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ABSTRACT 
Peat is the best substrate in growing media, but its rapid depletion needs at least a partial substitution. Composting of urban green wastes 
and agro-industrial by-products can produce good compost (Cm) for this purpose. Cm-based substrates are increasing in the market. 
However, physical and chemical characterization of Cm-based growing media is the first step for their proper use. This paper reports the 
results of the fractionation of the bulk organic matter (OM) of four growing media, containing increasing amount (v/v) of Cm [100% Peat; 
80% Peat + 20% Cm (CP20); 40% Peat + 60% Cm (CP60); 100% Cm) into well-defined fractions: humic acid-like (HAL), non-humic 
fraction (NH) and dissolved OM (DOM) and their characterization by a combination of chemical, thermogravimetric (TG), differential 
thermal analysis (DTA), spectroscopic (Diffuse Reflectance Infrared Fourier Transform-DRIFT) and isotopic (� 15N) techniques. TG-DTA 
of bulk growing media, HAL, NH and DOM showed significant differences among increasing Cm in Cm-based growing media. DRIFT 
spectra confirmed these differences. The N isotope ratio (� 15N) of all the substrates increased with the amount of Cm in the substrate. The 
combination of chemical, TG-DTA, DRIFT and � 15N techniques can be successfully applied for the chemical characterization of Cm-
based growing media with a good identification of different matrices. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
Peat was considered for many years for its high physical 
and chemical stability and low degradation rate the best 
substrate for growing seedlings, plant propagation, vege-
table production and ornamental plants growth in pots. 
Unfortunately, peat is obtained from wetlands, which are 
being rapidly depleted, causing environmental concerns that 
have led to many individual countries to limit the extent of 
peat mining, and prices are increasing as a result. This con-
text stimulated the search for alternative materials (Raviv et 
al. 1986; Abad et al. 2001; Garcia-Gómez et al. 2002; 
Guerrero et al. 2002; Chong 2005; Pérez-Murcia et al. 
2006; Grigatti et al. 2007a; Herrera et al. 2008; Ostos et al. 
2008). 

Developing alternative substrates to peat is necessary 
for three different reasons: limited peat resources, increased 
pressure for using wastes/by-products coming from human 
or agro-industrial activities and the economic necessity to 
use locally produced waste products. A lot of organic 
wastes (green wastes), sewage sludge, sawdust, town refuse, 
etc. have been investigated as peat total or partial substi-
tutes in container media after proper composting (He et al. 
1995; Burger et al. 1997; Raviv 1998; Riberio et al. 2000; 
Benito et al. 2005; Hernández-Apaolaza et al. 2005). Com-
posting is defined as a biological treatment in which aerobic 
microorganisms utilize organic matter (OM) as a substrate. 
The final product (compost) consists of stable OM, water, 
minerals and ash. 

The agronomic value of compost (Cm) and its benefi-
cial or detrimental effects on soil and the environment are 
closely linked to the nature and dynamics of its constituent 
OM (He et al. 1995). The OM is the most important compo-

nent of the solid phase directly involved into transformation 
processes (mineralization/humification). OM improves 
moisture, nutritional and biological properties of the sub-
strate conditioning plant growth (Chen et al. 2002). The soil 
OM was fractionated into well-defined fractions charac-
terized by different physical and biochemical properties: the 
humic substances (HS); the non-humic (NH) substances and 
the dissolved OM (DOM). The HS represent the most stable 
reservoir of organic C in soils due to their recalcitrancy to 
microbial degradation and can be divided into three main 
fractions: humic acids (HA), fulvic acids (FA) and humin 
(HU) (http://ihss.gatech.edu/ihss2). HS are complex and 
heterogeneous mixtures of polydispersed materials formed 
by biochemical and chemical reactions during the decay 
and transformation of plant and microbial remains: a pro-
cess called humification (Stevenson 1994; Senesi and Bru-
netti 1996; Brunetti et al. 2007). They have remarkable ad-
sorption and buffer capacity; hence, they can adsorb dif-
ferent nutrients and regulate their uptake, thus contributing 
to the balanced nutrient supply to the plants and protecting 
them from the damaging salt-effect. The amount and quality 
of HS and humic-like substances (HLS) in organic amend-
ments or Cm (HLS are chemically similar to soil native HS 
but they are formed in an environment different from soil) 
are, therefore, considered important indicators of the OM 
maturity and stability for a successful application in agricul-
ture and safe environmental impact of the amendment 
(Senesi and Brunetti 1996). 

