Buckwheat-Enriched Bread Production and its Nutritional Benefits

Tatiana Bojňanská1* • Peter Chlebo2 • Radovan Gažar1 • Aleš Horna3

1 Department of Storing and Processing Plant Products, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 94901 Nitra, Slovak Republic
2 Department of Human Nutrition, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94901 Nitra, Slovak Republic
3 University Institute, Technology park, Food Research Centre & Radanal Ltd., Tomas Bata University, 76001 Zlin, Czech Republic

ABSTRACT

Buckwheat wholegrain flour was added to wheat flour at 10, 20, 30, 40 and 50% (dry weight) to evaluate the technological, organoleptic and nutritional properties of the enriched bread. The bread that was produced was generally acceptable when up to 30% buckwheat was added to wheat flour. Regarding the technological quality, an increase in the level of buckwheat led to a decrease of the extensograph energy, resistance, extensibility as well as the ratio number (rheological parameters). Loaves prepared with buckwheat were of lower quality, negatively influencing loaf volume, specific volume, and bulk productivity of the bakery products. From a nutritional point of view, various nutritional parameters, such as rutin content and macro and microelements were determined and compared in the enriched and control bread. The elements which were quantitatively determined (zinc, copper, manganese, nickel) are important biogenic elements. The contents of these elements in bread to which 50% buckwheat was added were significantly higher than in the control wheat bread and control bread. The elements which were quantitatively determined (zinc, copper, manganese, nickel) are important biogenic elements. The contents of these elements in bread to which 50% buckwheat was added were significantly higher than in the control wheat bread (from 115% for Mg to 338% for Ni). The rutin content in the bread increased as the amount of buckwheat increased from 14.1 mg g−1 DM (10% buckwheat) to 48.9 mg g−1 DM (50% buckwheat). The daily consumption of buckwheat-enriched bread (30% buckwheat, 200 g bread, 3.8 g rutin) during the clinical study (four weeks/eight weeks) caused a significantly increase in the iron level in the blood of volunteers and significantly decreased the triglyceride, HDL cholesterol, creatinine, calcium and magnesium levels. The decrease in total cholesterol, urea and chloride levels were insignificantly.

Keywords: baking test, nutritional and technological quality, clinical study, blood parameters

Abbreviations: AAS, atomic absorption spectrometry; BU, Brabender Unit; DM, dry mass; DW, in dry weight; HDL, high-density lipoprotein cholesterol; TAS, total antioxidant status

INTRODUCTION

The purpose of foodstuffs is not only to satisfy one’s appetite and to stay alive; foodstuffs should also support one’s health and under no circumstances should they be detrimental to consumer’s health. Raw materials of plant origin, including cereals, pseudo cereals and legumes belong to one of the most important sources of nutrition. The most common basic products of cereals are bread, bakery and pastries. Their total consumption in Slovakia has been recently about 78 kg on average per person per year. This represents a significant group of foodstuffs in the consumption basket with a great influence on the health of the consumer.

Buckwheat is introduced into the diet as an alternative crop of renewed interest thanks to its nutritive and health-promoting value. Two buckwheat species are commonly cultivated: common buckwheat (*Fagopyrum asciulementum* Moench) and tartary buckwheat (*Fagopyrum tartaricum* (L.) Gaernt.). These crops are not cereals, but the seeds are well classified under cereal grains because of their similar usage. The grains are generally used as human food and as animal and poultry feed. Buckwheat has been utilized in food products as groats or flour. Two main methods are used for achenes husking: mechanical grinding of the husks or thermal treatment. The dehulled groats are cooked as porridge and the flour is used in the preparation of bread (mixed with wheat flour), pancakes, biscuits and noodles. The technological quality of common buckwheat is influenced by cultivars (Kalinová et al. 2002).

Researchers (Michalová 2000; Zeng et al. 2001; Michalová 2003; Quing-Fu 2008) suggest that buckwheat was introduced in Europe from south-west China via northern China and Siberia, and from there probably via Russia and Ukraine to Central Europe where it appeared around the year 1400. From Central Europe buckwheat spread further to Western Europe (Michalová 2000). In Europe buckwheat is grown mainly in Russia, Ukraine, Poland, Belarus, France, Austria and Slovenia. To a lesser extent it is grown in Hungary and it is cultivated again in the Czech Republic, Luxembourg, northern Italy and Slovakia. In Slovakia it is currently grown on approximately 250 ha with two approved cultivars: “Pyra” and “Spacinska 1”. Buckwheat is a low input plant (Kret 1989) making it very suitable for organic farming.

