophistication level of measurements. 

Within this context, two terms, indicator and threshold, 
are frequently referred to (Symth and Dumanski 1995). 
Indicators are the attributes that measure or reflect the 
environmental status or conditions of sustainability, where-
as threshold is the level of indicator beyond which a system 
undergoes significant change, e.g., points at which stimuli 
provoke a significant response. In terms of sustainable land 
management, the threshold value may be considered as the 
level of a specific indicator beyond which the particular 
system of land management is no longer sustainable (Syers 
and Craswell 1995). According to these authors, the under-
standing of likely thresholds is not well developed, except 
for a limited number of environmental indicators such as 
soil acidity and nutrient status for P and K for a given soil 
type or some biophysical indicators such as bulk density. It 
would be difficult for a single threshold value to represent 
the boundary between sustainable and unsustainable. Con-
sequently, a range of threshold values and temporal trends 
for particular indicators is required. 

Total C, including both SOC and SIC pools in the active 
soil layer of 1 m depth, contributes about 2227 pg. The soil 
C pool of 2227 pg is 3.0 times the atmospheric pool esti-
mated as 760 pg and 3.6 times the biotic pool estimated at 
620 pg. Such a large and active C pool cannot be ignored 
(Table 1). Of late, the triggering effect of greenhouse gases 
(global warming) on depletion of the soil C stock has been 
considered pivotal for declining soil health that strongly 
warranted the restoration of menacing depletion in total C 
stock of soils. 

The quasi-equilibrium values (stage after accumulation 
of dry matter and loss of OC over time) of SOC in the shrink-
swell soils decreased with intensive cropping. Addition 
external sources of farmyard manure or other green manure 
may raise the quasi equilibrium value of SOC from 0.44-

0.51 to 0.70-0.80% in soils of a horticulture-based farming 
system (Naitam and Bhattacharya 2004). Out of different 
soil orders, Vertisols (7.90 kg C m-2) showed the highest 
SOC storage (Dutta et al. 2000) followed by Inceptisols 
(6.60 kg C m-2), Alfisol (5.26 kg C m-2), and Entisols (3.31 
kg C m-2) up to 1 m in soil depth. 

The voluminous rhizosphere size of annual as well as 
perennial crops could be a perspective to maintain the soil 
nutrient supply system, since roots contribute to a signifi-
cant amount of C in soil more than the above-ground resi-
due (Bohm et al. 2002). C-sequestration implies removing 
atmospheric C and storing it in natural reservoirs for exten-
ded periods. Strategies of C-sequestration are grouped 
under two categories: biotic and abiotic. The underlying 
principle for the biotic option is converting atmospheric 
CO2 into biomass and transforming a fraction in the SOC 
pool through microbial reactions (Goh 2004). Three biotic 
processes exist, two of which involve compression of CO2 
emitted by industrial complexes and injection into geologic 
strata and the deep ocean. The third is a soil process that 
involves dissolution of atmospheric CO2 leading to the 
formation of carbonates following reaction with Ca2+ or 
Mg2+ cations brought in from outside the ecosystem (Blood-
worth and Uri 2002). In this regard, there is a paucity of 
information on changes in SOC and microbial abundance 
that accrue from different management practices globally. 

To differentiate the changes under different farming 
management systems, the most important factor is the mic-
robial communities and activities inputting the amount of C 
into the system because C is always a limiting factor (Guna-
pala and Scow 1998). Parameters such as microbial biomass 
carbon (MBC), microbial respiration rate (MRR), and en-
zyme activity (EA) all could differentiate between a man-
ured system and a non-manured system, suggesting their 
sensitivity to compost input. But, phosphatase and urease 
activity had significant differences between a chemical fer-
tilizer farming system and a control system (p < 0.05), sug-
gesting their sensitivity to chemical fertilizer input. The bio-
logical index responded differently to diverse amounts of 
compost and MBC, and phosphatase activity had significant 
differences amongst different levels of compost treatment 
(Hu and Cao 2007). Therefore, it would be difficult to 
establish a single biological or chemical criterion that could 
adequately reflect soil quality because of the multitude of 
microbiological components and biochemical pathways 
(Schloter et al. 2003). Parameters such as MBC, MRR, and 
EA are important bioindicators of soil fertility assessment 
(Spedding et al. 2004). 
 
Soil enzymes activity and fertility dynamics 
 
Studies on soil enzymes became attractive since certain in-
formation pointed to the connection of EA with soil fertility. 
A great amount of research has been conducted on the 
systems of soil enzymes, on the determination, generation, 
state, and function of EA in soil. Measurement of the soil 
EA can be effectively utilized as an indicator of the re-
establishment of connections between the biota and restora-
tion of function in degraded soils, since enzymes respond 
immediately to changes in soil fertility status (García et al. 
1994; Aon and Colaneri 2001). Many researchers have stu-
died the effect of fertilization on soil fertility by investi-
gating soil EA (Jia et al. 2001; Liu 2004a). Various studies 
(Bandick and Dick 1999; Masciandrao et al. 2004; Tejada et 
al. 2006) suggested that enzymes may react to a change in 
soil management more quickly than other variables and 
therefore, may be useful as early indicator of biological 
changes since soil enzymes were more positively correlated 
with yield than soil fertility. 

Different fertilizers may affect soil EA and fertility 
dynamics. Soil enzymes are derived primarily from soil 
fungi, bacteria, plant roots, microbial cells, plant, and ani-
mal residues (Cao et al. 2003) and play a significant role in 
mediating biochemical transformations involving organic 
residue decomposition and nutrient cycling in soil (McLat-

Table 1 Carbon stock (Pg = 1015 g)* of tropical region soils vis-à-vis 
global stock. 

Soil depth (cm) Carbon source 
0-30 0-100 0-150 

Tropical region    
* Soil organic carbon 207 395 628 
* Soil inorganic carbon 76 211 - 
* Total carbon 283 606 - 

World    
* Soil organic carbon 704 1505 2416 
* Soil inorganic carbon 234 722 - 
* Total carbon 938 2227 - 

India    
* Soil organic carbon 9.77 25.04 29.97 
* Soil inorganic carbon 4.06 22.37 34.03 
* Total carbon 13.83 47.41 64.00 
Sources: Batjes 1996 ; Bhattacharya et al. 2000. 
* Total carbon stock is computed by first calculation of organic carbon by 
multiplying organic carbon content (gg-1), bulk density (Mg-1), and thickness of 
horizon (cm) for individual soil profile with different thickness varying from 0-
30, 0-50,0-100, and 0-150 cm. In the second step, the total organic carbon content 
per unit area is multiplied by the area (ha) of the soil unit identified in an area. 
Total soil organic carbon content is calculated in terms of Pg (1 Pg = 1015 g) and 
soil inorganic carbon using 12% carbon value in CaCO3. 
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chey and Reddy 1998). Yang et al. (2005) indicated that soil 
EA was lower in increasing soil depth, e.g., soil enzymatic 
activity in the 0-10 cm layer was significantly higher than 
that in the 10-20 cm layer. Martens et al. (1992) earlier in a 
field experiment indicated that phosphatase activity in-
creased when the compost manure was added at rates be-
tween 90 and 270 Mg ha-1. Soil EA, measured as phospha-
tase, catalase, invertase, and urease activities, decreased in 
the early growth stages of cucumber (Cucumis sativas L.), 
but increased at later stages, when plants were supplied 
with partially decomposed horse manure. Chemical N ferti-
lizer inhibited soil EA, but P and K fertilizers enhanced it. 
Activity of different soil enzymes viz., urease and phospha-
tase, was positively correlated with soil NH4

+-N and availa-
ble P concentration, but negatively correlated with leaf N 
and P concentration. Cucumber yield was also positively 
correlated with the soil EA (Yang et al. 2008). These studies 
demonstrated that rhizosphere enzymes can act as an index 
to detect changes in the microbial functioning in soil treated 
with microbial inoculants (Aseri et al. 2005). 

Zhang and Wang (2006) demonstrated that soil enzyme 
activities had significant responses to irrigation scheduling 
on the basis MAD in soil during the period of subsurface 
irrigation. The neutral phosphatase activity and catalase ac-
tivity were found to increase with more frequent irrigation 
at MAD of -10 and -16 kPa in tomato. The results further 
suggested that a higher level of water content favoured an 
increase in activity of these two enzymes. In contrast, ure-
ase activity decreased under irrigation, with less effect for 
MAD of -40 and -63 kPa. This implied that relatively wet 
soil conditions were conducive to retention of urea-N, but 
relatively dry soil conditions could result in increasing loss 
of urea-N. It was further observed that soil EA could be an 
alternative natural bio-sensor for the effect of irrigation on 
soil biochemical reactions, and could help optimize irriga-
tion management of tomato for improved production (Zhang 
and Wang 2006), which can be expanded to other vegeta-
bles under greenhouse conditions. 

Studies by Hu and Cao (2007) suggested that soil en-
zymes viz., alkaline phosphatase and urease activity in dif-
ferent soil management practices were minimum in the con-
trol followed by chemical fertilizer treatment and compost, 
suggesting that these enzymes could reflect the condition of 
soil fertility as bioindicators of changes in soil quality. 
 
BIOFERTILIZATION AND INM 
 
Renewed and intensified efforts are being made to grow dif-
ferent crops using various microbial inoculations, ever since 
depleting soil fertility attained serious dimensions, more so, 
with increased cropping intensity coupled with heavy use of 
chemical fertilizers (Kohli et al. 1998; Srivastava and Singh 
1999) triggering the menace of nutrient mining (NM) de-
fined as the quantum of nutrient added – quantum of nut-
rients removed (if obtained on negative side, it denotes the 
NM). The concept of biofertilizers using microorganisms 
began in 1834 when Boussingault, the French agricultural 
chemist, put forward a classical idea of biological N fixa-
tion, later established by Hellriegel and Wilfarth in 1886. 
Microbial fertilizers are biofertilizers or microbial inocu-
lants defined as preparations containing live or latent cells 
of efficient strains of N-fixing, phosphate-solubilising or 
cellulotytic microorganisms to augment the nutrient availa-
bility in an assimilable form (Srivastava and Singh 2003a). 
Use of biofertilizers is often considered one of the most 
sustainable agricultural practices and if used appropriately, 
it promises to offer rich dividends on a long-term basis. 
Opinions vary greatly about the use of bifertilizers as a part 
of sustainable agriculture. 

Benefits from microbial biofertilizers (Motsara et al. 
1995; Bhattacharya et al. 1999) focus on the fertiliser sup-
plement in mitigating the crop nutrient requirement, enrich-
ing soil with the addition of 25-40 kg N ha-1, in some cases 
more than 200 kg N ha-1 under optimum conditions, and 
solubilising/mobilising 30-50 kg P2O5 ha-1; liberating 

growth-promoting substances and vitamins to maintain soil 
tilth and fertility; suppressing the incidence of pathogens, 
thereby, leading to increased growth and yield. 

Great claims are made for microbial soil inoculants as 
natural product. A small quantity of inoculant or other mate-
rial brings about an enormous increase in numbers and acti-
vities of soil organisms, releases inorganic plant nutrients 
from soil minerals, improves the structure of both the sub-
soil and top soil, increases water penetration into the soil, 
improves the quality of crops growing on the soil, makes 
the plants resistant to various plant pests and disease orga-
nisms, restores the proper nutritional balance in the soil, 
and/or exerts many other similar effects on the soil. With 
respect to the microbial inoculants, it should be pointed out 
that the soil is teeming with countless millions of microbes. 
The types present are there because they are best able to 
cope with the environmental conditions. When microbial 
inoculants are applied to the soil, they rapidly decrease in 
numbers. They either die or are destroyed by the existing 
population. If some do survive, it is very probable that the 
same forms are already present. To establish a new type, the 
soil environment has to be made favourable by changing the 
acidity or alkalinity of the soil, applying essential nutrients 
in required amounts, or by applying a favorable source of 
organic food material (Hazarika and Ansari 2007). 

Potdukhe and Somani (1997) suggested that sterilized 
degraded pulverized agricultural wastes may be used im-
mediately after degradation for bioinoculants. Despite con-
tributing significantly towards bioavailability of nutrients 
directly by mobilizing the insoluble fractions, the microor-
ganisms can also act indirectly in producing quality com-
post at the shortest possible time from organic residues. One 
possible way of increasing nutrient content of the final pro-
duct is a microbial enrichment technique with cellulose 
decomposers, N2 fixers, and P solubilizers. The beneficial 
effects of such organisms on dairy farm wastes, crop resi-
dues, and city wastes (Gaur 1987) have been reported. Such 
procedures are collectively known as compost enrichment 
using bioinoculants (Manna et al. 1997; Marschner et al. 
2004; Selvakumar et al. 2008). 

Nutrient enrichment of fresh cowdung can be accom-
plished by adding fresh cowdung and farm residues (soy-
bean, wheat, chickpea, and mustard straw) in a 1: 1 ratio 
with an initial C: N ratio maintained at 31: 48 (to stimulate 
microbial activity at this range) by adding urea-N. Moisture 
initially adjusted after five days, bioinoculum viz., cellulose 
decomposer (Paecilomyces fusisporus, Aspergillus awamo-
rie 500 mg mycelium kg-1 material), P-solubilizing bacteria 
(Bacillus polymyxa and Pseduomonas striata for 107 viable 
cells ml-1 at a rate of 50 ml kg-1 material on a dry weight 
basis), and free-living N2 fixer (Azotobacter chroococcum) 
were added and allowed to decompose for 120 days. The 
cowdung which initially had total OC and N of 35.1 and 
0.47%, respectively, improved to 50.0 and 1.12% with soy-
bean followed by 49.7 and 0.91% with chickpea, 48.9 and 
0.52% with wheat, and 46.8 and 0.56% with mustard straw 
(Manna et al. 2000). 
 
Biological significance of SMB 
 
SMB serves as: i) a labile source or an immediate sink of C, 
N, P, and S (Dalal 1998) and ii) a driving force of nutrient 
transformation in soil (Gunapala and Scow 1998). A signi-
ficant relationship between microbial biomass and crop 
yield was reported by Srivastava et al. (2002). Therefore, 
microbial-C, -N, and -P may have great potential as diag-
nostic indices of soil quality, especially nutrient availability 
changes. The annual fluxes of N and P through microbial 
biomass turnover are comparable with the amounts of N 
and P removed by harvested crops annually (Srivastava et 
al. 2006), and therefore, may provide an estimate of dyna-
mic available pool of nutrients like N and P in soils. More 
studies are needed to understand the significance of micro-
bial biomass turnover in the supply of N, P, K, and other 
nutrients. 
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SMB is a living component of SOM, and it comprises 
1-5% of SOM (Zhang and Zhang 2003; Spedding et al. 
2004). The size and activity of the microbial biomass is 
regulated by the SOM quantity, and quality and has been 
related to climatic conditions (Insam 1990), soil moisture 
content (Villar et al. 2004), soil temperature (Waldrop and 
Firestone 2004), soil pH (Roper and Gupta 1995), soil 
structure and texture (Amato and Ladd 1992), cropping sys-
tem (Moore et al. 2000), and to soil and crop management 
practices (Nsabimana et al. 2004; Gil-Stores et al. 2005). 
SMB contributes immensely to the maintenance of soil fer-
tility by controlling major key functions in soil (Bohme et 
al. 2005) and nearly all mineral nutrient transformations in 
soil are related to plant nutrition and soil fertility (Balota et 
al. 2004; Zhang et al. 2004). 

The microbial biomass is part of the SOM that plays a 
major role in any ecosystem development and functioning. 
In cultivated orchard systems, potential productivity is di-
rectly related to the SOM concentration and turnover (Chen 
et al. 2002). The living SOM pool, or the SMB, is con-
sidered to be a part of the active SOM. The quality and 
quantity of the Om of soils normally changes at slow rates 
which are difficult to detect in the short term because of the 
large pool-size of Om and the spatial variability of soils. 
However, SMB is an active fraction of the Om that res-
ponds more rapidly than SOM to assess long-term effects of 
changes in soil resulting from management practices 
(Schloter et al. 2003; Chen et al. 2004). Accordingly, SMB 
either alone or as ratio between SMB and SOM has been 
proposed as an indicator of the state and changes of total 
SOM (Pankhurst et al. 1995; Dick 1997). Spatial variability 
of RMCS was influenced by the amount and composition of 
root exudates, e.g., RMCS of root tips of alfalfa plants was 
different from those in the mature root zone, and as plants 
mature, different cluster root age classes (young, mature, 
old) had distinct rhizosphere communities (Marchner et al. 
2004). Hence changes in microbial biomass are considered 
as an early indication for changes in SOM. 