DOM is considered the active and more mobile OM 
fraction that plays a key role in a wide variety of chemical 
physical and biological processes. It is related to organic C 
and N availability, metal complexation and enhanced plant 
growth. The DOM composition is a mixture of low mole-
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cular weight compounds (free amino acids and sugars) and 
chemically heterogeneous macromolecules like enzymes, 
amino-sugar complexes, polyphenols and HS (Chefetz et al. 
1998; Chen et al. 1998; Zhou et al. 2000; Peuravuori et al. 
2005; McDowell et al. 2006). The non-humic (NH) frac-
tions are characterized by low molecular weight molecules 
such as carbohydrates, proteins, amino acids and uronic 
acids (Chen et al. 2002). 

The investigation of all these organic fractions could 
give additional value to the conventional parameters (pH, 
electrical conductivity, bulk density, water holding capacity, 
organic C and total N) normally used to define the quality 
(stability and maturity) of the growing media (Inbar et al. 
1993). 

Thermal analysis and Fourier Transform Infrared (FT-
IR) spectroscopy are two widely-applied analytical tech-
niques to study the molecular structure of the OM and its 
different fractions. Thermal degradation techniques, such as 
thermogravimetric analysis (TG) and differential thermal 
analysis (DTA), have been used for many years to elucidate 
structural features of OM in whole soils, HS and Cm, pro-
viding important information on the chemical characteris-
tics of the samples (Provenzano et al. 1998; Francioso et al. 
2003, 2005; Smidt and Lechner 2005; Francioso and Mon-
tecchio 2007; Carballo et al. 2008). Thermal analysis has 
the advantage that it is simple, fast, reproducible and can be 
performed on the whole sample without requiring any pre-
treatment. TG has also been used to assess Cm stability and 
maturity (Dell’Abate et al. 2000; Mondini et al. 2003; Baffi 
et al. 2007; Smidt and Tinter 2007). 

FT-IR spectroscopy being a modern non destructive 
analytical method more and more often is used for the 
structure elucidation and quantification of a large variety of 
organic, inorganic and biological samples. Today FT-IR 
spectroscopy is more frequently applied in environmental 
analyses including soil OM, HA and FA (Francioso et al. 
1998; Filip and Bielek 2002; Francioso et al. 2003), organic 
wastes (Grube et al. 2006; Smidt et al. 2008) and Cm 
(Chefetz et al. 1996; Provenzano et al. 2001; Smidt et al. 
2008). The isotope signature of N in organic materials has 
often been evaluated since this parameter can give informa-
tion on their provenance and their undergone transforma-
tions (Choi et al. 2002, 2003; Lynch et al. 2006). Isotope 
fractionation during composting is actually the result of N 
losses and/or N microbial transformation that lead to an en-
riched, homogeneous and relatively stable � 15N signature 
of the organic N in stabilized Cm (Lynch et al. 2004, 2006). 
Therefore the technique could be useful to distinguish 
among organic matrices of different origin present in a mix-
ture (traceability), and/or to follow N transformations 
during the composting process. 

This study aimed i) to fractionate the bulk OM of peat, 
Cm and Cm-based growing media prepared using an increa-
sing amount of Cm into well-defined fractions (HAL, NH 
and DOM) and ii) to characterize their molecular structure 
by a combination of chemical, thermal (TG-DTA), spec-
troscopic (DRIFT) and isotopic (� 15N) techniques. 

 
MATERIALS AND METHODS 
 
Growing media 
 
The studied growing media were: Peat, Cm and two mixtures (v/v) 
80% Peat and 20% Cm (CP20), 40% Peat and 60% Cm (CP60). A 
homogeneous mixture of each sample was obtained. The growing 
media were dried in an air-forced oven at 60°C to constant weight 
and milled to below 0.25 mm by a Tecator Cyclotec, 1093 PBI. 