At present, the demand for buckwheat is high because of its excellent properties and nutritional value based on its favourable composition. Common buckwheat grains and other tissues contain numerous nutraceutical compounds. They are rich in vitamins, especially those of the B group (Fabjan et al. 2003), they are an important source of microelements (Zn, Cu, Mn, Se) and macro elements (K, Na, Ca, Mg) (Bonafacía and Fabjan 2003; Stibilj et al. 2004) and they offer a high nutritional quality of proteins (Kret et al. 1996; Watanabe 1998; Guo and Yao 2006; Christa and Soral-Smietana 2008), but have a relatively low true digestibility (Skrabanja et al. 2000). The amino acid composition is well balanced and of a high biological value. Buckwheat proteins are rich in arginine and lysine, the primary amino acids limiting the content of proteins in cereals, whereas the contents of methionine and threonine in buckwheat proteins are low (Christa and Soral-Smietana 2008). Buckwheat proteins have different characteristics in comparison to wheat,
barley and rye prolamins enabling the application of buckwheat grains in prophylactics for gastrointestinal tract diseases, mainly celiac disease (Kreft et al. 1996).

Starch is the major carbohydrate in buckwheat. The starch content in the whole grain of buckwheat varies from 59 to 70% of the dry mass with fluctuations in function of the variable climatic and cultivation conditions (Qian and Kuhn 1999). Buckwheat starch shows a higher amylose content, a water-binding capacity and a peak viscosity, and it had a lower intrinsic viscosity when compared with corn and wheat starches (Qian et al. 1998).

The dietary fibre content may vary from 5–11%. Buckwheat products may have an important content of retrograded starch (Skrabanja and Kreft 1998) and could thus be very suitable for diabetic patients and the prevention of colon cancer. From the nutritional point of view there are three fractions of starch existing, including resistant starch. Resistant starch is not absorbed in the small intestine and is partly or completely available for fermentation by micro flora in the large intestine. It could show a similarity to dietary fibre. Uncooked grains contain 33–38% of total starch, but after cooking only 7–10% (Christa and Soral-Smietana 2008). Suitable textural properties for pasta and other products could be achieved by the balance of other proteins and starch (Ikeda et al. 1997). Buckwheat grains and hull consist of some components with healing properties and biological activity, i.e.: flavonoids and flavon, phenolic acid, condensed tannins, phyto-sterols and fagopyrins. Flavonoids are a class of secondary plant phenolic compounds with significant antioxidant and chelating properties. Their cardio protective effects stem from the ability to inhibit lipid peroxidation, chelate reduct-active metals, and attenuate other processes involving reactive oxygen species (Heim et al. 2002). The biological activities of flavonoids are related to their antiinflammatory effects. The propensity of a flavonoid to inhibit free-radical mediated events is governed by its chemical structure. Buckwheat contains many flavonoid compounds known for their effectiveness in reducing the blood cholesterol, keeping capillaries and arteries strong and flexible, and assisting in the prevention of a high blood pressure (Santos et al. 1999). Rutin is a flavonol glycoside composed of the flavon quercetin and saccharide rutinosine. The antioxidant power of rutin was corroborated by several studies; however, some studies report its pro-oxidant activity and the ability to generate reactive oxygen species, ascribed to aglycone quercetin (Watanabe et al. 1997; Watanabe 1998; Quettier-Deleu et al. 2000; Cotelle 2001; Rice-Evans 2001). Antioxidant activity is a fundamental property important for life. Many biological processes are as antimutagenicity, anticarcinogenesis and antiaging, among others, originate from this property (Cook and Samman 1996).

The content of vitamins, protein, minerals, fibre, and starch with reduced speed of digestion, rutin and other flavonoids make buckwheat products favourable for a healthy nutrition. Buckwheat is used for pasta products, for blended bread (in combination with wheat, corn and other cereals) and for different types of other flour foods.