SMB (Cmic/Corg) as microbial – C content per unit soil C  
serves as: i) a labile source or an immediate sink of C, N, P, 
and S (Chen et al. 1997; Dalal 1998) and ii) a driving force 
of nutrient transformation in soils (He et al. 1997). The Cmic, 
Nmic, and Pmic are often reported to be interrelated and 
highly correlated with key soil fertility indices including 
OM, soil availability indexes of N and P (McCarty and 
Meisinger 1997; Devi and Yadava 2006). Therefore, Cmic, 
Nmic, and Pmic may be great potential diagnostic indices of 
soil fertility, especially nutrient availability changes (Moore 
et al. 2000). In addition, Cmic, Nmic, and Pmic are sensitive 
enough to measure early changes due to different land use, 
management, and restoration of fertility-depleted soils 
(Ghoshal and Singh 1995; Aslam et al. 1999). The annual 
fluxes of N and P through microbial biomass turnover have 
been reported to be comparable with the amounts of N and 
P removed by harvested crops per year (Tripathi and Singh 
2009), and therefore, may provide an estimate of dynamic 
available nutrient pools in soils. Changes in Cmic, Pmic and 
the turnover period of SMB C are governed by soil pH 
(Chen et al. 2002) which further suggests the shorter turn-
over period (just 139 days) on sandy red soil responsible for 
occurrence of frequent nutritional disorders. 

Different genera of bacteria and fungi were isolated by 
Yadav et al. (1989) from soils treated with poultry manure 
(PM) and sewage sludge. Pseudomonas dominated in Cal-
cifluvent soil type and Flavobacterium in Haplustalfs. 
Escherichia was only detected in sewage sludge-treated soil. 
The other microbial species viz., Aspergillus candidus, A. 
terreus, Alterneria alternata, Curvularia spp., C. lunata, 
Fusarium oxysporum, Mucor plumbeus, Penicillium digita-
tum, P. funiculosa, and Trichoderma spp. were also identi-
fied irrespective of treatment. 
 
 
 
 

Abundance of microbial diversity 
 
The size of the soil microbial pool is often expressed in 
terms of microbial biomass (Powlson et al. 1987; Powlson 
1994). Vigour and yield of orange crop are affected by soil 
types due to variation in microbial population (Zou et al. 
1994), cultivar type (Singh et al. 2002), and soil fertility 
(Yao et al. 2000). Rhizosphere soils of 19 fruit plants from a 
horticultural farm of Bangladesh Agricultural Research 
(BARI), Joydebpur, Gazipur were assessed for AM spore 
population and determining colonization in their roots. The 
spore numbers (100 g-1 soil) ranged from 48 in lemon (Cit-
rus limon) to 1,050 in custard apple (Annona reticulata) in 
2004, which later increased from 41 in pummelo (Citrus 
grandis) to 962 in gooseberry (Phyllanthus embica) in 2005, 
and from 44 in pummelo (Citrus grandis) to 575 in wax 
apple (Syzygium samarangense) in 2006 (Khanam 2007). 
Other studies reported that using a trap culture technique 26 
species (Gai et al. 2006) and as many as 60 species (Tchabi 
et al. 2008; Brundrett 2009) of AM were isolated belonging 
to six genera, Glomus, Acaulospora, Paraglomus, Archae-
spora, Pacispora, and Scutellospora. 

Despite soil being low or high in root colonizing popu-
lation of AM propagules, a definite relationship exists be-
tween AM population and soil properties. The population of 
AM propugules in soil shows a positive correlation with 
soil properties such as N, organic C, available K, sand con-
tent, pH, and per cent AM root infection capacity, but a 
negative correlation with CEC, available P, silt, and clay 
content (Joshi and Singh 1995). 

Studies on factors affecting the distribution of Azoto-
bacter in acid soils of south India revealed the presence of 
Azotobacter in 35.2% of soils tested (Nair 1984). The SOM 
content showed no marked effect on the presence of these 
organisms, except at high levels when a universal correla-
tion existed. A progressive increase in Azotobacter popula-
tion was observed with increase in level of P due to lime 
application. 

Dehydrogenase and urease activity, microbial popula-
tion (fungi and bacteria), and Om content of the soils in-
creased with an increase in altitude up to 1100 m in Aruna-
chal Pradesh, India (Tiwari and Sharma 1998). Gandotra et 
al. (1998) observed the presence of Azotobacter in 55 out of 
66 soils studied in Himachal Pradesh (India) representing 
soil orders viz., Mollisols, Alfisols, Ultisols, Inceptisols, 
and Entisols. The soils of Paleudalfs and Dystrochrepts 
were devoid of Azotobacter. Its population varied widely, 
constituting less than 1% of total bacteria. Haplustalfs and 
Hapludalfs had higher counts than other soil orders. Of the 
various soil properties positively correlated with Azotobac-
ter population, a significant correlation was observed only 
with pH, available P, and exchangeable Mg2+. Three species 
viz., A. chroococcum, A. beijerinckii, and A. vinelandi were 
identified in these soils. 

The occurrence of Azospirillum in the roots of a wide 
range of crops like cotton, plantation crops, and orchard 
crops has been reported under varying growing conditions 
(Bashan 1999). Subsequently, acid- and salt-tolerant strains 
have also been reported (Magalhães et al. 1983). So far 
taxonomists have identified many species in the genus 
Azospirillum viz., A. lipoferum, A. brasilense, A. amazo-
nense, A. halopraeferens, and A. irakense (Okon and Gon-
zales 1994; Bhattacharya 2001); A. doebereinrae (Eckert et 
al. 2001); A. melinis (Peng et al. 2006); A. canadense 
(Mehnaz et al. 2007a); A. zeae (Mehnaz et al. 2007b); A. 
rugosum (Young et al. 2008); and A. picis (Lin et al. 2009). 
Among the free-living N-fixing bacteria, Azospirillum is 
considered to have more efficient nitrogenase properties 
than other N fixers. It has been well demonstrated that Azo-
spirillum-inoculated plants were able to absorb nutrients 
from solution at faster rates than uninoculated plants resul-
ting in accumulation of more dry matter, N, P, and K in the 
foliage (Okon 1985). 
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1. Nitrogenous biofertilizers 
 
Even though Azospirillum was previously known as Spiril-
lum lipoferum, it was only after its rediscovery by Doberei-
ner and her associates during the 1970s that the bacterium 
gained the reputation of being the most studied plant-asso-
ciated bacterium. Azospirillum spp. are ubiquitously distri-
buted in many parts of the world with tropical, sub-tropical, 
and temperate climate conditions (Tilak et al. 2005). 

The rhizosphere supports large and active microbial 
populations capable of exerting beneficial, neutral, or detri-
mental effects of plant growth (Orhan et al. 2006). PGPR 
was first described by Kloepper et al. (1989), as soil bac-
teria that colonize the roots of plants following inoculation 
onto seeds and that enhance plant growth. Later, Bashan 
and Holguin (1998) proposed two new terms, biocontrol 
plant growth promoting bacteria and plant growth promo-
ting bacteria. Azospirillum and Pantoea are defined as free-
living, plant-growth-promoting bacteria, capable of affecting 
the growth and yield in numerous plant species, many of 
agronomic and ecological significance (Bashan et al. 2004). 
Later, Herman et al. (2008) suggested Bacillus (B. subtilis 
and B. amyloliquefaciens)-based PGPR for simultaneously 
improved production in bell pepper and reduced aphid in-
festation in peach. These PGPR have no preference for crop 
plants or weeds, or for annual or perennial plants, and can 
be successfully applied to plants that have no previous his-
tory of PGPR in their roots (Dobbelaere et al. 2003). PGPR 
have been reported to enhance plant growth directly by a 
variety of mechanisms; fixation of atmospheric N that is 
transferred to the plant, production of siderophores that che-
late Fe and make it available to the plant root, solubilization 
of minerals such as P, and synthesis of phytohormones 
(Dobbelaere et al. 2001). Direct enhancement of mineral 
uptake due to increases in specific ion fluxes at the root 
surface in the presence of PGPR has also been reported 
(Bertrand et al. 2000). 

Azospirillum spp. are known mainly for their ability to 
produce plant hormones as well as polyamines and amino 
acids in culture (Thuler et al. 2003), but they are also in-
volved in the biological fixation of N and the increased acti-
vity of glutamate dehydrogenase and glutamine synthetase 
(Ribaudo et al. 2001). A. brasilense produces high quanti-
ties of extracellular indole-3-acetic acid (IAA), increasing 
root elongation, root surface area, and root dry matter 
(Molla et al. 2001). The effects of these microorganisms are 
influenced greatly by the species and genotype (Sensoy et 
al. 2007), soil type, and cultural practices such as fertilizer 
application (Gryndler et al. 2001), while the growth and 
fruit quality response of sweet pepper are also affected by 
the cultivation method (del Amor 2006, 2007). Basu et al. 
(2006) suggested that a small amount of chemical fertilizer 
like Co (0.2 kg ha-1) showed a triggering effect on the ef-
ficacy of Rhizobium in groundnut (Arachis hypogaea L.). 

There is a general consensus that Azospirillum and plant 
roots can be described as a mere colonization of the rhi-
zosphere, rhizoplane, and root interior (Govindarajan and 
Thangaraju 2001). The colonization is the result of a 
selective enrichment of the organism best adapted to the 
ecological niche formed by the root environment (showing 
both chemotaxis and chemokinesis), whose beneficial effects 
have been postulated to be partially due to the production of 
phytohormones including GA3, gibberellic acid (Cassan et 
al. 2001). The majority of bacteria are root colonizers, for 
example, Azospirillum has the ability to colonize at least 64 
plant species (Bashan and Holguin 1995). Therefore, most 
of the studies demonstrated no host specificity in the Azo-
spirillum-root association (Aseri et al. 2005; Tilak et al. 
2005; Scheludko et al. 2009). 

Response of microbial biofertilization showed highly 
unpredictable results due to their biological origin and sus-
ceptibility to various abiotic stresses (Okon and Labandera-
Gonzalez 1994; Bashan and Holguin 1997), besides dif-
ficulty in adjusting the inoculated microorganisms into new 
soil environment. However, considering the vital role of 

microbes in the maintenance and buildup of soil fertility, 
their utility is indispensable (Badiyala et al. 1990). Okon 
and Gonzalez (1994) evaluated worldwide data accumu-
lated over the previous 20 years on field inoculation with 
Azospirillum and concluded that these bacteria are capable 
of promoting the yield of crops in different soils and cli-
matic area. Other results suggested that Azospirillum inocu-
lation benefited plant growth and increased yield by im-
proving root development, mineral uptake, and the plant-
water relationship (Michiels et al. 1989; Govindarajan and 
Thangaraju 2001). In addition to N fixation, Azospirillum 
also produces growth-promoting substances like IAA and 
GA3 and these phytohormones go a long way in enhancing 
crop growth. 

Patel et al. (1995) observed that the order of efficacy of 
different nitrification retarders in conserving NH4-N was 
observed as: nitrapyrin (NP) > neem oil (NO) > acetone ex-
tract of neem oil (ANO) > neem cake (NC) > ether extract 
of neem oil (ENO) > petroleum ether extract of neem oil 
(PNO) up to 30 days of incubation. However, after 45 days 
of incubation the order changed to: NP = NO > ANO > NC 
> ENO = PNO. In terms of production of NO3-N under 
Nitrosomonas + Nitrobacter culture, the nitrification retar-
ders could be classified under three effective groups as: NP 
> NO = ANO = NC = ENO � PNO up to 30 days of incu-
bation. But at the end of 45 days of incubation, their effic-
acy decreased and thus they could be classified under two 
groups viz., NC = NO = ANO > NC = ENO = PNO (Patel 
et al. 1995). This could be due to the loss in the effective-
ness of the retarder on the nitrifying organisms with time 
span (Vyas et al. 1991). 

Nitrogen-fixing bacteria and AM fungi were found to 
enhance the growth and production of various fruit plants 
significantly (Khanizadeh et al. 1995; Ghazi 2006) besides 
improving the microbial activity in the rhizosphere (Kohler 
et al. 2007). Aseri et al. (2008) observed that the combined 
treatment of Azotobacter chrococcum and Glomus mosseae 
was found to be the most effective since, besides enhancing 
the rhizosphere microbial activity and concentration of vari-
ous metabolites and nutrients, these bioinoculants helped in 
better establishment of pomegranate plants under field con-
ditions. 

 
2. Phosphatic biofertilizers 
 
In 1903, Stalatrom first reported microbial involvement in 
the solubilisation of inorganic phosphate (Panda 1990). 
During 1907-1908, Sacket, along with other scientists con-
firmed the solubilising capacity of different microorganisms 
(Gaur 1990). Now a number of microorganisms (Table 2) 
have been isolated, and they can solubilise insoluble phos-
phate substantially. These phosphate-solubilising microor-
ganisms popularly known as PSM involve phosphate sour-

Table 2 Important phosphorus-solubilising microorganisms. 
Phosphorus-solubilising bacteria 

Bacillus megaterium; Bacillus polymyxa; Bacillus firmus; Bacillus 
circulan; Pseudomonas striata; Bacillus subtilis; Bacillus mycoides; 
Bacillus mesentericus; Bacillus fluorescence; Bacillus pulvifaciens; 
Pseudomonas putida; Pseudomonas liquifaciens; Pesudomoas calcis; 
Pseudomonas rathonia; Xanthomonas spp.; Flavobacterium spp.; 
Brevibacterium spp.; Serratia spp.; Alcaligenes spp.; Achromobacter 
spp.; Aerobacter spp.; Aerobacter aerogenes; Erwinia spp.; 
Nitrosomonas spp.; Thiobacillus thiooxidans. 

Phosphate-solubilising fungi 
A. candidus; A. fumigatus; A. niger; Aerothecium sp.; Aspergillus 
awamori; Aspergillus terreus; Candida sp.; Cunninghamella sp.; 
Curvularia lunata; Fusarium oxysproum; Fusarium sp.; Humicola sp.; 
Mortierella sp.; Penicillium lilacinum; Penicillum digitatum; Phoma sp.; 
Puccilomyces sp.; Pythium sp.; Rhodotorula sp.; Schwanniomyceas 
occidentalin; Sclerothium rolfii 

Phosphorus-solubilising actinomycetes 
Streptomyces sp. 
Sources: Subbarao 1982 ; Kohli et al. 1998 ; Bhattacharya and Jain 2000 
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ces, mainly of two types i.e. i) mineral (fluorapatite, hydro-
xyapatite, tircalcium phosphate, mono- and dicalcium phos-
phate, rock phosphate, and iron phosphate) and ii) organic 
nature (phytin, lecithin, hexose monophosphatic ester, phe-
nyl phosphate, and calcium glycerophosphate). 

The highly populated PSM produce significant quanti-
ties of organic acids as metabolic by-products (Bhattacha-
rya and Jain 2000) namely formic, citric, acetic, propionic, 
malic, succinic, fumaric, glycolic, gluconic acid, etc. (Dubey 
and Gupta 1996; Dubey et al. 1999) depending on various 
C substrates. These organic acids are sources of biologically 
generated H+ ion, dissolve mineral phosphate, and make it 
available to plants. The degree of phosphate solubilisation 
is further influenced by pH, Eh, O2, CO2 concentration, and 
by the presence of organic material in the growing media. 
Sometimes these acids form a unionised association with 
meal (chelation) and increase the concentration of soluble 
phosphate (Gyaneshwar et al. 2002). 

Many heterotrophic microorganisms are known to have 
some ability to solubilize inorganic P from insoluble sour-
ces (Gaur 1990; Badiyala et al. 1990; Gaur and Gaind 
1992). Microbial solubilization of insoluble phosphates has 
also been reported through acidification, chelation, ion ex-
change reactions and external and internal accumulation of 
Ca2+ besides cell death lysis (Kucey 1983). 