The Cm utilized was 80-days old, obtained by mixing (v/v) 
60% plant trimming and 40% urban and agro-industrial sewage 
sludge and it was supplied by Nuova Geovis (Bologna, Italy). The 
peat used was a German white Sphagnum peat (Floratorf) distri-
buted by Floragard (Italy) (Table 1). 
 
 
 

Quantitative analysis 
 
The four substrates were analyzed for total organic C (TOC) and 
total N using an elemental analyser (EA-1110 - Thermo Fisher). 
The humic-like C was measured by dichromate oxidation after 
extraction and fractionation, according to Ciavatta et al. (1991). 
Two g of substrate were extracted under N2 with 100 ml of 0.1 M 
NaOH and stirred at 65°C for 48 h. The suspension was centri-
fuged at 6000 × g for 20 min and then filtered at 0.8 μm. An 
aliquot was used to determine the total extracted C by dichromate 
oxidation. Twenty-five ml of the extract were then acidified with 5 
M HCl to pH < 2 to precipitate the HAL. The supernatant, con-
taining the fulvic-like acids (FLA) and the NH compounds was 
separated from the precipitated HAL by centrifugation at 5000 × g 
for 20 min. The FLA were separated from the NH by passing the 
supernatant through a polyvinylpyrrolidone column in order to 
separate coloured polyphenol compounds (Ciavatta and Govi 
1993). The recovered FLA were then added to the HAL, redis-
solved in 0.5 M NaOH before C determination by dichromate oxi-
dation (Ciavatta et al. 1991). The NH was indirectly determined as 
a difference between the total extracted C and the humic-like C. 

The DOM was extracted by using deionised water according 
to Chen et al. (1998) with an extraction ratio 1:10. Samples were 
shaken for 2 h, afterwards the suspension was centrifuged at 
10,000 × g for 30 min and filtered through a 0.45 μm filter mem-
brane. An aliquot of the extract was used to determine the C 
content by dichromate oxidation (Ciavatta et al. 1991). 
 
Preparation of HAL, NH and DOM fraction for 
qualitative analysis 
 
In order to carry out the qualitative analysis on the HAL, NH and 
DOM fractions, the same procedures of extraction and fractiona-
tion previously described were used. Then the obtained fractions 
were dialyzed at different cut off, 8000 Da for HAL fraction, 1000 
Da for both NH and DOM before being freeze-dried. 
 
Thermal analysis 
 
Thermogravimetric analysis (TG) and differential thermal analysis 
(DTA) were carried out simultaneously using a TG-DTA92 instru-
ment (SETARAM, France). About 10 mg of sample was weighed 
on an alumina crucible and isothermally heated to 30°C for 10 min 
under air flow (8 l h-1) and then heated from 30 to 800°C. The 
heating rate was 10°C min-1. Indium and calcinated caolinite were 
used as the reference materials. Each sample was analyzed and 
mean values of the three replicates were estimated for each mix-
ture and lyophilized sample. 
 
Diffuse Reflectance Infrared Fourier Transform 
(DRIFT) spectroscopy 
 
DRIFT spectra were recorded with a Bruker TENSOR series FT-
IR Spectrophotometer (Ettlingen, Germany) equipped with an ap-
paratus for diffuse reflectance (Spectra-Tech. Inc., Stamford, CT). 
Spectrum was collected as Kubelka-Munk units using KBr (Ald-
rich Chemical Co. Milwaukee, WI) as background reference. Each 
spectrum was recorded from 4000 to 400 cm-1 and averaged over 
100 scans (resolution 4 cm-1). Analyses of spectral data were 
performed with Grams/386 spectral software (Galactic Industries, 

Table 1 Main chemical properties of the peat, Cm and Cm-based growing 
media (CP20, CP60). All data are expressed on a dry-matter basis. 