In this study we have investigated the possibilities of buckwheat use for bread production with favourable technological and organoleptic properties and the influence of such bread consumption on the protective effect on blood components, e.g. on chosen microelements contents, such as cholesterol, triglycerides and other important components.

MATERIALS AND METHODS

In buckwheat seeds the content of the following basic components was determined: starch content (according by Ewers), ash content (weight method by burning in muffle kiln), crude protein (by Kjeldahl’s method, f = 6.25), rutin content (by a chromatograph, column Lichrospher 100RP-18, 250–4, 5 μm). The buckwheat wholegrain flour (from winnowed seeds) was mixed with wheat flour T 512 in different portions (10, 20, 30, 40 and 50% in dry weight before baking) for the production of buckwheat bread. The analysis of the rheological property changes caused by different portions of buckwheat has been provided by means of the Farinograph-E and Extensograph-E (Brabender OhG, Duisburg). The selected parameters loaf volume (cm³), specific loaf volume (cm³.100 g⁻¹ loaf), volume efficiency (cm³.100 g⁻¹ flour), crumb acidity (titration method), ash and crude protein content in bread have been evaluated during an experimental baking test. Ten bread samples of bread were analyzed for their Zn, Cu, Ni content and other micro and macro elements (the analytical method used for these analyses was AAS (AA Varian AA spectDUO 240fs/240z/UltrAA).

The sensory characteristics of the baked loaves have been evaluated with scoring points using an intensive scale prepared by our team (scale 1-5) for the crust colour, crumb colour and crumb porosity and a hedonic scale (1-9) for the surface appearance, crumb appearance, taste, flavour and the complex evaluation (overall acceptability). The breads with a high scale were preferred.

A clinical study based on a daily consumption of 200 g of enriched bread (30% in dry weight buckwheat) was conducted on the group of volunteers (33) during a period of four weeks, after which the selected parameters in their blood were evaluated. Three intravenous blood samples were taken: before the clinical study, immediately after it (after four weeks of consuming enriched bread) and after another four-week period. The blood parameters (Ca, Mg, Fe, creatinine, urea, cholesterol, glucose and triglyce-ride level) were measured with the analyser LISA 200 (Bioscode-Hycel). The statistical analysis of the data was performed by means of the student’s t-test. The differences were considered as statistically significant at P<0.01.

RESULTS AND DISCUSSION

The used buckwheat was grown in an ecological way and distributed to the market chain. The analysis of the ground groats by thermal treatment indicated that the buckwheat used contained 72.9% starch, 14.16% crude protein and 1.83% ash content in dry mass. The content of crude protein (11.1%) and ash content (1.48%) in the used wheat flour was lower and the content of starch (82.86%) higher (Boj-Manska et al. 2009). Buckwheat is not commonly used as a bakery raw material because there is no glutenin and gladin fraction (Guo and Yao 2006) for gluten formation. The influence of the addition of buckwheat on dough processing and on the quality of the baked goods was observed. The rheological properties of the dough changed when the amount of buckwheat in the blend was increased. The farinograph curve confirmed the prolongation of the dough development time from 2.3 min (wheat flour T 512) to 10.5 min in case of a buckwheat addition of 10 and 20% in dry weight (DW), and the raise of the energy input demands for kneading dough with an optimal consistency after increasing the addition of buckwheat. The degree of softening of the dough after 12 min measured from maximum increased from the previous 54 BU in case of flour T 512 to 85 BU for the sample with a buckwheat addition of 20%. The farinograph quality number was noticeably higher for samples with buckwheat addition (150) compared to T 512 (58). That cannot be related to the better baking quality, rather than to the prolonged dough development time due to the increased gluten fraction. The extensograph indicated the decrease of the dough resistance and its stability during mixing (Boj-Manska et al. 2009). According to Přihoda et al. (2003) this is the presupposition for the decrease of loaf volume, which was also confirmed by the baking test. The amyloytic activity in the enzymatic complex of flour in suspension showed the maximum increase of the gelatinization tempe-
Buckwheat in bread production. Bojanská et al.

The gelatinization temperature from 86.6°C (T-512) to 87.3°C (20% DW buckwheat addition) and the maximum decrease of the gelatinization viscosity from 646 BU (T-512) to 497 BU (20% DW buckwheat addition).