Incidentally, another study by Gaur and Gaind (1992) 
revealed that all these microorganisms have the potential to 
solubilise insoluble phosphate reserves of soil. A large num-
ber of commercially available P-based biofertilizers utili-
zing PSM are known by different trade names. These in-
clude: Nutra PhosTM, Goredia Mekon Agri. Ltd., Maharash-
tra; EcophosTM, Green Fields Agrotech, Maharashtra; Agro-
phosTM, Bio Science Laboratories, Karnataka; Phospho cul-
tureTM, Tejashree Biofert, Maharashtra; SphuranuTM, Indore 
Biotech Inputs, Madhya Pradesh; Amrut Biofert-PTM, New 
Maharashtra Chakar Oil Mill, Maharashtra; Phospho 
MagTM, Magnum Associates Madras, Tamil Nadu; Bacto-
PhosTM, K-Fert. Lab., Maharashtra; Phos-FertTM, Eco Max 
Agro System, Mumbai, Maharashtra; Krishi-PhosTM, Maha-
rashtra Krishi Udyog Vikas Mahamandal, Mumbai, Maha-
rashtra; Phospho-Soil (P)TM, Nomin Agro Bio Pot. Ltd., 
Maharashtra; PoshfertTM, Kumar Krishi Mitra Bio Product, 
Pune, Maharashtra; MicrophosTM, BAIF Lab Ltd., Maha-
rashtra; SuperphosTM, Nafed Biofert, Indore, Madhya Pra-
desh; BiophosTM, Ajay Biotech Lab Ltd., Maharashtra; 
Phosphate cultureTM, Gujarat State Fert. Comp. Ltd., Ba-
roda, Gujarat; Symbion-PTM, ’T. Stanes & Co. Ltd., Coim-
batore, Tamil Nadu; PhosphoteekaTM, Nat. Biofert. Ltd., 
New Delhi etc. having shelf-life, extending from 4 months 
to 2 years (Bhattacharya and Jain 2000). 

Dubey et al. (1999) showed P solubilizing efficiency 
equivalent to 30 kg P2O5 ha-1 as SP (superphosphate) on 
Vertisols. Studies by Gao et al. (2009) on the change in 
PRE in response to soil types showed that PRE in wheat in 
the isotrophic fluvo-aquic soil, fluvo-aquic soil, manurial 
loess soil and yellow brown soil were increased by 0.80, 
0.60, 1.30 and 0.44% with NPK, respectively. PRE in-
creased with NPK plus manure application in black-soil, red 
soil and yellow brown soil. PRE was unchanged during the 
long term application of NPK, while that is released an-
nually by 0.50% with NPK plus OM. PRE in red soil de-
creased annually by 0.86% with long term application of 
NPK plus manure. These results indicated that the applica-
tion of OM is helpful to increase PRE in upland soils. In 
isotropic fluvo-aquic soil, fluvo-aquic soil, and manurial 
loess soil, the main fraction of soil phosphorus as Ca-P, the 
PRE change rates of these soils were higher than those of 
black soil with the main fraction of occluded P. There were 
significant positive correlations between PRE and total P 
and soil pH, respectively. 

Various species of Trichoderma as dual purpose mic-
robe (phosphate solubilizer as well as microbial antagonist) 
were also effective in the promotion of growth and yield in 
various crops (Bal and Altintas 2006a). Both the species of 
Trichoderma viz., T. harzianum and T. virens promoted 

growth of cucumber and cotton seedlings (Yedidia et al. 
2001), sweet corn (Bjorkman et al. 1998), cucumber, bell 
pepper, and strawberry (Altintas and Bal 2005; Bal and Al-
tintas 2006b; Elad et al. 2006). On the other hand, applica-
tion of Trichoderma was not conducive to increased yields 
of tomato (Bal and Altintas 2006c), lettuce (Bal and Altintas 
2008), and onion (Poldma et al. 2001), suggesting some 
kind of inconsistency in response. Previous studies obtained 
significant yield increase in cucumber and bell pepper using 
a much higher dosage of P as 40 kg ha-1 (Altintas and Bal 
2008). 

The various classes of PSM bacteria involve the fol-
lowing reaction mechanisms (Fig. 1). 

 
3. Potassic biofertilizers 
 
Unfortunately, many studies carried out in the past have not 
been given due consideration due to the changes in soil K 
equilibrium or the K nutritional status of foliage. A critical 
review by Mishustin et al. (1981) stated that although K is 
released from silicates by microorganisms, the process is 
not active enough to complete provision of the plants with 
this element. In K-deficiency, the increased root exudation 
accompanied by accelerated microbial proliferation and 
respiration may lead to O2 depletion in the rhizosphere, thus 
favouring denitrification specifically (Merckx et al. 1987; 
Van Veen et al. 1989). Denitrification is furthermore sup-
ported non-specifically by longer conservation of higher 
soil moisture due to more restricted growth of K-deficient 
plants and thus ensures better K availability in the vicinity 
of roots. 

Some microorganisms in soil environment contain en-
zymes that function in ways analogous to chitinase and cel-
luloses, i.e. they specifically break down mineral structure 
(Barker et al. 1997). Laboratory studies have shown that 
microbes can increase the dissolution rate of silicate and 
aluminum silicate minerals, primarily by generating organic 
and inorganic acids (Barker et al. 1997). Although some of 
these organisms are free-living (plank tonic) in solution, 
most of these bacteria are attacked to mineral surfaces 
(Hazen et al. 1991; Holm et al. 1992), where they can im-
pact water-rock interaction, mineral surface chemistry, dis-
solution and precipitation of minerals, the evolution of 
ground water geochemistry and soil formation (Chapelle 
and Lovely 1990; Hiebert et al. 1992; McMohan et al. 
1992; Barker and Banfield 1996, 1998; Neslson and Stahl 
1997). Complete microbial respiration and degradation of 
particulate and dissolved organic C can elevate carbonic 
acid concentration at mineral surfaces, in soils and in 
ground water (Barker et al. 1998), which can lead to an in-
crease in the rates of mineral weathering by a proton-
promoted dissolution mechanism. In addition to carbonic 
acid, microbes can produce and excrete organic ligands by a 
variety of processes such as fermentation and degradation 
of organic macromoleules, or as a response to nutrient stress 
(Tempest and Neijssel 1992; Paris et al. 1996). The reports 
showed that silicates dissolving bacteria could activate soil 
P, K, Si reserves and promote plant growth (Xue et al. 
2000; Sheng et al. 2003). Styriakova et al. (2003) reported 
that the activity of silicate dissolving bacteria played a pro-
nounced role in the release of Si, Fe and K from feldspar 
and Fe oxyhydroxides. Badr et al. (2006) reported that bac-
terial inoculation combined with K and P bearing minerals 
gave 49 and 58% increase in dry matter yield of sorghum 
plants on clay, sandy and calcareous soil, respectively, com-
pared to non-inoculated soils. The uptake of K by sorghum 
plants also increased by 71 and 116%, while the uptake of P 
increased by 42 and 79% in the same soils, respectively. 
 
Plant-mycorrhiza association 
 
AM are a symbiotic association between fungi and roots of 
higher plants, in which both members normally benefit 
from the association. Two types of mycorrhizal associations 
viz., ecto- and endomycorrhizae are commonly observed. 
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a. Through organic acid production

i. Ca3(PO4)2 +    CO2+H2O 2CaHPO4 +  CaCO3
(Insoluble) (Oxidative product (Soluble)

of organic acid 
produced by PSM)

ii. Ca3(PO4)2+  2CO2+2H2O (CaH2PO4)  +  CaCO3
(Insoluble) (Soluble)

O
C

O
C
O

C

O

Ca(OH)2+2CaHPO4

O

C

H2C

H2C

O
(Calcium citrate chelated compound )

O
C
O

HOOC-C-C

H2C

CO

H2

O

O-Fe-OH2+H2PO4

OH2

OH2

(Fe-citrate chelated compound )

H2CCOOH
C

CH2COOH
COOHHO

b. By chelating with organic acid

i. Ca3(PO4)2 + Citric acid
(Insoluble) (Produced by PSM)

ii. FePO4 + Citric acid
(Produced by PSM)

c. Through production of mineral acid by specific organism 

i. By nitrifying bacteria
Ca3(PO4)2 + 2HNO3 2CaHPO4 +  Ca(NO3)2
(Insoluble) (Produced by action (Soluble)

of nitrifying bacteria)

ii. By Thiobacillus sp.
Ca3(PO4)2+  2CO2+2H2O 2CaH2PO4 +  CaSO4

(Soluble)

d. Through H2S formation by Disulfovibrio

i. FePO4 +  H2S FeS + H2PO4
(Insoluble) (Soluble)

 
Fig. 1 Chemical reaction describing microbial solubilisation of phosphates. 
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Ectomycorrhizae are those fungi which enclose every feeder 
rootlet in a sheath or mantle of fungal hyphae and hyphal 
branches penetrate the intercellular space within root cortex 
(Uided Maaze et al. 2001; Khanam 2007) while endomy-
corrhizae are the fungi whose fungal hyphae enter the intra-
cellular space, and often disintegrate to enrich soil fertility 
(Subbarao 1988). AM are intracellular obligate endosym-
bionts. These are classified on the basis of spore morpho-
logy into five genera, namely Glomus, Gigaspora, Acaulo-
spora, Archaeospora and Endogone (Janos 2007). 

Known effects of AM fungi, a symbiotic microorganism 
are: i) promotion in adsorption of minerals, especially P, ii) 
stimulation in growth and improvement in fruit quality, and 
iii) enhancement in resistance against environmental stresses 
(Whipps 2004). Response of AM inoculation was demons-
trated by a large number of crops such as pomegranate, 
cowpea, chickpea, mungbean, cabbage, banana, tomato, cu-
cumber, raspberry, etc. dependent upon mycorrhiza (Taylor 
and Harrier 2000; Bahadur et al. 2004; Singh and Singh 
2004; Subramanian et al. 2006; Aseri et al. 2008; Wang et 
al. 2008; Molla and Solaiman 2009), by improving growth, 
yield, quality, and plant nutrition that can be fitted well into 
INM package. 

 
1. Response on growth and yield 
 
Varied responses on growth and yield of wide range of 
crops have been reported. AM fungi release an unidentified 
diffusion factor, known as the myc factor, which activates 
the nodulation factor’s inducible gene mtENODII. This is 
the same gene involved in establishing symbiosis with 
nitrogen fixing bacteria Rhizobium (Kosuta et al. 2003). 
Mycorrhizal infection (Glomus etunicatum Becker & Gerd) 
decreased the time taken to initiate flowering, increased the 
total duration of flowering, and increased seed production 
by increasing number of flowerings produced, the propor-
tion of flowers producing fruits, and the number of seeds 
per fruit in tomato (Marx et al. 2002). Seeds produced by 
mycorrhizal plants were also heavier and contained more N 
and P than those produced by non-mycorrhizal plants of 
velvet leaf (Abutilon theophrasi Medic) (Lu and Koide 
2006). AM inoculation (G. intraradices) in tomato signifi-
cantly increased shoot dry matter and the number of flowers 
and fruits. The fruit yields of AM plants under severe, 
moderate, and mild drought stressed conditions were higher 
than uninoculated plants by 24.7, 16.2, and 12.3%, respec-
tively (Subramanian et al. 2006). 

Inoculation of the seedlings of Vangueria infausta, a 
Kalahari tree with AM fungi, increased the dry mass and 
mineral acquisition, particularly P, Ca, and N (Bohrer et al. 
2003). Studies by Wang et al. (2008) showed that growth of 
cucumber seedlings were significantly enhanced by inocu-
lation with G. mosseae, inhibited by G. versiforme, and not 
significantly influenced by G. intraradices. The dry weight 
of seedlings inoculated with G. mosseae was 1.2 times its 
counterpart. The growth, NPK content, and yield of cucum-
ber (Cucumis sativus L. cv. ‘Bitostar’) and cantaloupe 
(Cucumis melo L. cv. ‘Vicar F’) were higher in mycorrhizal 
plants treated with mixed inoculum of AM viz., G. etuni-
catum, G. intraradices, and G. monosparum grown under an 
85% water regime than those of superphosphate-amended 
plants grown with a 100% water regime (Abdelhafez Ah-
med and Monsief Abdel 2006). 

 
2. Response on crop quality changes 
 
A variety of crops has been observed to display response of 
AM inoculation on different fruit quality parameters. To-
mato plants inoculated with G. intraradices produced tomato 
fruits that contain significantly higher quantities of ascorbic 
acid and total soluble solids than M-plants (Subramanian et 
al. 2006). 

Mena-Violante et al. (2006) observed that fruits of chile 
ancho (Capsicum annum L. cv. ‘San Luis’) in the AM treat-
ments subjected to drought and the AM treatments not ex-

posed to drought reached the same size. The former treat-
ment increased the concentration of carotenes (1.4 times) 
under non-drought conditions and the concentration of xan-
thophylls (1.5 times) under drought when compared to the 
non-drought treatment. The weights of a single fruit of 
cucumber preinoculated with G. mosseae and G. versiforme 
were, respectively, 1.4 and 1.3 times higher than those from 
the uninoculated treatment (Wang et al. 2008). Other work 
on pepper infected with mycorrhizal fungus G. intraradices 
showed 12-47% increase in P, dry matter content, sucrose, 
and total sugar content (Semra 2004). 

 
3. Response on plant nutrition 
 
Soil microbial processes are important in organic produc-
tion because these systems rely exclusively on organic sour-
ces of nutrients. AM may be especially important for nut-
rient uptake in an organic production system because they 
increase the ‘foraging’ capacity of the root system. Im-
proved nutrition, especially P nutrition of mycorrhiza-ino-
culated crops has been reported due to increased phospha-
tase activity (Neelima et al. 2002). 

Uided Maaze et al. (2001) suggested that passion fruit 
(Passiflora edulis f. flavicarpa) plants were ‘facultatively 
mycotrophic’ when associated with AMF and fertilized with 
30 mg P × dm-3 soil. Seedlings in unfertilized soil with 4 
mg P × dm-3 soil were excessively dependent on the mycor-
rhizal association. In soil with 11 mg P × dm-3 soil, seed-
lings were marginally to moderately dependent, depending 
upon the AMF species used. All inoculated seedlings, with-
out considering soil sterilization, were marginally depen-
dent in soil with 30 mg P × dm-3 soil. In sterilized soil, inde-
pendently of P, they were moderately dependent. However, 
in the same soil, with 30 mg P × dm-3 soil, the seedlings 
were marginally dependent. Mycorrhizal tomato plants had 
significantly higher uptake of N and P in both roots and 
shoots regardless of intensities of drought stress (Subrama-
nian et al. 2006). The concentrations of N and P in roots 
and Mg, Cu, and Zn concentration in shoots of cucumber 
plants were increased by inoculation with AM (Wang et al. 
2008). 
 
INORGANIC FERTILIZER USE 
 
Soil fertility problems associated with human-induced nut-
rient depletion are widespread worldwide (Tan et al. 2005). 
The use of man-made inorganic fertilizers is a fundamental 
component of INM, yet it is often either under-used or over-
used in the absence of information on soil test-based fer-
tilization assessment. There is a multiplicity of methods and 
techniques currently available for determining nutrient 
requirement, emphasizing the importance attributed to an 
awareness of fertilizer requirements. The fertilizer require-
ment of annual or perennial crops depends upon the objec-
tives of fertilization, whether the purpose is to grow the 
crop or feed the crop. 

There are two approaches which can be taken to 
fertilizer use in perennial fruit crops (Robinson 1989). First, 
corrective, where the absence of, or chemical availability of 
a nutrient in the soil, or positional inaccessibility, can be 
corrected by proper placement of an immobile nutrient in 
sufficient quantity to remain available to the plants for some 
years. Second, maintenance, where the time the nutrient 
will remain available is short, as a result of immobilization 
or leaching. Annual or more frequent applications are 
needed. The properties of soil and its interaction with each 
nutrient will determine which is the appropriate approach. 
Often the corrective approach is suited to P and the main-
tenance strategy to nitrogen and micronutrients. Timing is 
important for some nutrients (e.g. N), which can affect 
fruitfulness or fruit quality directly, or indirectly via effects 
on vigour or canopy density. Method of soil management 
(e.g. tillage, herbicide strips) will influence the fertilizer 
requirement and the appropriate method of application. 