Growing media Parameters
Peat CP 20 CP 60 Cm 

pH (H2O) 5.92 � 0.31 7.46 � 0.29 7.87 � 0.22 8.27 � 0.23
Ash (%) 6.9 � 0.21 30.1 � 0.50 46.7� 0.32 59.1 � 0.37
TOC (%) 52.1 � 0.02 41.0 � 1.21 28.9 � 0.74 22.6 � 0.72
HLa-C (%) 26 � 0.05 22.4 � 0.05 12.8 � 0.18 10.4 � 0.12
NH-C (%) 2.1 � 0.07 2.3 � 0.06 2.2� 0.07 2.2 � 0.08 
DOM-C (%) 0.21 � 0.003 0.55 � 0.005 0.55 � 0.001 0.54 � 0.006
Total N (%) 1.32 � 0.02 1.60 � 0.01 1.80 � 0.01 2.12 � 0.01
C/N ratio 43.4 25.6 16.0 10.7 

HL a: humic-like fraction = HAL+FAL - � standard deviation 
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Salem, NH). 
Spectral sections from 1850 to 600 cm-1 were baseline-

corrected to an absorbance value of 0.00 at 1850 cm-1. We decided 
to study this region because it is sensitive to the structural changes. 
Area integration of the region from 3020 to 2750 cm-1 was used to 
compare the aliphatic component between samples. Data were 
expressed as average of three replicates ± standard deviation. 
 
� 15N measurements 
 
Nitrogen isotopic ratio was determined using an elemental ana-
lyser (CHNS-O mod. EA 1110) coupled with an isotope ratio mass 
spectrometer (IRMS, FINNIGAN-MAT mod. Delta Plus). The iso-
topic composition of the samples was expressed as � units accor-
ding to the following formula: 
 
� 15N = [(Rsample – Rstandard)/Rstandard] x 1000 
 
where R = 15N/14N and the standard is atmospheric N2. 
 
Data analysis 
 
The difference between means was estimated using Tukey’s test 
with a significant level of P<0.05. 
 
RESULTS AND DISCUSSION 
 
Chemical characteristics 
 
The chemical characteristics of the substrates are shown in 
Table 1. The pH values increased as the Cm content in-
creased in the medium. The pH in CP20, CP60 and in Cm 
was higher than an ideal substrate according to Abad et al. 
(2001), while pH of peat was clearly in the optimal range. 
Also the ash content increased as the Cm level increased in 
the medium, since the Cm used contained the 60% of ashes. 

The TOC and HAL-C content decreased as the % of Cm 
increased in the mixtures. The TOC and HAL-C content of 
Cm was less than a half with respect to peat’s one and this 
influenced the organic and HAL-C of the two mixtures. The 
NH-C was at the same concentration in all the growing 
media while the DOM-C content in the two mixtures 
seemed to depend on the presence of Cm. In fact the DOM-
C content was not statistically different in Cm, CP60 and 
CP20 while it was significantly lower in peat sample (P < 
0.05). Quantitatively the DOM-C extracted from peat rep-
resented the 0.4% of the TOC while in Cm it increased up 
to 2.4% (6 times higher than in peat). These findings are 
important because the DOM fraction of a substrate repre-
sents the biologically and chemically active and mobile 
organic fraction involved in nutrients availability, metal 
complexation and microbial activity (Chefetz et al. 1998; 
McDowell et al. 2006). 

The N content increased as the Cm increased in the 
growing media, being Cm characterized by a higher N 
content than peat. Increasing amount of not stabilized N 
might cause N immobilization processes in growing media 
thus negatively affecting  plant growth, with concerns for 
users (Griffin and Hutchinson 2007; Grigatti et al. 2007b) 
The different composition of the media clearly influenced 
also their C/N ratio: it rapidly decreased as the Cm content 
increased in the medium. 
 
TG-DTA analysis 
 
The TG-DTA data of the studied growing media (Peat, 
CP20, CP60, Cm) and their relative organic fractions (HAL, 
NH and DOM) are shown in Figs 1, 2. 