The baking test confirmed this, too. The loaves prepared with an addition of buckwheat were evaluated to be of a lesser quality from the technological viewpoint when compared with pure wheat loaves (Fig. 1). The additions negatively influenced the loaf volume, the specific volume and the bulk productivity of the bakery products (Fig. 2) and increased the crumb acidity, the crude protein content and the ash content (Fig. 3). The loaf volume, specific volume and volume efficiency decreased with an increased addition of buckwheat as a result of the decrease of the gluten fraction and the lower capability of gas retention during dough fermentation. The titration acid (crumb acidity) of the buckwheat products increased significantly with the addition of buckwheat (from 48 mmol.kg⁻¹ in the control sample to 74 mmol.kg⁻¹ in the sample with an addition of buckwheat of 50% DW) what indicates their better quality as far as taste is concerned.

Through the addition of these raw materials the content of nitrogenous substances with a positive biological value in bread has increased, as well as the content of vitamins,
minerals and resistant starch. The antioxidant activity has also increased.

Macro and microelements content in bread

The elements which were determined quantitatively (zinc, copper, manganese, nickel) are listed in tables with recommended nutritional rations. Zinc is an important biogenic element which is part of many enzymes. It plays an important role in the synthesis of proteins, influences the metabolism of saccharides and lipids and supports the immune system (Melicherčík and Melicherčíková 1997). The daily recommended amount of zinc ranges from 5 to 16 mg depending on age, gender and the work load. In general cereals do not have a high Zn content, but based on our results, buckwheat can be considered as a source of Zn (Bonafaccia and Fabjan 2003). For a man performing average strenuous work the daily demand amounts to 12 mg, what can be covered for approximately 20% by the daily consumption of a loaf of bread of 250 g, to which 50% DW of buckwheat has been added.

Copper is another biogenic element. Its daily recommended consumption should be between 0.5 and 2.5 mg, what is possible through consuming cereal products, mainly bread enriched by buckwheat, an important source of Cu. The recommended daily consumption of bread – 250 g (provided that it is prepared with an addition of 50% DW of buckwheat) would guarantee the daily intake of approximately 0.5 mg of Cu. A shortage of Cu in the organism can cause pathological changes; an overdose of Cu however is toxic as it blocks the transfer through the membranes (Melicherčík and Melicherčíková 1997). The Food Codex of the SR, second part, chapter 10 defines the highest acceptable amounts of contaminants in foodstuffs valid in the Slovak Republic. Cu is among the chemical elements listed there. Its highest acceptable amount in cereal products is 10 mg·kg⁻¹. This limit was not exceeded in any of the evaluated products.

Another chemical element, which is essential from the physiological point of view, is manganese. It plays a role in the metabolism of lipids, saccharides, proteins and amino acids, influences the immune system and the central nervous system. The content of Mn in bread with buckwheat addition increased from 9.8 mg·kg⁻¹ dry mass (DM) to 11.25 mg·kg⁻¹ DM.

The essential importance of nickel is a certainty but this element can cause acute or chronic poisoning in case of a high intake and unwanted skin problems can occur in case of contact with Ni compounds. Based on our results (Table 1) it has been confirmed that the content in bread with a buckwheat addition of 50% DW was three times higher than in a wheat bread.

From the nutritive point of view the addition of buckwheat also increased the content of the important flavonoid rutin. The content of rutin in buckwheat crush added to bread dough amounted to 79.9 mg·kg⁻¹ DM representing a

Table 1 Content of important elements in bread.