Fertilizer experiments have not generally provided 
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calibrated soil or leaf test data because of their short-term 
nature, the biennial or variable production of many tree 
crops, their narrow focus and the difficulty in demonstrating 
yield responses because tree crops have relatively low rates 
of nutrient removal over long periods of time. Nutrient 
balance is basically a sound approach in the development of 
fertilizer recommendation, and can be easily estimated from 
crop nutrient removal data. Macronutrient removal by 20 
Mg ha-1, passion fruit crop was (kg ha-1): 55 N, 78 K, 6 P, 6 
S, 5 Ca, and 4 Mg. For a mango crop, it was (kg ha-1): 11 N, 
15 K, 2 P, 15 1 S, 2 Ca, and 2 Mg. For a 10 Mg ha-1 
avocado crop it was (kg ha-1): 41 N, 61 K, 8 P, 4S, 7 Ca, and 
8 Mg. Passion fruit, in contrast to tree crops, is a 3-year 
crop, and nutrient uptake by developing leaves, vines, and 
roots inflated nutrient uptake by a factor of 2-3 (Huett and 
Dirou 2000). 
 
Soil fertilization 
 
Soil provides nearly all the nutrients essential to complete 
the life cycle of a plant. Different soil properties primarily 
determine the extent of a fertilizer response (Bronick and 
Lal 2005) and the crop rotation on the changes in physico-
chemical (Lehoczky et al. 2005) and biological properties 
of soil (Manna et al. 2005). 

 
1. Macronurient application 
 
There are varied fertilization schedules followed across a 
variety of crops. Some fertilization plans recommend N 
application since the beginning of bud break until 6 weeks 
after full bloom for bearing pear trees (Neto et al. 2008), 
whereas others defend that N must be applied during the 
whole growth cycle considering that after harvest, trees can 
still improve their reserves through N uptake from soil. 
Some authors have studied the fertilizer N use efficiency in 
pears and apples (Cheng et al. 2001; Neilsen et al. 2001; 
Cheng et al. 2004). Most studies were performed in pots in 
sand culture, comprising its applicability to field conditions. 
The re-cycling of N as a result of the decomposition of 
senescent leaves in soils was only addressed in one study 
with apple trees (Tagaliavini et al. 2004, 2007). Fertilizer N 
use efficiency by trees increased from the first to the third 
year, but was generally small (6, 14, and 33%), and esti-
mated N losses were large (89, 46, and 53%, respectively, in 
the first, second, and third year). Irrigation water and soil 
provided more N to the trees than fertilizer N (Neto et al. 
2008). 

For many years, several authors have tested the res-
ponse of different crops to application of different nutrients, 
especially K, with respect to yield and quality, and reported 
the effectiveness of this technique in coffee, Coffea arabica 
L. (Silva et al. 2001); almond, Amygdalus communis L. 
(Reídel et al. 2004); pistachio, Pistacio vera L. (Zeng et al. 
2001); pecan, Carya illinoinensis Koch (Worley 1994); and 
olive, Olea europaea (Jasrotia et al. 1999). However, this 
technique is greatly conditioned by different soil properties, 
particularly soil moisture, which affects the mobility of the 
supplied nutrients (Mengel and Kirkby 2000). This is 
mainly attributed to large variation in fertilizer doses to be 
really effective (Table 3) in different crops, annual versus 
perennial. Such variation in optimum doses is dictated by 
climate, soil types, crops, and farming practices in such a 
way that the correct balance of nutrients necessary for one 
farm, may be quite different from that necessary for a farm 
somewhere else in the world. Therefore, determining the 
appropriate balance of nutrients to increase crop yield and 
soil fertility will require localized research. 

 
2. Micronutrient application 
 
Soil application of micronutrients, especially inorganic salts, 
is often not so effective due to immediate reaction of added 
micronutrient cations with the mineral portion of soil 
through various processes like adsorption, fixation, chemi-

cal precipitation, etc. (Srivastava and Singh 2004, 2008a). 
Researchers even today are not unanimous about the ef-
ficacy of soil versus foliar fertilization with reference to 
micronutrients (Srivastava and Singh 2008b). Elevating Zn 
concentration only in the tops of Zn-deficient sour orange 
(Citrus aurantium L.) plants with foliar sprays partially 
restored normal root growth but clearly was not as effective 
as the roots absorbing Zn directly from high Zn concen-
tration solutions (Swietlik and Zhang 1994). Johnson et al. 
(2005) observed better response of micronutrient (Fe and 
Mn) seed priming on chickpea (C. arietinum), lentil (Lens 
culinaris), rice (O. sativa), and wheat (T. aestivum) over 
soil fertilization with respect to growth and yield while an-
other study by Duxbury et al. (2006) suggested that micro-
nutrient-enriched seed successfully addressed Zn and Mo 
deficiencies in rice and wheat, and increased yields beyond 
those achieved by soil fertilization due to difference in root 
health activating early seedling emergence. 

Interestingly, some recommendations have advocated 
soil application of micronutrients as one of the means to 
realize good yield of a crop, e.g., combination of ZnSO4 (20 
kg ha-1) – Na2B4O7 (5 kg ha-1) – 180 N – 90 P – 90 K (kg 
ha-1) in sugarcane on alkaline calcareous soil (Sharma et al. 
2002) or ZnSO4 (300 g tree-1) – FeSO4 (300 g tree-1) – 600 
N – 200 P – 100 K (g tree-1) in citrus (Srivastava and Singh 
2008b). The micronutrient-based Zn chelater complexes on 
the other hand are poorly or not at all absorbed by plant 
roots, as demonstrated through water culture studies (Cha-
ney 1988; Swietlik and Zhang 1994). Under field conditions, 
however, the addition of Zn micronutrient-chelate elevated 

Table 3 Optimum requirement of inorganic fertilizers for different crops.
Crop N P2O5 K2O 
Field crops (kg ha-1)    

Rice (Oryza sativa L.) 90-125 30-60 30-60 
Maize (Zea mays L.) 120-125 60 30 
Wheat (Triticum aestivum L) 80-120 40-60 0-60 
Pigeonpea (Cajanus cajan L.) 20-30 40-80 0 
Chickpea (Cicer arietinum L.) 18-20 40-50 0 
Jute (Corchorus capsularis L.) 30-45 20 20 
Groundnut (Arachis hypogaea L.)* 20 40 50 

Vegetables (kg ha-1)    
Cabbage (Brassica oleracea L.) 150 80 40 
Potato (Solanum tuberosum L.) 160 80 40 
Cotton (Gossypium hirusutum L.) 100-180 50-120 60-120
Sugarcane (Saccharum officinarum L.) 100-300 60-120 80-120
Onion (Allium cepa L.) 120 90 90 
Corinder (Coriandrum sativum L.) 60 40 30 

Plantation crops (kg ha-1)    
Rubber (Hevea brasiliensis Willd.)** 260 220 104 
Coffee (Coffea arabica L.) 120 90 120 
Tea (Camellia sinensis L. Kuntze) 135 370 120 
Coconut (Cocus nucifera L.) 1.0 0.6 2.4 
Cassava (Manihot esculenta L.) 100 25 100 

Fruits (g tree-1)    
Mango (Mangifera indica L.) 775 500 700 
Acid lime (Citrus aurantifolia Swingle L.) 900 250 500 
Guava (Psidium guava L.) 360 180 180 
Grape (Vitis vinifera L.)  270 450 900 
Pomegranate (Punica granatum L.) 700 200 200 
Ber (Zyzyphus mauritiana Lank) 500 200 300 
Aonla (Emblica officinalis Gaertn) 1500 750 1000 
Sapota (Achras zapota Mill.) 1000 500 500 
Date palm (Phoenix dactylifera L.) 1000 500 500 
Fig (Ficus carica L.)*** 430 200 430 
Phalsa (Grewia subinaeuqualis DC) 200 75 100 
Litchi (Litchi chinensis L.)**** 600 350 140 
Pear (Pyrus communis ) 1000 2000 1500 
* Addition of 200 kg ha-1 gypsum  
** Addition of 21 kg ha-1 MgO in 6 years 
*** Addition of 280 g tree-1 Ca 
**** Addition of 7 g plant-1 B 
Sources: Sharma et al. 2003; Tiwari 2003; Lal et al. 2003; Arora and Singh 2006; 
Nasreen et al. 2007; Datta et al 2008; Irget et al. 2008; Pathak and Mitra 2008; 
Sharma et al. 2008 
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the amount of free nutrients in the soil solution due to ad-
sorption and exchange properties of minerals present in soil 
(Chaney 1988). Soil application of a micronutrient, e.g., Zn 
from ZnSO4 is fixed in the surface soil, while the chelated-
Zn remains soluble and becomes distributed evenly through-
out the soil, as evident from 46-times higher uptake of Zn 
by a perennial fruit crop like citrus from Zn-EDTA than 
ZnSO4 on sandy soils (Parker et al. 1995). In non-citrus 
crops like wheat (Modaihsha 1997), banana (Mostafa et al. 
2007), pear, apple, grapevine (Sohlegel et al. 2006) etc. 
similar results have been reported. 

 
Nutrient depletion through soil mining is more or less a 

common problem in the absence of regular testing and 
monitoring systems. In addition to above most conventional 
method of fertilization, precision-based management stra-
tegy, like SSNM (site-specific nutrient management) has 
proved very effective in rationalizing fertilizer use in vege-
tables (Huang et al. 2007) and fruits (Srivastava et al. 2006). 
The SSNM aims to apply nutrients at optimal rates and 
times to achieve high yield and yield efficiency of nutrient 
use leading to high economic return per unit of fertilizer 
invested (Dobermann et al. 2003a, 2003b). The SSNM 
adjusts the fertilizer use to optimally fill the deficit between 
the nutrient needs of a crop and the nutrient supply from 
naturally occurring indigenous sources such as soil, organic 
amendment, crop residues, manures, and irrigation water 
(de la Cruz 2008). There are five step through which the 
SSNM is accomplished. These are: i.) establishment of 
yield target; ii.) estimation of actual yield responses to ferti-
lizer N, P, and K; iii.) selection of fertilizer N, P, and K rates 
based on expected yield responses to fertilizer application 
considering agronomic efficiencies and nutrient balances; 
iv.) application of fertilizer to meet the crop demand for 
nutrients at critical growth stages; and v.) optimization nut-
rient use efficiencies (Hach and Tan 2007). 

The performance of SSNM was tested for four succes-
sive rice crops. Compared with the current FFP, average 
grain yield increased from 5.9 to 6.4 Mg ha-1 while plant N, 
P, and K uptake increased by 8 to 14%. The gross return 
over fertilizer cost was 10% greater with SSNM than with 
FFP. Yields were about 20% greater in late rice (hybrid cul-
tivars) than in early rice (inbred cultivar), but SSNM per-
formed equally better than FFP in both seasons. Improved 
timing and splitting of fertilizer N increased N recovery 
efficiency from 0.18 kg kg-1 in FFP plots to 0.29 kg kg-1 in 
SSNM plots. The agronomic NUE (grain yield increase per 
kilogram fertilizer applied) was 80% greater with SSNM 
than with FFP (Wang et al. 2001). Similar kinds of respon-
ses were observed in rice in subsequent studies (Khurana et 
al. 2007; Liang et al. 2008). In rice, wheat, and chickpea, 
studies by Biradar et al. (2006) showed that wheat yield 
ranged from 3.5 to 3.8 Mg ha-1 under SSNM, 2.8 to 3.2 Mg 
ha-1 under RDF, and 2.6 to 2.7 Mg ha-1 in FFP. Average 
wheat yield was 3.66, 2.98 and 2.64 Mg ha-1 in the respec-
tive practices, signifying 23% higher productivity due to 
SSNM over RDF and 39% over FFP. Rice yield ranged 
from 5 to 6 Mg ha-1 (SSNM), 3.7 to 4.5 Mg ha-1 (RDF), and 
3.4 to 3.9 Mg ha-1 (FFP), with average yield of 5.5, 4.1, and 
3.7 Mg ha-1, respectively, increasing average yield due to 
SSNM over RDF by 35 and 50% over FFP. In chickpea, 
yield ranged from 1.18-1.38 Mg ha-1 (SSNM), 1.03-1.14 
Mg ha-1 (RDF), and 1.01-1.13 Mg ha-1 (FFP), with average 
yield of 1.20, 1.08, and 1.06 Mg ha-1, respectively, increa-
sing the average yield due to SSNM by 17-18% over RDF 
or FFP. Patil et al. (2009) reported that cotton supplied with 
a fertilizer dose of 218N – 59P – 148 K (Kg ha-1) for a tar-
geted yield 3.0 Mg ha-1 as economical in the northern tran-
sition zone of Karnataka (India). SSNM has also proved 
very effective under different cropping systems. For exam-
ple, Bokhtiar et al. (2003) observed much higher economic 
return in sugarcane intercropped with potato and onion than 
with onion crop only through multi-location trials. Similar 
studies have shown good results in blackgram (Gupta et al. 
2007) and coconut with intercropped fodder (Lakshmi et al. 

2007). 
These SSNM studies in fact warrant that fertilizer re-

commendations should be fine tuned to spatial domains 
with relatively uniform agroecological characteristics, crop-
ping practices, and socioeconomic conditions. Within such 
domains, season specific management of the variability in 
indigenous nutrient supply can accommodate the field spe-
cific approaches. However, the major challenges are: i) to 
retain the demonstrated potential of the SSNM approach 
and ii) to build upon what has already been achieved while 
reducing the complexity of the technology as it is dissemi-
nated to farmers (Johnston et al. 2009). 

Of late, fertigation through a microirrigation system 
gained popularity for raising the productivity through regu-
lated nutrient supply maintained during the entire growth 
period of annual (Bangar and Chaudhari 2004) and peren-
nial crops (Reddy et al. 2002; Shirgure et al. 2003; Srivas-
tava et al. 2003). Amid continuing concerns over irrigation 
water shortages fertigation (application of fertilizers through 
irrigation) is now considered as a time tested technology 
where water soluble fertilizers are dispensed into irrigation 
system, thereby channelised through distributaries upto 
point of disposal into plants’s rhizosphere (Mmolawa and 
Or 2000). Completed broadcast method of fertilization, fer-
tigation has shown a definite edge with regard to NUE. 
Thomson et al. (2003) reported the NUE of 90 to 81% with 
250 and 350 kg N ha-1, respectively in broccoli. In tomato, 
Bradr et al. (2007) observed an NUE of 60 and 54% with an 
N application rate of 221 and 194 kg ha-1, respectively cor-
responding to fruit yield of 67.7 and 63.3 Mg ha-1. Ferti-
gation has further shown improved response on yield and 
recovery of applied nutrients in a wide range of crops like 
squash (Ertek et al. 2004; Mohammad et al. 2004), onion 
(Patel and Rajput 2005), tomato (Bradr et al. 2007) broccoli 
(Thomson et al. 2003), garlic (Castellanos et al. 2001; Cas-
tellanos 2002), corn (Asadi et al. 2002), grapevine (Rey-
nolds et al. 2005), and bell pepper (Silber et al. 2005). Use 
of organic fertilizers (Nakanu et al. 2003) and bromide ion 
as tracer to stimulate movement of nitrate (Zerihum et al. 
2003) has added better success to fertigation. Later, Gutiér-
rey et al. (2007) proposed the use of an electronic nose for 
the first time for supervision of the nutrient solution compo-
sition produced by a fertigation system. Such approach ap-
peared to be a feasible method for the in-line assessment of 
nutrients concentration and presence of undesired com-
pounds in fertigation solution. 
 
Foliar fertilization 
 
Foliar fertilization means the epigean application of a plant 
nutrient, which a plant needs for its nutrition and growth i.e. 
the non-root feeding or extra radical feeding (Mengel 2002). 
Historically, a problem of absorption of water by leaves was 
described in 1676, but was disputed until demonstrated this 
possibility experimentally in the 1930s. Different aspects of 
foliar nutrition have been reviewed previously (Srivastava 
et al. 2008). 

Foliar fertilizer applications are considered a valid alter-
native to provide nutrients to plants when soil conditions 
may limit root uptake or during periods of fast growth when 
needs may exceed root supply (Toscano et al. 2002). The 
health of the plant is important in any form of fertilization. 
Foliar fertilizers can perform their action through foliar 
sprays with utmost efficiency only when they are sprayed at 
an optimal time (phenological phase), right site, and in cor-
rect application rate with uniformity in distribution (Srivas-
tava et al. 2007; Fernández-Escobar et al. 2009). 