The DTA profiles were mainly characterized by the 
presence of two exothermic reactions. The first peak (250-
350°C-Exo1) is considered to be the result of the thermal 
degradation of polysaccharides, pectin, hemicellulose, cel-
lulose and microbial cell walls, decarboxylation of acidic 
groups and dehydration of hydroxylate in aliphatic struc-
tures; the second peak (350-500°C-Exo2) is related to the 

breakdown of aromatic structures and cleavage of the C-C 
although it could also be attributed to aliphatic macromole-
cules in the form of long chain hydrocarbons and N com-
pounds (Dell’Abate et al. 2000; Provenzano et al. 2001; 
Francioso et al. 2003; Peuravuori et al. 2005; Francioso and 
Montecchio 2007; Lyons et al. 2008). 

 
TG-DTA of substrates 
 
Peat and Cm showed a different thermal behaviour. Peat 
was characterized by a high content of OM (about 93%) 
with a mass loss related to Exo1 (336°C) of 48% and to 
Exo2 (446°C) of 44.6% (Fig. 2) suggesting an equilibrium 
between the presence of polysaccharides, aliphatic com-
pounds, carboxylic groups and aromatic compounds. Cm 
presented the lowest content of OM (35%) and the highest 
ash content among the substrates (Table 1). In spite of the 
quantitative differences, the ratio between the two exother-
mic peaks Exo2/Exo1 (0.93) was similar to that of peat 
(0.80), but DTA of Cm showed a shift of Exo2 towards 
higher temperature (495°C) compared to peat suggesting a 
higher content of aromatic polycyclic structures in Cm. 

The thermal behaviour of CP20 and CP60 was clearly 
influenced by the two sources (Peat and Cm). The OM 
content decreased with the increase in the amount of Cm in 
the mixture with values of 68 and 46% in CP20 and CP60, 
respectively. In CP20 88% of the total OM was lost with the 
first exothermic reaction (Fig. 2). As showed by DTA this 
mass loss is basically related to the overlapping of two exo-
thermic reactions at 330°C (corresponding to Exo1 of Peat 
and Cm) and a not well resolved peak at 446°C (correspon-
ding to Exo2 of Peat). The remaining OM (12% of the total) 
was lost with the second exothermic reaction at 495°C and 
was due to the presence of Cm in the mixture, and in parti-
cular to its aromatic component (Fig. 1). 

The CP60 DTA curve was characterized by two well 
separated exothermic reactions at 332 and at 496 °C. This 
thermal behaviour was very similar to that of Cm (Fig. 1), 
but the lower Exo2/Exo1 ratio of CP60 (0.58) compared to 
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Fig. 1 DTA curves of increasing compost-based growing media (Peat, 
CP20, CP60 and Cm) and their organic fractions (HA, DOM and 
NH). 
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that of Cm (0.80) suggesting the presence of a greater 
amount of polysaccharides, pectin, hemicellulose and ali-
phatic compounds due to the presence of peat. 

 
TG-DTA of HAL 
 
The DTA curves of HAL were similar for all the substrates 
and characterized by the presence of two exothermic 
reactions at about 300°C (Exo1) and about 420°C (Exo2) 
(Figs. 1, 2). In HAL of peat sample and even more in CP20 
HAL the mass loss related to Exo1 was higher than that 
related to Exo2, so that the Exo2/Exo1 ratio was always 
below 1. Increasing amount of Cm in the mixtures caused 
an increase in the Exo2/Exo1 ratio with values ranging from 
1.03 (CP60) to 1.05 (Cm) that indicates a higher content in 
aromatic compounds deriving from Cm. 
 
TG-DTA of DOM 
 
Thermal behaviour of DOM was similar for all the sub-
strates. The greatest amount of total OM is lost in two exo-
thermic reactions (Exo1, Exo2) and it is generally charac-
terized by a high content of carbohydrates, aliphatic com-
pounds and carboxylic groups as suggested by the high 
mass losses related to Exo1. This was particularly evident 
for Peat-DOM which Exo2/Exo1 ratio was 0.35, whereas 
Cm-DOM showed a higher content of aromatic compounds 
as highlighted by the higher Exo2/Exo1 ratio (0.49). 
Moreover, a third exothermic peak (Exo3 at about 500°C) 
was present in Cm-DOM, and in the two mixtures (CP20 
and CP60). This peak seems to be characteristic of Cm 
since it is lacking in a peat DTA curve (Fig. 1) and it in-
creases with the amount of Cm in the mixtures (Fig. 2). We 
suggest this peak to be related to the presence of amidic 
groups, as confirmed by DRIFT data (Fig. 3) that during 
heating of the sample form N-heterocyclic aromatic com-
pounds due to the Maillard reaction (Knicker 2007). On the 
basis of these results we suggest that bioavailable organic N 
that could be easily immobilized in the presence of Cm. 