<table>
<thead>
<tr>
<th></th>
<th>Control bread</th>
<th>10% BWA</th>
<th>20% BWA</th>
<th>30% BWA</th>
<th>40% BWA</th>
<th>50% BWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn, mg·kg⁻¹ DM⁴</td>
<td>9.45</td>
<td>10.10</td>
<td>12.00</td>
<td>13.50</td>
<td>13.85</td>
<td>15.45</td>
</tr>
<tr>
<td>Zn, mg·kg⁻¹ CF⁵</td>
<td>5.19</td>
<td>5.55</td>
<td>6.60</td>
<td>7.43</td>
<td>7.62</td>
<td>8.50</td>
</tr>
<tr>
<td>Cu, mg·kg⁻¹ DM⁴</td>
<td>2.45</td>
<td>2.00</td>
<td>2.70</td>
<td>3.00</td>
<td>3.10</td>
<td>3.65</td>
</tr>
<tr>
<td>Cu, mg·kg⁻¹ CF⁵</td>
<td>1.35</td>
<td>1.10</td>
<td>1.49</td>
<td>1.65</td>
<td>1.71</td>
<td>2.01</td>
</tr>
<tr>
<td>Mn, mg·kg⁻¹ DM⁴</td>
<td>9.80</td>
<td>8.90</td>
<td>9.35</td>
<td>10.60</td>
<td>10.65</td>
<td>11.25</td>
</tr>
<tr>
<td>Mn, mg·kg⁻¹ CF⁵</td>
<td>5.39</td>
<td>4.90</td>
<td>5.14</td>
<td>5.83</td>
<td>5.86</td>
<td>6.19</td>
</tr>
<tr>
<td>Ni, mg·kg⁻¹ DM⁴</td>
<td>0.65</td>
<td>0.50</td>
<td>0.85</td>
<td>1.15</td>
<td>1.35</td>
<td>2.20</td>
</tr>
<tr>
<td>Ni, mg·kg⁻¹ CF⁵</td>
<td>0.36</td>
<td>0.28</td>
<td>0.47</td>
<td>0.63</td>
<td>0.74</td>
<td>1.21</td>
</tr>
<tr>
<td>Rutin, mg·kg⁻¹ DM⁴</td>
<td>5.2</td>
<td>14.1</td>
<td>22.1</td>
<td>27.6</td>
<td>36.8</td>
<td>48.9</td>
</tr>
<tr>
<td>Rutin, mg·kg⁻¹ CF³</td>
<td>2.86</td>
<td>7.76</td>
<td>12.16</td>
<td>15.18</td>
<td>20.24</td>
<td>26.90</td>
</tr>
</tbody>
</table>

¹ dry mass
² consumable form
³ buckwheat addition
significant nutritive content although according to Holasová et al. (2002), the content of rutin in dehulled buckwheat seeds might reach 184 mg kg\(^{-1}\) DM. The content of rutin in the prepared bread increased accordingly after the addition of buckwheat from 14.1 mg kg\(^{-1}\) DM in bread with an addition of buckwheat of 10% DW to 48.9 mg kg\(^{-1}\) DM in bread with an addition of buckwheat of 50% DW. We should bear in mind though that the bread was not consumed in a daily state and that the amount of rutin in fresh bread (consumable form) are lower (Table 1).

The success of a product on the market is ultimately influenced by the sensory acceptance of the product, an important factor from the consumer’s point of view. The organoleptic evaluation of the bread revealed that as the portion of buckwheat flour was increased, the bread crust colour changed from light brown to chestnut brown. The crust texture, the flavour and the taste also changed. Taking into account the overall acceptability rating, it was concluded that bread with an addition of up to 30% DM of buckwheat could be baked with satisfactory results.

Clinical study

Such enriched bread is considered to have a high nutritive value and to be acceptable from a sensory point of view. The baking experiment was followed by a clinical study during which the bread enriched by 30% DW of buckwheat was prepared and consumed on a daily basis. The loaves with an addition of buckwheat of 30% DW contained 3.8 g rutin in 200 g of bread in a consumable form; this equals the daily dosage of rutin in the clinical study provided that the experimental subjects consume the complete dosage.

In this study we are presenting the results of a clinical study realised in 2008. Volunteers consumed buckwheat enriched bread on a daily basis. Otherwise their diet was not specially adjusted. Prior to consumption a blood sample was taken and later on compared with blood samples taken specially adjusted. Prior to consumption a blood sample was taken and later on compared with blood samples taken during which the bread enriched by 30% DW contained 3.8 g rutin in 200 g of bread in a consumable form; this equals the daily dosage of rutin in the clinical study provided that the experimental subjects consume the complete dosage.