Foliar fertilization is better than conventional soil ferti-
lization under certain conditions (Srivastava and Singh 
2003b; Fernández and Ebert 2005), e.g., i) acute shortage of 
nutrient supply, ii) nutrients either due to their total absence 
or due to trace elements are immobilized on account of un-
favorable soil conditions, iii) nutrient imbalances, i.e. 
having an unfavorable influence on root absorption for opti-
mal growth, and iv) restricted nutrient uptake through the 
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plant roots. The other advantages of foliar application are: 
high effectiveness, rapid plant response, convenience in ap-
plication, and elimination of toxicity symptoms induced by 
excessive accumulation of a given element in soil (Fernán-
dez et al. 2005; Fernández and Ebert 2005). For example, 
earlier studies on foliar spray supplying a high concentra-
tion of Fe (Fe-DTPA 100 mg L-1) prevented most of the 
detrimental effects of toxic Zn in soybean (Fontes and Cox 
1998) or Zn supply (69 mg L-1 Zn-DTPA) mitigated B toxi-
city in sour orange (Swietlik 1995). On the other hand, the 
common disadvantage of foliar application is associated 
with its temporary response, necessitating repeated applica-
tions without any residual effect into the next cropping sea-
son (Srivastava and Singh 2003a). 

Foliar spray provides not only a means to apply nut-
rients at a particular stage in the growth cycle, but it also 
permits remedial action to be taken soon after establishing 
the diagnosis of a deficiency. According to Swietlik and 
Faust (1984), foliar fertilization causes a plant to pump 
more sugars and other exudates from its roots into the rhi-
zosphere. Beneficial microbial populations in the root zone 
are stimulated by the increased availability of these exu-
dates (Eichert et al. 2006). In turn, this enhanced biological 
activity, and increased the availability of nutrients. Some of 
the advanced foliar fertilization technologies like use of 
electrostatic sprayers (impart a charge to the spray particles 
and cause them to adhere more readily to plants) and sonic 
bloom (uses sound to increase the leaves’ absorption capa-
city of nutrients) have recently come into practice, although 
they are yet to gain commercial acceptability (Srivastava 
and Singh 2008b). Such developments have the potential to 
improve the effectiveness of INM strategy by addressing 
nutritional deficits through foliar fertilization on one hand, 
and treating the rhizosphere through enriched substrate on 
the other. 

Many growers are using postharvest foliar urea applica-
tions as a way to ensure that the bud reserves of N are high, 
even when added fertilizer N is being reduced with the goal 
of increasing crop quality (Sánchez et al. 1995). There is 
also some evidence that a postharvest urea application in-
creases leaf decay rate and reduces the incidence of disease 
in the following year (Beresford et al. 2000; Weinbaum et 
al. 2002). Previous experiments in olive showed that ab-
sorption of foliar applied K by leaves is restricted by water 
stress or K deficiency, and concluded that foliar K spray 
should be carried out in spring under rain-fed conditions, 
when trees present a good water status, and there are many 
younger leaves (Restrepo-Diaz et al. 2008a, 2008b). 

On the other hand, foliar fertilization with micronutri-
ents is generally successful because deliverable amounts are 
enough to meet most trees’ requirement. For example, 
because a transitory low B status of plant may limit fruit set, 
the goal of foliar B programs is, therefore, to increase B in 
flower buds (Wojcik et al. 2008). B sprays are often applied 
in early fall after harvest or during the pre-pink blossom 
stage of apple (Peryea 1994; Sánchez and Righetti 2005). 
Timing of B maintenance sprays is not critical for apple 
trees if the trees already contain adequate amounts of B, and 
do not show visual evidence of B insufficiency (Peryea et al. 
2003). 

Foliar spray of both macro- and micronutrients in a 
wide range of crops has been reported effective with respect 
to growth, yield, quality, and shelf life. These include: 1.5% 
urea (Kannan et al. 2002), urea-double superphosphate – 
K2SO4 at 0.50% each (Govind and Singh 2003) in citrus; 
1% KCl (foliar spray) – 50 kg K2O ha-1 (soil application) in 
groundnut (Umar et al. 1999); 1% NPK (foliar spray) = 50 
kg N – 30 kg P ha-1 (soil application) in wheat (Arif et al. 
2006); foliar spray of 2% urea – 2% potassium nitrate – 2% 
muriate of potash in cotton (Brar and Brar 2004) 0.50-1.0% 
KCl – 100 mg L-1 GA3 in grape (Niu et al. 2008); 0.32-
0.65% B (Dutta 2004), 0.50% B (foliar spray) – 5 kg ha-1 
borax (soil application) in litchi; (Dutta et al. 2000) 0.50% 
Fe-DTPA (Álvarez-Fernández et al. 2004) in pear; 0.25% B 
(foliar spray) – 5 kg borax ha-1 (soil application) in cauli-

flower (Singh 2003); 0.5% ZnSO4 (Sarma et al. 2005), 
0.50% ZnSO4 – 0.10% NAA (Sharma et al. 2005) in cab-
bage; FeSO4-CuSO4-ZnSO4 at 0.40% each (Samant et al. 
2008), 0.50% ZnSO4- 0.10% borax (foliar spray) – 200 N – 
50 P – 400 K kg ha-1 (soil application) in banana (Jeya-
baskaran and Pandey 2008); FeSO4 – MnSO4 – CuSO4 – 
ZnSO4 at 0.10% each (foliar spray) – 150 N – 90 P – 90 K 
kg ha-1 (soil application) in tomato (Guvenc and Badem 
2002; Bhatt and Srivastava 2006); 0.50% urea (Charbaji et 
al. 2008) in onion; 0.80% NPK (foliar spray) – 50 kg N – 
50 kg P – 25 kg ha-1 (soil application) in green chilly 
(Baloch et al. 2008); and 0.60% Ca(NO3)2 – 0.80% KH2PO4 
(Peyvasi et al. 2009) in tomato. 
 
Efficacy of foliar sprays 
 
The cuticle plays an important role in absorption of foliar 
applied nutrients. Reducing the urea solution pH from 8.0 to 
4.0 decreased the amount of urea penetrating the cuticle 
(Orbovic et al. 2001). It consists of an insoluble biopolymer 
matrix (cutin and/or cutan) with waxes both embedded 
(intra-cuticular) and deposited on the surface (epicuticular) 
(Matas et al. 2005). Cuticles have been shown to be perme-
able to water and ions, and also to polar compounds, e.g. 
cuticles are 10-20 times more permeable to urea than inor-
ganic ions (Kersteins 2006; Schreiber 2006). A high cuti-
cular affinity also exists between various micronutrients viz., 
Mn, Cu, and Zn, which decreased in the following order: 
Cu > Zn > Mn. Cu reduced the cuticular retention of Zn, 
revealing high selectivity of Cu over Zn (Chamel and Gam-
bonnet 1982). The cuticle is a chemically heterogenous 
membrane of variable structure and composition, depending 
on many factors (Jeffree 2006). 

Two distinct cuticular pathways in the cuticle have been 
suggested (Schlegel et al. 2005; Schönherr 2006), viz., i) 
uncharged molecules dissolving and diffusing in lipophilic 
domains made of cutin and cuticular waxes (lipophilic path-
way) and ii) ionic species crossing lipid membranes through 
aqueous pores (Schönherr et al. 2005), micropores, and 
spaces between molecules (Luque et al. 1995). While it is 
clear that surfactants increase spray droplet retention and 
wetting by lowering the surface tension, the effect of sur-
face-active agents on the uptake of foliar sprays is very 
complex, and the underlying mechanisms are not fully 
understood (Liu 2004b). Some surfactants have also been 
shown to have a plasticizing effect, promoting the fluidity 
or even solubilzing cuticular waxes (Tamura et al. 2001; 
Perkins et al. 2005), while others may hydrate the cuticle 
and increase the permeability of the plasma membrane 
(Wang and Liu 2007; Bai et al. 2008). 

Numerous other factors such as pH, the oxidation-
reduction state, competing cations, hydrolysis, polymerisa-
tion, and the formation of insoluble salts (e.g. phosphate, 
oxalate, etc.) govern metal mobility within plant tissues 
(Eichert and Goldbach 2008). These factors account for dif-
ferential concentration of nutrients due to selectivity beha-
viour of leaves arising either because the transport proper-
ties of each cell type allow them to absorb only particular 
nutrients from the transpiration stream or because each nut-
rient moves along a different pathway in leaf and so is only 
available to certain cell types (Karley et al. 2000). 

This is very important where multi-nutrient spray is em-
ployed at an early growth stage. Under such conditions, it is 
necessary to reach a compromise between early application 
and allowing the crop to attain a leaf area large enough to 
effectively absorb the applied nutrients. For example, 
maximum accumulation of K in leaf takes place by the end 
of the fruit set stage, thereafter the rate of nutrient accumu-
lation by leaf is considerably slow (Srivastava and Singh 
2006). Therefore, foliar application of nutrients in perennial 
crops unlike annual crops, must be restricted up to the 
period as long as wax deposition on leaf cuticle has concen-
trated enough to restrict any foliar absorption of nutrients 
(Fernández and Ebert 2005), whereas in annual crops, such 
conditions are not common (Guvenc and Badem 2002; 
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Matas et al. 2005; Peyvasi et al. 2009). 
Better efficiency of foliar-applied nutrients can be ob-

tained only when there is a maximum concentration of root 
absorbed nutrients. For example, Swietlik and Zhang (1994) 
observed foliar sprays of Zn less effective than Zn applica-
tion to the roots in alleviating severe Zn-deficiency in sour 
orange, because foliar absorbed Zn was not translocated 
from the top to the roots. The study further suggested the 
involvement of two mechanisms operating at two tiers of 
structural organisation: one in the roots and the other in the 
shoots. An unequal amount of a given nutrient absorbed by 
a crop from a deficient soil is often related not only to 
different nutrient requirements within the vegetative tissues, 
but to the kind and extent of root development (Swietlik 
2002). Foliar treatment with Fe-containing solutions induced 
significant changes in concentration of several nutrients as 
compared to those found in Fe-deficient peach (Prunus per-
sica L. Batsch) leaves, with changes being similar in treated 
and untreated leaf areas. These results indicated that some 
leaf mineral composition changes typical of chlorotic leaves 
and dependent on leaf Fe-concentration rather than on leaf 
chlorophyll content (Fernández et al. 2008). 
 
ORGANIC MANURING 
 
Use of commercial fertilizers has only a short history com-
pared to the length of time that man is known to have 
grown crops. Organic sources play a critical role in both 
short-term nutrient availability and long-term maintenance 
of SOM, especially in smaller holder farming systems 
(Pang and Letey 2000). Despite this importance, there is 
little predictive understanding for the management of orga-
nic inputs in different agrosystems (Palm et al. 2001). Crop 
yields are a fundamental factor of economic success and 
depend very much on N fertilization (Pang and Letey 2000). 
Before making use of imported fertilizers, assessing the 
physical and biological condition of the soil and optimizing 
the level of OM are the methods preferred in organic 
farming to solve nutrient deficiency problems (Mader et al. 
2002). A crucial question is how to guarantee optimum nut-
rition along with production on a sustained basis by organic 
measures only (Rynk 2002). 

Studies carried out by Singh et al. (2009) using ginger 
(Zingiber officinale Rosc.) as test crop suggested the best 
response of treatment involving FYM (3.3 Mg ha-1) – 
Indian beech tree (Ponngamia pinnata L.) – oil cake (0.03 
Mg ha-1) – neem (Azadirachta indica) oil cake (0.l83 Mg 
ha-1) – Sterameal (0.83 Mg ha-1) – rock phosphate (0.83 Mg 
ha-1) – wood ash on Entisol soil type while another study by 
Sankar et al. (2009) on onion (Allium cepa L.) suggested 
that the combination of cow urine (3%) – FYM (supplying 
50% RDF, i.e. 750 kg N ha-1) – PM (50% RDF i.e. 750 kg 
N ha-1) – biofertilizers (AB, PSM and AM at 5 kg culture 
ha-1 each) produced the highest bulb yield over exclusive 
use of inorganic fertilizers on equivalent basis. 

Manures applied to soil improve its quality by altering 
the chemical and physical properties, increase OM content, 
water holding capacity, overall diversity of microbes, pro-
vide macro- and micronutrients essential for plant growth 
and suppress diseases with indirectly contribute to plant 
growth enhancement (Scheurell and Mahaffe 2004; Heather 
et al. 2006). Certain microorganisms present in compost 
and compost extracts such as Trichoderma, Rhizobacteria, 
and fluorescent Pseudomonas are known to stimulate plant 
growth (Sylvia 2005). These microbes benefit plants through 
different mechanisms of action including the production of 
secondary metabolites such as antibiotics and hormone-like 
substances, the production of siderophores, antagonistic to 
soil-borne root pathogens, phosphate solubilization, and 
nitrogen fixation (Dubeikovsky et al. 1993). Such composts 
having microbes of twin utility hold more promise in INM 
package. 
 
 
 

Substrate dynamics 
 
Consistent efforts are being made to find alternatives to 
conventional fertilizers, media and practices, although che-
mical properties of formulated substrates may affect plant 
growth and nutritional response in varied ways viz., i) im-
provement in soil hydraulic properties, ii) maintenance of 
better available pool of nutrients, and iii) establishment of 
dynamic soil microbial environment, more suited to crop 
requirement (Dutt et al. 2002; Altland and Buamscha 2008). 
The origin of a substrate and its pH are considered two most 
important guiding principles in developing a substrate dyna-
mic to plant’s rhizosphere in addition to physical stability, 
ease in rewetting ability to withstand compression, and low 
shrinkage rate over time (Roose and Haase 2000; Altland 
2006). Dutt and Sonawane (2006) observed excellent per-
formance of chrysanthemum (Chrysanthemum indicum L.) 
on a substrate containing cocoa-peat-compost-rice husk. 
Recently, studies (Buamscha et al. 2007; Altland et al. 
2008) documented that DFB (Douglas Fir Bark) alone pro-
vided sufficient micronutrients for annual vinca (Catharan-
thus roseus L.) grown at low pH (4.6-5.5) while Hernández-
Apaolaza et al. (2005) suggested that the use of pink bark in 
coconut (Cocos nucifera L.) coir-based media formulations 
served as one alternative of recycling waste materials. 
Fisher et al. (2006) suggested peat-based substrate treated 
with lime to adjust pH within an optimum range. 

Coir dusts with a particle size distribution similar to 
peat showed comparatively higher aeration and lower capa-
city to hold total and easily available water. An air-water 
balance similar to that in peat became apparent in coir dust 
at a comparatively lower coarseness index (29% vs. 63% by 
weight in peat). Stepwise multiple regression analysis 
showed that particles with diameters in the range of 0.125 
to 1 mm had a remarkable and highly significant impact on 
the physical properties studies, while particles < 0.125 mm 
and > 1 mm had only a slight or non-significant effect 
(Abad et al. 2005). 

Four types of media [coir, 1 coir: 2 peat (by volume), 
peat, and sandy loam soil] were evaluated by Merhaut and 
Newman (2005) for their effects on plant growth and nitrate 
(NO3

-) leaching in the production of oriental lilies (Lillium 
L.) ‘Starfighter’ and ‘Casa Blanca’. Results indicated that 
the use of coir and peat did not significantly influence plant 
growth (shoot dry weight) relative to the use of sandy loam 
soil. However, substrate type influenced the amount of NO3

- 

leached through the media and N accumulation in the 
shoots for ‘Starfighter’, but not for ‘Casa Blanca’. 

Various recipes for potting mixes exist that do not con-
tain synthetic components (Kuepper and Adam 2003; Salifu 
et al. 2006). Koller et al. (2004) used several plant- and 
animal-based substrates in the production of vegetable trans-
plants. They stipulated that plant-based substrates should be 
mixed into the potting medium 2 weeks before sowing seed 
to prevent damage. Worm castings of EF have been tested 
as a component of media for organic production to tomato, 
and it was found that seedling development improved as 
percent of worm castings in the medium increased (Ozores-
Hampton and Vavrina 2002). Regardless of their origin 
these materials and practices are generally referred to as 
being alternatives to conventional fertilizers, media, and 
practices. To be accepted as commonplace in the industry, 
alternative materials and practices must be compared to 
existing conventional materials and practices (Russo 2005). 