 
 

TG-DTA of NH 
 
The NH fraction is obtained at the end of the fractionation 
procedure of the HS and is constituted by the remaining 
organic components that are soluble in acidic conditions 
and are not adsorbed on a cross-linked polyvinylpyrrolidone 
polymer (Ciavatta and Govi 1993). This organic fraction is 
characterized by the presence of simple and cyclic carbo-
hydrates, amino-sugars, fatty acids and uronic acids (Chen 
et al. 2002). The DTA curves of Peat and CP20 NH were 
similar to thermal profile of cellulose (DTA curve not repor-
ted) (Fig. 1), while the CP60 and Cm differed from this pat-
tern. The mass losses were similar, except for Peat-NH and 
Cm-NH Exo3 where the last one was double respect to the 
former (13.2 and 7%, respectively). 
 
DRIFT analysis 
 
The spectra of peat, Cm, CP20, CP60 and their organic 
fractions (DOM, HAL and NH) were shown in Fig. 3. The 
main attributions were assigned according to the literature 
(Chefetz et al. 1996, 1998; Ouatmane et al. 2000; Xiao et al. 
2001; Chen et al. 2002; Ouatmane et al. 2002; Jouraiphy et 
al. 2005; Grube et al. 2006; Francioso and Montecchio 
2007; Carballo et al. 2008; Smidt et al. 2008). In general 
the spectra of the substrates showed a similar profile. The 
broad band at around 3300 cm�1 is due to vibrations of OH 
groups; the peaks between 2930 and 2860 cm�1 are due to 
C–H stretch in aliphatic substances; the peaks between 
1700 and 1600 cm�1 are assigned to C=O vibration of car-
boxylic acids, amides, ketones and/or quinones and the 
C=C vibration of aromatic components. A weak peak at 
1511 cm�1 was attributed to aromatic skeletal of lignin. 
Another broad band at around 1440 cm�1 arose from the 
bending motion of CH2 group and also the C–O stretch 
vibration of carbonates. The intense peak between 1150 and 
1000 cm�1 is usually attributed to polysaccharides and to 
mineral compounds. Finally, the band at 874 cm�1 may be 
assigned to the C–O out-of-plane bend of carbonates. 

Peat and Cm spectra were different. The spectra of the 
mixtures were affected by the different amount of Cm and 
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Fig. 2 Thermogravimetry data of increasing compost-based growing media (Peat, CP20, CP60 and Cm) and their organic fractions (HA, DOM 
and NH). 
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peat, confirming the findings of the thermal analysis. Peat 
spectrum was characterized principally by lignin (1510 
cm�1) while in Cm spectrum was prevalent the calcium car-
bonate (1440, 874 cm�1). Infact, in Cm spectrum, bands due 
to its mineral component are prevalent because it contained 
the 60% of ash (Table 1). Further, the content in CH groups 
of peat and Cm significantly (P < 0.05) differed as deter-
mined by the integration area values (22.1 ± 0.3 for peat 
and 16.3 ± 0.6 for Cm). CP20 spectrum was dominated by 
the signals of peat while, on the contrary, the spectral pro-
file of CP60 is, very similar to that of Cm for the presence 
of the carbonates, and the broad band at 1040 cm�1, that, 
considered the high amount of Cm, should be attributed to 
mineral compounds. 