The baking experiment was followed by a clinical study realised in 2008. Volunteers consumed buckwheat enriched bread on a daily basis. Otherwise their diet was not specially adjusted. Prior to consumption a blood sample was taken and later on compared with blood samples taken during which the bread enriched by 30% DW contained 3.8 g rutin in 200 g of bread in a consumable form; this equals the daily dosage of rutin in the clinical study provided that the experimental subjects consume the complete dosage.

Table 2 Results of selected blood parameters volunteers (n = 33).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>First sample(^1)</th>
<th>Second sample(^2)</th>
<th>Third sample(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca, mmol.L(^{-1})</td>
<td>2.81 ± 0.16 a</td>
<td>2.72 ± 0.15 ab</td>
<td>2.65 ± 0.13 bc</td>
</tr>
<tr>
<td>Mg, mmol.L(^{-1})</td>
<td>0.91 ± 0.06 a</td>
<td>0.87 ± 0.08 ab</td>
<td>0.85 ± 0.07 bc</td>
</tr>
<tr>
<td>Fe, mmol.L(^{-1})</td>
<td>30.09 ± 7.94 b</td>
<td>39.38 ± 7.30 b</td>
<td>48.41 ± 6.70 c</td>
</tr>
<tr>
<td>Kreatinin, mmol.L(^{-1})</td>
<td>71.94 ± 13.05 a</td>
<td>64.56 ± 12.78 b</td>
<td>61.21 ± 10.36 c</td>
</tr>
<tr>
<td>Urea, mmol.L(^{-1})</td>
<td>4.61 ± 0.99 a</td>
<td>4.37 ± 1.19 a</td>
<td>4.18 ± 0.97 a</td>
</tr>
<tr>
<td>Chloride, mmol.L(^{-1})</td>
<td>105.41 ± 5.08 a</td>
<td>103.06 ± 4.11 a</td>
<td>102.13 ± 7.25 a</td>
</tr>
<tr>
<td>Cholesterol total, mmol.L(^{-1})</td>
<td>5.96 ± 1.20 a</td>
<td>5.87 ± 1.28 a</td>
<td>5.78 ± 1.28 a</td>
</tr>
<tr>
<td>HDL cholesterol, mmol.L(^{-1})</td>
<td>1.27 ± 0.22 a</td>
<td>1.18 ± 0.20 bc</td>
<td>1.17 ± 0.23 c</td>
</tr>
<tr>
<td>LDL cholesterol, mmol.L(^{-1})</td>
<td>3.47 ± 0.78 a</td>
<td>3.43 ± 0.79 a</td>
<td>3.36 ± 0.84 a</td>
</tr>
<tr>
<td>Triglyceride, mmol.L(^{-1})</td>
<td>2.15 ± 0.91 a</td>
<td>2.02 ± 0.63 ab</td>
<td>1.78 ± 0.71 bc</td>
</tr>
</tbody>
</table>

\(^1\) Before the clinical study
\(^2\) after four weeks of consuming enriched bread
\(^3\) after another four-week period
\(^{abc}\) For each row, values with different letters, are significantly different (P<0.01)
effects, as well as being inhibitors of phospholipase A₂,
cyclooxygenase, lipoxygenase, glutathione reductase and
xanthine oxidase (Rice-Evans 1996). The already published
article (Bojánská et al. 2009b) states the positive increase
of the serum antioxidant capacity in humans thanks to the
consumption of enriched bread (30% DW buckwheat). The most
remarkable increase of the TAS values was found with
experimental persons, who consumed the complete daily
dose of 200 g. The most obvious increase in comparison
to the initial state was found with experimental persons
with an initially low TAS, the increase reached nearly 40%. The
highest TAS level (initially as well as finally) was found
with younger experimental persons between 18 and 34
years old, the lowest with people between 35 and 54 years
old. These data suggested that buckwheat was a significant
antioxidant as TAS in human plasma and that the increased
TAS level through doses of buckwheat bread could be
useful as a free radical scavenger. It appeared that the
TAS of the plasma of the volunteers who consumed buckwheat
enriched bread daily during the period of four weeks was
significantly higher than before its consumption.