For example, a typical substrate tested in azalea (Rho-
dodendron atlanticum) and camellia (Camellia japonica) 
(Merhaut et al. 2006; Blythe et al. 2006) consisted of 5 
sphagnum peatmoss; 4 pine bark (6.7-9.5 mm): 1 washed 
builders sand (by volume); amended with dolomite 65 at a 
rate of 0.59 kg m-3 and ultrafine calcium sulfate at a rate of 
0.59 kg m-3, mixing the substrate and amendment. The nut-
rient composition (mg L-1) was observed as: 1306 Ca, 019 
Mg, 2.62 Fe, 0.59 Mn, 0.75 Zn, 0.11 Cu and 0.01 Mo. The 
substrate was later mixed with different controlled release 
fertilizers, CRF viz., Omocote (24-4-9), Nutricote (18-6-8), 
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Multicote (17-5-11 + minor nutrients), and Polyon (17-5-11 
+ micro nutrients), all having 365 days release formulations 
in terms of highly acidic pH and particle size distribution. 

Crop residue is another option to be used as a strong 
support to substrate in any INM programme. For example, 
in India, crop residues available are estimated to be 600 
million Mg. Rice and wheat are two major crops, generating 
around 250 million Mg of residues (Selvakumar et al. 2008). 
Decomposing paddy straw is a problem because it contains 
approximately 40% cellulose, 20% hemicellulose and 12% 
lignin, and has high C: N. Several strains of mesophilic and 
thermophilic microorganisms were screened for utilization 
of paddy-straw. Four fungi, Phanerochaete sporium, T. 
viride, Aspergillus nidulus, and A. awamori were identified 
by Selvakumar et al. (2008) to carry out solid state fermen-
tation of paddy straw; all combinations were good. The pro-
cess involved construction of perforated brick tanks for 
proper aeration for composting of paddy-straw. The straw 
was supplemented with poultry droppings (8: 1) or urea at 
0.5% to bring down the C: N ratio of the straw. A tank of 1 
m3 can accommodated 80 kg of straw. Rock phosphate (1%) 
along with inoculum containing 4 fungi was applied at 0.5 
kg ton-1 straw and mixed in the tank. Moistened paddy with 
sufficient water, and within 2-3 months, compost with a C: 
N ratio of 15: 1 can be successfully obtained. Such an 
attempt needs to be replicated using other crop residues as 
substrate. Siddiqui et al. (2008) observed that the applica-
tion of T. harzianum-inoculated rice straw compost not only 
improved the morpho-physiological characters of okra but 
reduced the wet rot incidence compared to control, and 
offered an environmentally friendly alternative to inorganic 
fertilizers/fungicides, resulting in higher yield. 

Coinoculation or combined inoculation of different mic-

robe types is another area which can be gainfully exploited 
in formulating the microbially-rich substrate, provided that 
information on the synergism between different microbes is 
known (Marschner et al. 2004). In the past, a number of 
studies have suggested the coinoculation of different mic-
robes, which can be summarized as: A. brasilense – P. stri-
ata/B. polymyxa in sorghum (Alagawadi and Gaur 1992), A. 
lipoferem – Agrobacterium radiobacter/A. lipoferem-Ar-
throbacter mysorens in barley (Belimov et al. 1995), A. bra-
silense – Rhizobium in lentil (Yadav et al. 1992) and chick-
pea (Fabbrie and Del Gallo 1995), A. brasilense – A. chroo-
coccum – Klebsiella pneumoniae – R. meliloti in alfalfa 
(Hassouna et al. 1994), A. brasilense – R. leguminosarum in 
soybean (Neyra et al. 1995), and A. brasilense/Streptomyces 
mutabilis – A. chroococcum in wheat (Elshanshoury 1995). 
Many studies on coinoculation of microbes involving AM 
fungi and bacteria have also been suggested for improve-
ment in both yield and quality. These include: A. brasilense 
– G. fasciculatum in wheat (Gori and Favilli 1995), straw-
berry (Bellone and de Bellone 1995); A. brasilense – Pan-
toea dispersa in sweetpepper (Amor et al. 2008); and A. 
chroococcum – G. mosseae in pomegranate (Aseri et al. 
2008). 

Various steps involved in preparation of dynamic sub-
strate has been further depicted through a flow diagram (Fig. 
2) in fulfilling rhizosphere’s diverse requirements. 
 
Cover crops/intercrops 
 
Use of cover crops is an important component of INM 
where a series of cover crops viz., annual yellow sweet 
clover (Melilotus indica), Canada field pea (Pisum arvense), 
Colorado river hemp (Sesbania microcarpa), common 

Substrate Dynamics

Isolation and characterization of rhizosphere soil
collection from farm growing wide range of crops

Partitioning of microbial population from farms of differential
productivity with reference to specific crop

Identification of microbe type contributing
high productivity

Isolation of dual purpose microbe (e.g. Pseudomonas fluorescens, Trichoderma
viride / harzianum, Glomus sp., etc.) to meet two ends, one having the ability for

mobilising the soil unavailable pool of nutrients, and another with antagonistic effect
against soil borne diseases (e.g. Phytophthora causing root rot diseases including gummosis)

Loading such dual purpose microbes in suitable substrate of organic origin 
(e.g. farmyard manure or any crop residue)

Preparation of substrate of varying chemical and microbial 
composition using preferential microbial loading

Evaluation substrate with reference to transformation and 
availability of nutrients, yield, quality and shelf life

Multi-location appraisal for rhizospheric changes and 
crop responses for large scale recommendation

 
Fig. 2 Steps involved in developing microbially enriched substrate. 
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vetch (Vicia sativa), cowpea (Vigna unguiculata), crotolaria 
(Crotalaria striata), Egyptian clover (Trifolium alexandri-
num), hairy indigo (Indigofera hirsuta), Natal grass (Tricho-
laena rosea), purple vetch (Vicia atropurpurea), rape (Bras-
sica napus), small seeded broad bean (Vicia faba var. 
minor), tangier pea (Lathyrus tingitanus), trieste mustard 
(Brassica juncea), velvet bean (Mucuna utilis), white mus-
tard (Brassica alba), cowitch (Macuna pvuriens), Asian 
ticktrefoil (Desmodium heterocarpon), yellow peanut (Ara-
chis pintoi), green round leaf pea (Chamaecrista rotundi-
folia), centurion (Centrosoma pascuorum), and babuia 
(Centrosoma brasiliancum) have been suggested through a 
large number of studies (Lichtenberg et al. 1994; Bradshaw 
and Lanini 1995; Hartwig and Ammon 2002; Isaac et al. 
2007; Tanimu et al. 2007). These cover crops have shown 
multiple responses in terms of yield improvements; weed 
suppression; and improvements in soil water conservation, 
soil hydraulic properties, and soil fertility. Cover crops are 
further classified on the basis of their functions such as 
smother crops (used to suppress weeds), catch crops (used 
to reduce leaching losses of nutrients), green manure crops 
(sown annually and incorporated into soil prior to matura-
tion), and insectary crops (used for attracting beneficial an-
thropods). 

 
1. Cover crops and changes in soil properties 
 
Mineralization of N was highest in Sesbania rostrata fol-
lowed by rice straw, and FYM while rice straw caused N 
immobilization during the initial period of incubation 
(Samarah and Bordoloi 1994). Mahler and Auld (1989) 
observed that winter wheat yield averaged 6.6, 6.4, and 6.3 
Mg ha-1 with green manure pea, seed pea, and summer fal-
low with N fertilizer equivalent of 94, 75, and 68 kg ha-1. 
Many green manure crops furnish a succeeding rice crop 
with N equivalent of 50 to more than 100 kg fertilizer N ha-1. 
In the long run, green manuring has more important effects 
on soil properties than the ability to supply N (Bouldin 
1988; McVay et al. 1989; Decker et al. 1994; Sainju et al. 
2007). In a comparatively recent study, Matos et al. (2007) 
observed that pineapple with cover crops as Bermudagrass 
(Cynodon dactylon) and pearl millet (Penniselum america-
num) showed no depletion in soil fertility than without these 
cover crops. In another study, Tanimu et al. (2007) observed 
significantly (p<0.05) higher soil fertility induced yield of 
maize on plots earlier grown leguminous crops such as 
green round leaf pea (Chamaecrista rotundifolia), centurion 
(Centrosoma pascuorum) and babuia (Centrosema brasilia-
num) than plots without leguminous crops. Recently, Gane-
shamurhty and Srinivasarao (2009) observed that sustained 
use of pulses in the field triggered the multiplication capa-
city of earthworms, thereby helped in improving soil quality 
parameters. 

Cover crops known as green manures, are grown and 
incorporated (by tillage) into the soil before reaching full 
maturity, and are intended to improve soil fertility and qua-
lity. The supply of readily metabolizable C through organic 
manuring is likely to have been the most influential factor 
contributing to the biomass C increase (Ros et al. 2003) and 
influence on root biomass (Sainju et al. 2001). According to 
earlier studies (de Neve and Hofman 2000), SMB respon-
ded rapidly to addition of readily available C through cover 
crop residues. The positive effect on SMB (Pascual et al. 
1998) observed in soil amended with compost is due to di-
rect (microbial growth in these manures and indirect effect 
(improved plant growth). 

Cover crops have the potential to increase C sequestra-
tion, organic matter, soil aggregation, water infiltration 
capacity, water holding capacity and root growth of crops. A 
crop of cotton intercropped with legume (crimson clover, 
Trifolium incarnatum) returned 9-32% higher C within 15 
cm of Plinthic Kandiudult soil type than cotton with non-
legume cover crop (rye as Seaele cereale L.). Soil active C 
pools varied between summer and winter due to differen-
ces in temperature, moisture, and substrate availability in 

dryland cotton. In irrigated cotton, lower C/N ratio of 
legume cover crops increased C mineralization in the spring, 
but greater residue C from legume and non-legume cover 
crop mixture and succeeding cotton increased soil C storage 
(Sainju et al. 2007). Additionally, incorporation of organic 
amendments to soil influences soil enzymatic activities, 
because added material contained intra- and extracellular 
enzymes, and stimulated microbial activity in the soil (Pas-
cual et al. 1998). Even citrus pulp as an amendment has 
shown improvement in soil quality parameters in terms of 
SMB and stimulation in EA of alkaline phosphatase, gluco-
sidase, and arylsulphatase (Meli et al. 2007). 

Evaluation of different cover crops in vineyards showed 
that cover crops viz., crested wheatgrass (Agropyron crista-
tum L.), pubescent wheatgrass (Elytrigia intermedia L.), 
and perennial rye (Lolium perenne L.) depleted soil water 
least with minimum effect on leaf water potential (Olmstead 
et al. 2001) and improvement in SMB (Ingels et al. 2005). 
Organic mulches provide slow release nutrients for the 
long-term health and fertility of soil, besides enhancing soil 
aggregation and water holding capacity upon decomposi-
tion. Out of many legume crops tested on well- and poorly-
drained soil types, Indigofera hirsuta produced the highest 
dry matter (10.4 Mg ha-1) in well-drained sandy soil com-
pared to pigeonpea, Cajanus cajan and rattle bush, Crotala-
ria mucronata (10 Mg ha-1) in poorly-drained clay soil (An-
derson 1980). A comparison of treatments involving: i) in-
corporation of the whole of the faba bean-rye green manure 
crop into the soil when 30% of its flowers were open; ii) 
permanent soil cultivation; and iii) burrying the organic part 
of the green part remaining after the harvesting of aerial 
parts showed that, though structural stability, organic con-
tent, and the C/N ratio of the soil in all treatments were 
similar, but the infiltration rate was highest in treatment 
consisting of burying the underground part after harvest of 
the aerial part (MacRae and Mehuys 1985; Sarker et al. 
2003). 
 
Response of vermicompost 
 
Vermicomposting is the bio-oxidation and stabilization of 
organic matter involving the joint action of earthworms 
(Oligochaete annelids) and microorganisms (Aira et al. 
2007), thereby, turning wastes into a valuable soil amend-
ment called VC. The compost is rich in both macro- and 
micronutrients, N fixers, and humus-forming microorga-
nisms (Bano et al. 1987), besides acting as a bioconcen-
trator of heavy metals and toxic substances (Edwards and 
Thompson 1973). Vermicomposting could be developed 
and applied as a useful tool for profitable utilization of 
organic wastes for: i) organic pollution retardant by rapid 
reduction of bulk and elimination of offensive odor, ii) pro-
duction of vermi-fertilizer for application in both annual as 
well as perennial crops for providing efficient nutrition, and 
iii) production of earthworm tissue systems for large-scale 
proliferation. Native earthworm species which are surface 
feeders, easy to breed, and responsive to improved cultural 
techniques, are ideal for vermicomposting (Bugg 1994; 
Wang et al. 2007). 

Chemical, microbial, and growth regulator analysis of 
earthworm casts by Grappelli et al. (1985) showed that these 
casts have nearly neutral soil pH (6.5) with 51.60% water 
content, 16.78% total C, 1.37% inorganic C, 1.63% total N, 
0.40% NO3-N , 0.92% total PO4-P, 0.14% available PO4-P, 
1.61% K2O, 8.60% total Ca, 0.14% available Ca, 2.51% 
total Mg, 0.45% available Mg, 910.10 mg kg-1 Fe, 218.40 
mg kg-1 Mn, 7.20 mg kg-1 Cu, 0.35 mg kg-1 B, 68.30 mg kg-1 

Zn, 1.8 × 108 cells g-1 bacteria, 2.8 × 106 cells g-1 actinomy-
cetes, 2.0 × 105 cells g-1 fungi, 2.75 �m g-1 GA3, 1.50 mm g-1 
cytokininns (inole pyruvic acid), and 3.80 �m g-1 IAA on a 
dry weight basis. Studies later suggested an enrichment 
technique of vermicompost with Azotobacter chroococcum, 
Azospirillum lipoferum, and Pseudomonas striata for im-
proved solutilization of rock phosphate (Kumar and Singh 
2001; Kumari and Kumari 2002). Biochemical properties of 
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vermicompost showed that activity of cellulolytic enzymes 
was higher in casts than in soil, while activities of urease, 
protease, and phosphatase were lower in worm casts than 
undigested soil (Zhang et al. 2000). These observations sug-
gested that earthworms use microorganisms as a secondary 
food resource (Zachariah and Chhonkar 2004; Zhang et al. 
2004). 
 
Earthworm activity and changes in soil properties 
 
Native species of earthworms viz., Lampito mauritil (LM), 
Perionyx excavatus (PE), Drwida wilsii (DW), Eisenia 
foetida (EF), and Eudrilus eugineae (EE) were found to be 
efficient for vermicomposting (Sarkar 1994). Use of native 
worms with high bio-efficiency and productivity proves to 
be more field-worthy and effective in a limited bio-kinetic 
zone. Various studies (Edwards and Lofty 1982; Haines and 
Uren 1990) reported smaller earthworm population in cul-
tivated than non-cultivated soils. 

Four commercially exploited earthworm species viz., 
EF, EE, LM, and PE were evaluated for bioconversion abi-
lity of animal dung to mature vermicompost with reference 
to changes in nutrient concentration (Table 4). EF induced 
maximum magnitude of improvement in nutrient concentra-
tion when compared the values at zero day (initial value) to 
values those obtained after 120 days of incubation. Dif-
ferent nutrients were increased in magnitude of, e.g. N by 
1.49-fold, P by 1.85-fold, K by 2.43-fold, Fe by 1.61-fold, 
Mn by 1.36-fold, Cu by 1.57-fold, and Zn by 3.84-fold by 
EF. Contrary to these observations LM, the least efficient 
earthworm species improved the concentration of different 
nutrients viz., N by 1.20-fold, P by 1.66-fold, K by 1.35-
fold, Fe by 1.05-fold, Mn by 1.09-fold, Cu by 1.08- fold 
and Zn by 1.62-fold. The multiplication capacity was also 
observed to be much higher in the case of EF compared to 
the remaining three earthworm species. At the end of 120 
days of incubation the highest number of adults was ob-
served in EF (1035) followed by PE (873), LM (644), and 
EE (551), thereby, suggesting the highest efficacy of EF 
both in terms of bioconversion efficiency and multiplication 
capacity (Gupta and Srivastava 2005). 