The spectra of the HAL were characterized by a shoul-
der at around 1650 cm-1 attributed to aromatic vibration 
bands, carboxylate bands (1593, 1403 cm�1), and carbohyd-
rates (1230-1100 cm�1) (Fig. 3). In peat and CP20 spectra 
the lignin band (1514 cm�1) was also evident. The main 
structural change between Peat-DOM and Cm-DOM con-
cerns the different protonation state of carboxylic groups 
(1711 cm�1). In the mixtures, the intensity of the band due 
mainly to the stretching of C-N of secondary amides (1230 
cm�1) increased with the amount of Cm. This behaviour is 
consistent with the thermal analysis showing an increased 
mass loss of Exo3 with the increase of Cm in the substrates 
(Fig. 2). 

The NH spectra (Fig. 3) were similar and mainly cha-
racterized by the bands of carbohydrates (1043 and 897 
cm�1), carboxylic acids (1726 and 1225 cm�1) and amide I 
(1649 cm�1) and amide II (1546 cm�1). As expected, Peat-
NH showed a prominent broad band at 1048 cm�1 princi-
pally due to the stretching of carbohydrates in hemicel-
lulose and cellulose residues as also confirmed by DTA 
analysis (Fig. 2). 
 
 
 

Isotopic analysis 
 
The N isotope ratio of the whole substrates increases with 
the amount of Cm in the substrate (Fig. 4). Mature Cm is 
generally characterized by high � 15N values as a result of N 
fractionation during composting process (Lynch et al. 2006). 
On the contrary Peat has a characteristic � 15N value always 
close to zero ‰ since in peat-forming ecosystems, the N 
source is only due to atmospheric deposition (Schmidt et al. 
1992). 

The HAL fraction showed the same trend of the unfrac-
tionated substrate with � 15N values increasing with the 
increase in the amount of Cm, although the values were 
generally lower compared to the unfractionated substrate. 
Data on N isotope fractionation in humic and HL fractions 
of different origin are not available in literature. However, 
the trend we found turns out to follow the same trend ob-
served for C for which a great amount of data indicate that 
the humic or HL fractions are depleted in 13C compared to 
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the unfractionated material (Lichtfouse et al. 1995; Hiradate 
et al. 2004). The DOM shows once more the increase in � 
15N values already observed with the increase in the amount 
of Cm, but, unlike the humic fraction, the DOM was cha-
racterized by values higher than the unfractionated sub-
strates. This enrichment could be possibly due to the preva-
lent presence in this fraction of microbial-derived or micro-
bial-transformed N which are normally enriched in the 
heavier isotope (Blair et al. 1985; Nadelhoffer and Fry 
1988). Unlike the two previous fractions and the unfrac-
tionated substrates, unexpected values were found in the 
NH fraction, and in particular in that from Cm that was cha-
racterized by very low � 15N values. Both peat and the mix-
ture containing 80% of peat (CP20) had � 15N values higher 
than the humic fraction and this is consistent with fractiona-
tion mechanisms observed by Esteves et al. (2007) in the 
NH fraction extracted from soils. However, a further in-
crease in Cm in CP60 did not cause the expected increase in 
� 15N that was on the contrary lower than the value mea-
sured for the humic fraction. This tendency was even more 
pronounced in the NH from Cm that was characterized by a 
great fractionation leading to very low 15N values. 
 
CONCLUSIONS 
 
Although peat is the best substrate in growing media its 
rapid depletion needs to force towards at least its partial 
substitution. Among the potential substitutes, Cm represents 
a real source and Cm-based substrates are a good chance to 
decrease the peat use. In this way we can save peat and we 
can transform urban green wastes and agro-industrial by-
products into excellent products after a proper composting 
process. Nevertheless, in order to obtain the best results it is 
absolutely necessary the chemical characterization of Cm-
based substrates. 

The combination of TG-DTA, DRIFT and � 15N tech-
niques on the whole substrate seemed to be worthwhile to 
recognize the different matrices of the mixture. Among the 
fractions, the DOM seemed to be characteristic for the dif-
ferent growing media because the presence of Cm was well 
recognized in this fraction. The specific exothermic peak at 
high temperature, and the specific DRIFT band related to N 
compounds in Cm-based growing media, might be promi-
sing to evaluate the bioavailable N in DOM. 

However further investigations on different kinds of 
Cm-based growing media are needed. 
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