Bugg (1994) reported about the involvement of earth-
worms in the process of nitrification. Influence of two spe-
cies of earthworm viz., EF and EE was studied by Talashil-
kar et al. (1999) on the changes in chemical parameters 
governing the compost maturity of local grass, mango 
leaves, and farm wastes. A decrease in the C: N ratio and an 
increase in humic acid (HA), cation exchange capacity, and 

water soluble carbohydrate were observed up to 150 days of 
composting. In another study, Rao et al. (1997) observed 
considerable increase in available K extracted from the 
wormcasts over non-ingested soil, due to partial conversion 
of non-exchangeable K with exchangeable form, as a result 
of shift in soil K equilibrium. 

The benefits of earthworms on soil physical conditions 
are well documented (Atiyeh et al. 2001; Mota et al. 2007; 
Munnoi and Bhosle 2008). These benefits include: mixing 
of OM from the surface into lower soil horizons, improve-
ment of aggregate stability through castings, and hydraulic 
properties of the soil through the creation of permanent 
burrows (Chan and Heenan 1992; Lee and Pankhurst 1992; 
Friend and Chan 1995; Trojan and Linden 1998). Munnoli 
and Bhosle (2008) observed that microbes in 1 g of press-
mud derived vermicompost with 100 × 109 cfu g-1 held 200 
g of soil in position. The actual beneficial effect varies with 
different species of earthworms (Lee 1985). The exact rea-
son is not clear, but this could be due to the higher organic 
C levels and better drainage found in the burrowed clays 
(Chan et al. 1988). The higher organic C levels provide a 
larger food reserve, making it possible to support a larger 
number of earthworms and better drainage of water within 
the soil profile. Cast production can be as high as 50 Mg ha-1 
year-1 (Lal and De Vleeschauwer 1982). In both temperate 
and tropical regions, the wormcasts have more favourable 
soil conditions for plant growth (Lal and Akinremli 1983) 
while, there have been evidences of favourable effect of 
earthworm activity on the availability of N and P in the soil, 
relatively less is known about its effect on the behaviour of 
K. Zaller (2006) suggested vermicompost extract very ef-
fective as foliar spray in field grown tomato. 

In Vertisols, large and deep macropores exist in two 
forms viz., temporary macropores in the form of cracks that 
close up when the soil is wet and swells, and more perma-
nent macropores created by earthworms and plant roots 
which remain open when wet (Bridge and Ross 1984). Ac-
cording to Line (1994), significant improvement in water 
holding capacity and aeration of soil were obtained in soil 
treated with earthworms composted with a mixture of wool 
wastes of Eucalyptus with seaster (Aster alfinus, a common 
European aster that grows in salt marshes) wastes in 3: 1 
(bark: seaster) or 4: 1 (sawdust: seaster) ratio, due to greater 
earthworm population forming extensive vertical burrow 
systems in the surface 20 cm soil depth (Carter et al. 1994). 

Dhawan and Kide (1994) studied changes in CEC 
during 120 days of composting of sugarcane trash and cow-
dung slurry and which showed an increase in CEC of the 

Table 4 Bioconversion efficacy of commercially exploited earthworm species. 
Macronutrients (%) Micronutrients (ppm) Earthworm species 

N P K Fe Mn Cu Zn 
Initial  

EF 1.82 0.07 0.64 4321.0 310.4 36.1 34.6 
EE  1.80 0.06 0.70 4442.1 290.6 39.2 29.2 
LM 1.76 0.06 0.68 4396.4 298.0 38.1 30.1 
PE  1.72 0.07 0.70 4398.2 302.1 40.2 30.6 

40 days 
EF 2.36 0.08 1.09 4822.0 359.6 46.1 92.7 
EE 2.20 0.07 0.90 4843.1 361.6 42.6 44.8 
LM 1.92 0.07 0.72 4499.3 309.8 39.1 41.2 
PE  2.02 0.08 0.96 4539.6 358.9 45.0 46.8 

80 days 
EF 2.61 0.10 1.32 5816.0 398.2 49.8 103.6 
EE 2.41 0.08 1.12 5019.3 400.6 48.1 58.2 
LM 2.01 0.08 0.80 4520.6 319.8 40.8 43.9 
PE  2.16 0.09 1.01 4628.1 371.8 47.9 52.9 

120 days 
EF 2.72 0.13 1.56 6982.0 422.8 56.8 132.8 
EE 2.58 0.12 1.38 5218.1 406.1 49.6 69.2 
LM 2.12 0.10 0.92 4618.1 323.8 41.0 48.7 
PE  2.38 0.10 1.12 4823.0 381.1 46.4 58.1 
Source: Gupta and Srivastava 2005 
EF: Eisenia foetida, EE: Erudrilus eugineae, LM: Lampito mauritil, PM, Perionyx excavatus 
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composted product from 37.1 to 122.6 cmol (p+) Kg-1 after 
120 days of composting. Similar observations were made 
by Manna et al. (1994) who observed an increase in CEC of 
the crop residues inoculated with vermicompost for a period 
of 180 days. The faster mineralisation of organic matter due 
to earthworms activity resulted in an increase in water solu-
ble carbohydrates content of the composted residues. 

Earlier, many studies (Tiwari et al. 1989; Hullegalle and 
Ezumah 1991) under field conditions and under controlled 
conditions (Mulongoy and Bedoret 1989; Basker et al. 
1993) have shown greater effect of earthworm activity on 
the available K in cast soil as compared with the surroun-
ding soil. Another way by which earthworms influence K 
nutrition is through their seasonal vertical migration, which 
brings K from the K-rich horizon of sub-soil to the surface 
soil in the rooting zone. A considerable increase in the K 
extracted by different extractants from the wormcasts was 
observed over non-ingested soil. Higher K release constants 
(a) were recorded for the casts than non-ingested soil (Rao 
et al. 1997). An agronomic response of vermicompost has 
been observed in crops like ginger (Vastrad et al. 2002); 
tomato (Atiyeh et al. 2001; Azarmi et al. 2008); spinach, 
potato, turnip (Upadhyay et al. 2003; Alam et al. 2007; An-
sari et al. 2008); okra (Gupta et al. 2008); sorghum (Reddy 
and Ukhura 2004); and carrot (Alam 2005), suggesting ver-
micompost as a composite nutrient source. 
 
PM treatment 
 
PM is one of the promising bulky OMs, and if handled pro-
perly, is the most valuable of all manures produced by live-
stock (Henuk and Dingle 2003). It has historically been 
used as a source of plant nutrient and soil amendment as 
well. The nutrient value of PM  varies considerably (1.60-
3.03% N, 1.00-2.63% P2O5, 1.20-2.30% K2O, 2.10-6.15% 
Ca, 0.15-0.30% Zn, and 20-25 ppm B) depending upon the 
conditions under which it is processed (Zublena et al. 1993; 
Nicholson et al. 1996). A review of nutrient composition of 
different types of PMs viz., deep litter, broiler house, and 
cage manure showed a varying nutrient composition (1.70-
2.20% N; 1.41-1.81% P, 0.93-1.30% K, 0.90-1.10% Ca, 
0.45-0.68% Mg, and 90-308 ppm Zn) due to varying ratio 
of litter to manure and the moisture content (Amanullah et 
al. 2007). 

 
1. Litter amendment 
 
Aluminum potassium sulphate (Alum) as an amendment of 
poultry litters has been suggested as the best management 
practice to economically reduce the potential environmental 
effects (ammonia volatilization and soluble phosphorus in 
run-off water) of poultry production (De Laune et al. 2006). 
Past research has shown that alum treatment reduced NH3 
emissions from litters, decreased the loss in runoff of P and 
trace metals from litter-amended soils, improved poultry 
health, and reduce the cost of poultry production. Alum 
treatment decreased litter pH and the water solubility of P, 
As, Cu, and Zn (Warren et al. 2008). Alum-treated houses 
also had higher litter total N, NH4-N, and total S concentra-
tion, and thus a lesser overall losses from litters (Gilmour et 
al. 2004; Staatt et al. 2004). While adding alum to poultry 
litter inhibited organic P mineralization during storage, and 
promoted the formation of alkaline extractable organic P 
that sustained lower P solubility in the soil environment 
(Warren et al. 2008) and P losses were reduced substantially 
(Moore and Edwards 2007). Thus, alum appears to have 
promise as a best management practice for high value PM 
production. Future research should focus on long-term 
transformation of P, Al, As, Cu, and Zn in soils amended 
with alum-treated litters (Sims and Luka-McCafferty 2002; 
Moore and Edwards 2005, 2007). 

 
 
 
 

2. Composting PM 
 
Composting or the biological degradation of organic wastes 
has been investigated as a method of stabilizing poultry 
litter and manure prior to application in soil. This process of 
composting produces a material with several distinct advan-
tages over other bulky manures. The high level of dehydro-
genase activity in the soil treated with PM suggested the 
availability of high quantity of biodegradable substrates (in 
agreement with higher content of labile C in these soils) and 
hence, an improvement in their microbial activity (Tejada et 
al. 2006). Parameters like dehydrogenese activity (Tiquia 
2005), dissolved OC (Mez-Branda et al. 2008), and an in-
tegrated use of chemical, thermal, and microbiological pro-
perties (Mondini et al. 2008) have been suggested as relia-
ble indices for assessing compost stability. 

The method of composting significantly influenced the 
nutrient value of manure. Kirchmann and Witter (1992) re-
ported a C: N ratio of 17.9 and 11.7, respectively, in anaero-
bically and aerobically decomposed PM while another stu-
dy by Sims et al. (1992) observed a C/N ratio of 18.3 in 
anaerobically composted PM suggesting the superiority of 
the latter type of manure. The effect of aerobic composting 
time for changes in micronutrient composition (Fe, Mn, Cu, 
and Zn) suggested a hint for immobilization of Mn and Zn 
with respect to water extraction and of Cu and Fe with res-
pect to acid (1 N nitric acid) extraction and increased labi-
lity of Mn and Zn to acid extraction after composting (Ihnat 
and Fernandes 1996). Composting poultry litter under anae-
robic conditions helped to greater recovery of final product 
and negligible loss of nutrients, particularly N (Kirchmann 
and Witter 1989). The agronomic efficiency of manure can 
further be improved by composting with rock phosphate 
(phosphocompost) and elemental sulphur (sulfocompost) 
according to Mahimairaja et al. (1995). The enhanced use 
of bioinoculum in combination with chemical amendments 
accelerated the compost maturity and shortened the usual 
period of composting (Manna et al. 2000; Silva et al. 2009). 
Thompson (2004) observed that total recovery of 15N from 
winter applied PM averged 56% under barley-ryegrass se-
quence. 

Atkinson et al. (1996) suggested that different N com-
pounds and nutrients are recycled rather than fixed during 
composting of poultry litter. Volatilisation loss of N is the 
major constraint during the process of open air, anaerobic or 
aerobic composting (Mahimairaja et al. 1994). Conserva-
tion of N was found to be better under anaerobic storage 
conditions (Kirchmann and Witter 1989). These authors 
reported lower losses of N under anaerobic conditions but 
higher under aerobic conditions. Wolf et al. (1988) found 
that 37% of total-N in surface-applied PM was volatilized 
in 11 days, which significantly reduced the amount of N 
available for plant uptake while Bitzer and Sims (1988) 
reported that 69% of organic N in PM mineralized in 140 
days in a sandy soil, but volatilization took place instantly 
up on incorporation. The C: N ratio of composted PM is re-
ported to be as low as 7.9 (Kirchmann and Witter 1992), 9.7 
(Nadar et al. 1992), and 6.3 (Nicholson et al. 1996) depen-
ding upon the duration of composting and other prevailing 
conditions. de Laune et al. (2006) observed that composted 
poultry litter, regardless of treatment, had higher P concen-
tration than fresh poultry litter and reduced the N: P ratio by 
as much as 51%. 

 
3. Manuring and changes in soil properties 
 
Manure is considered very effective in remediation of deg-
raded soils (Khaleel et al. 1981) and in meeting the plant 
nutrient requirement Fisher 1992). Consequently PM has 
shown superiority over many other conventionally used 
manures in improving different soil quality parameters 
(Giardini et al. 1992; Pimpini et al. 1992; Agbede et al. 
2008). Much of the N content of PM is in stable organic 
form which is converted into inorganic plant available N in 
several years (Mondini et al. 1996). Field evaluation of N 
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availability from fresh and composted PM showed a much 
higher available N index value from composted manure 
(Muñoz et al. 2008). Past studies (Gales and Gilmour 1986; 
Chescheir et al. 1986) suggested that immobilization was 
responsible for reducing inorganic N shortly (1-2 weeks) 
following the application of poultry waste. 

Mullins (2002) observed poultry litter and bedding 
material to be very useful in improving the pH of acidic soil 
due to varying amounts of CaCO3 present in poultry feed. 
Giardini et al. (1992) reported that PM treatment signifi-
cantly decreased bulk density and increased total micropo-
rosity, infiltration capacity, and available water capacity. 
Overall efficiency of OMs with respect to native plant nut-
rient availability in an acid Alfisol showed the following 
trend: PM > pig manure > FYM. Other soil properties such 
as pH, humic, and fulvic C contents showed differential 
patterns with nutrient availability at different intervals. The 
contribution of HA towards nutrient availability was highest 
under low organic matter status soil; while in case of high 
organic matter status soil, fulvic acid showed the maximum 
positive correlations (Madhumita Das et al. 1991). 

Studies carried out by Tejada et al. (2006) showed that 
enzyme activity from PM-amended Calciorthid soil was 5, 
15, 13, 19, 22, 30 and 6% greater than cotton gin compost-
amended soil for SMB, urease, protease, �-glucosidase, al-
kaline phosphotase, arylsulfatase, and dehydrogenase acti-
vities, respectively. Application of FYM (18 Mg ha-1) or 
PM (10 Mg ha-1) produced the highest rhizome yield (38.3-
39.3 Mg ha-1) of turmeric (Curcuma longa L.) compared to 
control (19.4 Mg ha-1) on Alfisols (Sanwal et al. 2007). 
 
Crop response 
 
Poultry manure showed a high magnitude of response on 
different growth and yield attributing parameters in addition 
quality in a wide range of crops. These crops include: to-
mato (Argerich 1998), jute (Adenawoola and Adejero 2005), 
pumpkin (Awodun 2007), sorghum (Agbede et al. 2008), 
soybean (Chiezey and Odunze 2009) and wheat (Petric et al. 
2009). These responses suggest PM is another equally nut-
rient-rich source holding strong potential in INM. 
 
INTEGRATION OF INM COMPONENTS 
 
Organic versus inorganic fertilization 
 
Irrespective of the mode of any nutrient management, ferti-
lizers act exactly in the same way as nutrient from organic 
sources in soil, since they are chemically the same (Srivas-
tava et al. 2002). The plant itself cannot discriminate where 
the nutrient is coming from (Trewaves 2001). Many studies 
in the past have not supported any of the two philosophies 
(organic and inorganic fertilization) of meeting the nutrient 
requirement of a crop, either through exclusive use of orga-
nics or through inorganic chemical (synthetic) fertilizers 
(Bronick and Lal 2005; Wei et al. 2006). This has indeed 
warranted in-depth analysis to provide a sound scientific 
basis to support either of the two or a combination of two-
philosophies. Inorganic chemical fertilizers due to their 
readily soluble nature, they are easy to blend and control 
rate, timing, uniformity, and frequency of application to 
meet nutrient needs in any crop type and provide a predic-
table response. On the other hand, OM, which although 
contain all nutrients, might not match the soil or crop needs, 
besides the uncertain timing and variable amount of nutrient 
release as a major constraint towards sustained response 
(Srivastava et al. 2008). 

OM as amendment has been observed to increase soil 
respiration and level of soluble organic C, and SMB-C by a 
factor of 2-3 compared to the control whereas an inorganic 
N fertilizer had little effect on any of these, parameters. 
Total manure-derived CO2-C was equivalent to 52% of ap-
plied stock piled manure-C and 67% of the applied rotten 
manure. Estimates of average turnover rates of microbial 
biomass ranged between 0.72 and 1.22 Mg year-1, and were 

lowest in manured soils with large qualities of soluble C 
(Rochette and Gregorich 1998). Apart from microbial bio-
mass changes, effectiveness of AM under chemical fertili-
zers versus biodynamic farming, was also influenced (Zal-
ler and Köpke 2004). 

Colonisation by AMF of white clover (Trifolium repens 
L.), perennial ryegrass (Lolium perenne L.), and paspalum 
(Paspalum dilatatum Poir.) was lower in conventionally 
managed pastures using chemical fertilizers than in the bio-
dynamic pastures (Ryan et al. 2000). In another study, Zal-
ler and Köpke (2004) in a experiment conducted on Fluvi-
sol, evaluating the comparative effect of traditional and bio-
dynamic FYM amendment in grass-clover- potatoes- winter 
wheat-field beans-spring wheat-winter rye crop sequence, 
observed that plots receiving either prepared or non-pre-
pared FYM (30 Mg ha-1 year-1) showed a significant in-
crease in soil pH, P, and K concentration, microbial biomass, 
dehydrogenase activity, decomposition (cotton strips), earth-
worm cast production, and altered earthworm community 
composition than plots without FYM application. On the 
other hand, the biodynamic preparation of FYM with fer-
mented residues of six crop plants (grass, clover, potato, 
wheat, bean, and rye) at the rate of 6 g Mg-1 FYM, sig-
nificantly decreased soil microbial basal respiration and 
metabolic quotient compared to non-prepared FYM. 

Manures blended with either mineral fertilizers or any 
organic residue have not only improved the available supply 
of nutrients in soil, but produced a residual effect as well, of 
course to a lesser magnitude than chemical fertilizers (Sri-
kant et al. 2000). Application of Zn as Zn-enriched slurry 
and P-enriched manures maintained a higher level of Zn 
(Singhania et al. 1984) and P (Prasad and Singhania 1989) 
in soil solution for a longer period than fertilizer alone. Her-
encia et al. (2008) reported that the addition of vegetable 
compost did not cause a significant effect on the total 
nutrient content of the soil (Xerofluvent), but resulted in an 
increase in all extractable forms of micronutrients compared 
to soil with mineral fertilization. 

An experiment conducted to determine the long-term 
(1994-1999) effects of dairy manure and chemical fertilizer 
on soil quality properties and C sequestration in an alfalfa 
(Medicago sativa L.) and orchard grass (Dactylis glomerata 
L.) forage systems showed that long-term application of 
dairy manure slurries significantly increased total organic, 
microbial biomass, potentially mineralizable, extractable 
and labile C pools, respectively, improved soil aggregate 
stability, decrease in SMRR, and subsequently produced an 
improved soil quality (Min et al. 2003; Bulter and Muir 
2006). Relatively smaller amounts of total, microbial bio-
mass, extractable and labile C pools with an increase in 
SMRR, and increase in soil acidity accompanied by a de-
crease in aggregate stability suggest that long-term and con-
tinuous use of inorganic fertilizers for crop production did 
not improve soil quality or enhance C sequestration (Anwar 
et al. 2006). In an another study, the effects of long-term ad-
dition of organic and inorganic fertilizer amendments at 
lower rates on soil chemical and biological properties 
showed that the organic amendments increased the Corg con-
tent of the soil, but had no significant effect on the dis-
solved organic C content. The C: N ratio was highest in the 
straw treatment and lowest in the mineral fertilizer treat-
ment. Of the enzymes studied, only protease activity was 
affected by different organic amendments. Bacterial and 
eukaryotic community structures were significantly affected 
by Corg content and C: N ratio (Marschner et al. 2003). 

While evaluating the long-term effect of cattle manure 
application on soil microbial population and community 
structures, Parham et al. (2003) observed that the richness 
and evenness of the bacterial community were enhanced by 
manure treatment. The treatments that included N and P 
were positively correlated with soil productivity. Pernes-
Debuyser and Tessier (2004) suggested changes in soil 
water retention properties and soil stability as good indica-
tors of long term manure treatment. 

In another study, Peck et al. (2006) assessed the apple 
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orchard productivity and fruit quality under organic (ORG), 
conventional (CON), and integrated management (INT). 
ORG crop yields were two-thirds of the CON and about 
half of the INT yields in 2002, but about one-third greater 
than either system in 2003. High but inconsistent ORG 
yields with smaller fruits were the result of several factors, 
including unsatisfactory crop load management, higher pest 
and weed pressures, lower leaf and fruit tissue nitrogen, and 
deficient leaf tissue Zn concentration. Despite production 
difficulties, ORG apples had 6-10 times higher flesh firm-
ness and texture than CON, and 4-6 times higher than INT 
apples with equal or better overall acceptability, firmness, 
and texture. Neither laboratory measurements nor sensory 
evaluations detected differences in soluble solid concentra-
tion (SSC), titrable acid (TA) or the SSC: TA ratio. Consu-
mers were unable to discern the higher concentrations of 
flavor volatiles found in CON apples. For a 200 g fruit, 
ORG apples contained 10-15% more TA than CON apples 
and 8-25% more TAA than INT apples. Across most para-
meters measured in this study, the CON and INT farm 
management systems were more similar to each other than 
either was to the ORG system. Despite limited technologies 
and products for organic apple production, the ORG apples 
showed improvements in some fruit quality (Peck et al. 
2006). Reganold et al. (2001) earlier carried out qualitative 
assessment of different cultivation systems which revealed 
that the ORG system ranked first in overall sustainability, 
followed by INT, and last by the CON system. 

Cavagnaro and Jackson (2007) compared available sup-
ply of different micronutrients under varying management 
practices. Soil data analysis indicated significant manage-
ment effects on soil chemical properties: soil pH and soil 
exchangeable Na and Ca were higher on organic farms, 
whereas soil extractable Fe and Mn were greater on conven-
tional farms. Even though there were no differences in soil 
extractable Zn, the concentration of Zn in fruits was signifi-
cantly higher on a conventionally managed farm. 

Besides appraisal on soil health assessment, quality of 

produce is another parameter that holds promise, especially 
when the impact or organic versus inorganic fertilization is 
evaluated. For example, nutritional quality differences 
between apple production systems have only been explored 
by Weibel et al. (2000), who found organically grown ap-
ples to have more polyphenols than those grown under an 
integrated fruit production system. Comparative studies 
(Carbonaro and Mettera 2001; Carbonaro et al. 2002) of 
antioxidants in other perennial horticultural crops showed 
higher concentrations of polyphenols and other antioxidants 
in organic pears (Pyrus communis L.) and peaches (Prunus 
persica L.). However, conventionally grown yellow plum 
(Prunus domestica L.) had higher concentration of polyphe-
nols and quercetin than those grown organically, whereas 
other flavonoids and several vitamins were higher in orga-
nically grown fruits (Lombardi-Boccia et al. 2004). 
 
Combined use of INM components 
 
The studies carried out on INM have shown a strong influ-
ence of cropping sequence in mitigating declining soil ferti-
lity (Singh et al. 2008). In a long-term evaluation of INM-
based treatment involving application of fertilizer nutrients 
(40 N - 8.73 P kg ha-1 for sorghum (Sorghum bicolor L.) 
and 8.73 P kg ha-1 for chickpea (Cicer arietinum L.) along 
with FYM, use of N-fixers (A. brasilense and Rhizobium), 
phosphate solubilizers (Bacillus megaterium), and VAM (G. 
fasciculatum) significantly increased the grain (r = 0.618, p 
< 0.05) and straw yields (r = 0.602, p < 0.05) and decreased 
the C: N and C: P ratios. The results suggested that for 
maximum crop yield, only 50% of the required fertilizer 
when supplemented with bioinoculants (Saini et al. 2004). 
A wide range of crops (Table 5), annual or perennial, have 
shown a high magnitude of response through different com-
binations of INM. These summarized results are more of 
interpretative than suggestive, affirming the practice leading 
to significant reduction in load on the use of inorganic che-
mical fertilizers under INM. Various components of INM 

Table 5 INM recommendations for different horticultural crops. 
Crop INM recommendations 
Banana (Musa paradisiaca L.) 160 N – 40 P – 320 K (g tree-1) – FYM (15 Mg ha-1) 
Banana (M. paradisiaca L.) 300 N – 75 P – 300 K (g tree-1) – AM (50 g tree-1) 
Bitter gourd (Momordica charantia L.) 70 N – 25 P – 25 K (kg ha-1) – neem cake (2.5 Mg ha-1) 
Bottle gourd (Lagenaria siceraria Mol.) 40 N – 20 P – 20 K (kg ha-1) – VC (5 Mg ha-1) 
Turmeric (Curcuma longa L.) 25 N – 60 P – 36 K (kg ha-1) – FYM (5 Mg ha-1) – AB (2.5 kg culture ha-1) 
Coconut (Cocus nucifera L.) 600 N – 1200 P – 1500 K (g palm-1) – FYM (50 kg palm-1) 
Coriander (Coriandrum sativum L.) 10 N – 20 P – 30 K (kg ha-1) – FYM (5 Mg ha-1) – AB (10 kg culture ha-1) 
Fenugreek (Trigonella foenum graecum L.) 50 N – 25 P – 40 K (kg ha-1) – AB (15 kg culture ha-1) 
Custard apple (Annona squmosa L.) 125 N – 65 P – 125 K (g tree-1) – AB (100 g culture tree-1) – AM (50 g culture tree-1) 
Brinjal (Solanum melongena L.) 75 N – 37.5 P – 22.5 K (kg ha-1) – FYM (12.5 Mg ha-1) – AB (50 g culture kg-1 seed) – PSM (100 g culture 

kg-1 seed) 
Brinjal (Solanum melongena L.) 45 N – 45 P kg ha-1 – PM (3 Mg ha-1) 
Okra (Abelmoschus esculentus L.) 25 N – 12.5 P – 12.5 K (kg ha-1) – FYM (15 Mg ha-1) – AB/AC (20 g culture kg-1 seed) 
Okra (A. esculentus L.) 45 N (41 kg ha-1) – PM (25 kg ha-1) 
Onion (Allium cepa L.) 75 N – 37.5 P – 75 K (kg ha-1) – AB slurry (2 kg culture ha-1) – FYM (2 Mg ha-1) 
Tuberose (Polianthes tuberose Lin.) 200 N – 200 P –150 K (kg ha-1) – FYM(5 Mg ha-1) – BF (3 kg culture ha-1) 
Cabbage (Brassica oleracea L.) 120 N – 60 P – 80 K (kg ha-1) – AM – AB – PSM (2 kg culture ha-1) 
Okra-pea-tomato (A. esculentus L. –  
P. sativum L. – L. esculentum L.) 

80 N – 15 P – 30 K (kg ha-1) – AM (100 g culture kg-1 seed) 

Tomato (L. esculentum L.) 150 N – 112.5 P – 82.5 K (kg ha-1) – FYM (25 Mg ha-1) 
Tomato (L. esculentum L.) 150 N – 60 P – 60 K (kg ha-1) – AC – PSM (50 g culture kg-1 seed) 
Tomato (L. esculentum L.) 100 N – 45 P – 60 K (kg ha-1) – PSM (10 kg culture ha-1) 
Tomato (L. esculentum L.) 100 N – 80 P – 80 K (kg ha-1) – AB (5 kg culture kg ha-1) 
Mango (Mangifera indica L.) 145 N – 335 P – 420 K (g tree-1) – AC (200 g culture tree-1) 
Tea (Camellia sinensis L.) 75 N – 60 P – 45 K (kg ha-1) – DCC – AM – AB – PSM (50 kg ha-1 each) 
Rose (Rosa indica L.) 60 N (g m-2) – FYM (5 kg m-2) 
Broccoli (Brassica oleracea gemmifera)  60 N – 30 P – 30 K (kg ha-1) – PM (2.5 Mg ha-1) 

Sources: 1. Jeyabaskaran et al. 2001; 2. Singh and Singh 2004; 3. Rekha and Gopalakrishnan 2001; 4. Bairwa and Fageria 2008; 5. Selvarajan and Chezhiyan 2001a; 6. 
Marimuthu et al. 2001; 7. Selvarajan and Chezhiyan 2001b; 8. Selvarajan and Chezhiyan 2001c; 9. Balakrishnan et al. 2001; 10. Nanthakumar and Veeraragavathatham 
2001; 11. Shelke et al. 2001; 12. Ray et al. 2005; 13. Yadav et al. 2006; 14. Yadav et al. 2005; 15. Barman et al. 2003; 16. Bahadur et al. 2004; 17. Singh et al. 2004; 18. 
Kumar and Sharma 2004; 19. Gajbhiye et al. 2003; 20. Kumar and Srivastava 2006; 21. Bhadoria et al. 2007; 22. Feza Ahmed et al. 2003; 23. Easwaran et al. 2006; 24. 
Singh 2006; 25. Maurya et al. 2008 
FYM: Farmyard manure, PM: Poultry manure, AB: Azospirillum brasilense, AM: Arbuscular mycorrhiza, PSM: Phosphate solubilizing microorganism, AC: Azotobacter 
chroococcum, BF: Bacillus firmus, DCC: Digested coirpith compost 
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are further summarized (Srivastava et al. 2008) through a 
flow diagram (Fig. 3). 

The ultimate rationale of INM is, hence, the judicious 
use of its all the three principal components viz., exploiting 
the existing synergism between dual purpose microbe 
(growth promoting as well as biocontrol agent against soil-
borne pathogens) types with limited use of inorganic chemi-
cal fertilizers, triggering the multiplication of indigenous 
soil microbial diversity through a suitable substrate of orga-
nic origin, in such a way that the nutrients inflow always 
exceeds the nutrients flow leaving the system, besides en-
suring the market favouring production economics. How-
ever, still there are many core areas where an urgent 
redressal is required in order to tag INM, a globally vibrant 
nutrient management strategy. 
 
FUTURE PERSPECTIVES 
 
Of many issues blocking the large-scale application of INM, 
the biggest constraint lies in the judicious use of organic 
inputs with regards to differential nutrient release pattern 
and timely availability in bulk quantity. In order to integrate 
promising organic resources into INM practice, an organic 
resource database with respect to nutrient contents and 
quality parameters of FYM and crop residues comparable to 
that of alterative nutrient sources such as different plant 
parts and types; nutrient stock within a farm unit as a source 
of nutrients for soil fertility management; and hypotheses 
for predicting N release rates (Palm et al. 2001), are sug-
gested. This preemptive exercise with respect to INM stra-
tegy, the required will produce the sustainable impact on 
crop as well as soil health. Such an effort is, however, dilu-
ted due to little information available on crop-specific com-
position of the microbial community and the role of domi-
nant microbial population in guiding the yield or quality. 

The interactions of microbial inoculants with native soil 
microorganisms are likely to be complex, and a better me-
chanistic understanding is necessary to predict short-and-
long term effects of those interactive or synergistic groups 
of microorganisms on chemical and biological pool of nut-
rients in soil. In this regard, much better results are antici-
pated through the coinoculation of different microbes with 
Azospirillum as a helper microbe in combination with other 
bacteria, fungi, and AM as one of the frontiers of deve-
loping rhizo-specific substrate. However, the mechanism by 
which Azospirillum sp. and other promotive rhizobacteria 
influence plant growth is yet to be understood including the 

nutrient release behaviour of different nutrient carriers as 
substrates other than peat, perlite, zeolite, and coconut coir, 
which are studied in-depth. 

Crop residues as an effective substrate need strong in-
tervention in INM for long-term assessment of soil fertility 
transformation with microbial loading, although the rela-
tionship between the microbial biomass and chemical pro-
perties of soil is well understood. But, the segregation of 
different nutrients in relation to phonological growth stages 
of annual versus perennial crops is still an issue requiring 
concerted efforts in order to derive improved nutrient use 
efficiency by proper scheduling of organic fertilization. The 
information on phytochrome synthesis mechanism involved 
in promoting the growth of microbially inoculated plants 
will further help in proposing some useful hypotheses with 
regard to cause-and-effect relationship. 

The thresholds of microbial partitioning are even now 
less understood, which quite often undermines the micro-
bial characterization of the rhizoplane and rhizosphere of 
many commercial crops. Very limited studies have been car-
ried out to separate the differences in yield potential arising 
out of genotype versus improved INM practices or geno-
type versus a plant’s internal metabolic efficiency of nut-
rient use. The multi-pronged effect of OMs on soil quality 
changes is often associated with a negative impact, e.g., 
during transition from inorganic to organic management, 
and a decline in productivity warrants strict regulation of 
organic fertilizer quality and applied quantity to avoid any 
possible contamination of productive farm land. 
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