CONCLUSIONS

Based on the obtained results we can conclude that the
buckwheat addition worsens the technological parameters
of the blends used for the baking test. The rheological
properties of the dough changed when the amount of buck-
wheat in the blend was increased. It means that the
increased addition of buckwheat caused a lower dough resis-
tance and its instability during mixing. The baking test
confirmed this, too. The loaves prepared with an addition of
buckwheat were evaluated to be of a lesser quality. The
overall acceptability rating lead to the conclusion that bread
could be baked with satisfactory results after an addition of
buckwheat of up to 30% DW.

The macro and microelement content in bread with an
addition of buckwheat has increased. Zn, Cu, Mn, Ni are
important biogenic elements. Based on our results it has
been confirmed that the contents of these elements in bread
with a buckwheat addition of 50% DW and more were
higher than in the control wheat bread, in the case of Zn by
163%, Cu by 149%, Mn by 115% and Ni by 338%.

From the nutritive point of view the addition of buck-
wheat has increased the content of the important flavonoid
rutin, too. The content of rutin in the prepared bread
increased accordingly with the addition of buckwheat from
14.1 mg kg⁻¹ DM in bread with an addition of buckwheat of
10% to 48.9 mg kg⁻¹ DM in bread with an addition of buck-
wheat of 50%.

The daily consumption of buckwheat enriched bread
during the clinical study by volunteers led to a significant
increase of the iron level in the blood and a significant de-
crease of calcium and magnesium. The significant decrease
of the HDL cholesterol level was surprising as well as non
desirable. On the other hand the expected and welcome de-
crease of the total cholesterol was statistically insignificant.
Another possible positive change was a significant de-
crease of the triglyceride and creatinine level and an insig-
nificant decrease of the chloride and urea level.

In general it can be concluded that the regular consump-
tion of buckwheat enriched bread brings nutritional benefits
for the consumers and with long-term consumption can have
a protective effect thanks to the numerous nutraceutical
compounds of buckwheat. It is not realistic, though, to ex-
pect that the consumption of buckwheat bread would solve the
health problems related to an unhealthy life style and bad
eating habits in general.

ACKNOWLEDGEMENT

This research is a part of the project financed by the Slovak Re-
search Agency (VEGA): “Exploitation of biologically active com-
ponents of alternative agricultural crops for increasing the quality
of food products” (VEGA 1/4436/07).

REFERENCES

Bojánská T, Frančáková H, Gázar R (2009a) Influence of buckwheat ad-
dition on technological and nutrition bread quality. Acta Fytotechnica et Zso-
technica 12, Special 57-63 (online).
Bojánská T, Frančáková H, Chlebo P, Vollmannová A (2009b) Rutin con-
tent in buckwheat-enriched bread and influence of its consumption on plasma
total antioxidant status. Czech Journal of Food Science 27, S52-S56
with common buckwheat and minor cereals. Reports Biotechnological Fac-
ulty of the University of Ljubljana 81, 349-355
Cotelle N (2001) Role of flavonoids in oxidative stress. Current Topics in Medi-
cinal Chemistry 1, 569-590
Christa K, Soral-Smiatana M (2008) Buckwheat grains and products – nutria-
tional and prophylactic value of their components – a review. Czech Journal
of Food Science 26, 153-162
Cook NC, Samman S (1996) Flavonoids – chemistry, metabolism, cardioprobe-
tective effects, and dietary sources. Journal of Nutritional Biochemistry 7,
66-76
Drez приняла R, Spustová V (1999) Vyšetření a liečba chorôb v preddialyza/g254nej
fázi. Lekárske obzory 48, 165-168
(Fagopyrum tartaricum Gaertn.) as a source of dietary rutin and quercetin.
Journal of Agricultural and Food Chemistry 51, 6452-6455
flour proteins. Food Chemistry 98, 90-94
Heim KE, Tagliaferro AR, Bohjla DJ (2002) Flavonoid antioxidant: che-
mistry, metabolism and structure-activity relationships. Journal of Nutritional
Biochemistry 13, 572-584
Holosava M, Fiedlerova V, Smrecinova H, Orsa M, Lachman J, Vasevina
Food Research International 35, 207-211
Ikeda K, Kishida M, Kreft I, Yasumoto K (1997) Endogenous factors respon-
sible for the textural characteristics of buckwheat products. Journal of Nutri-
tional Science and Vitaminology 43, 101-111
buckwheat. Plant Production 48, 279-284
Keller U, Maier R, Bertold S (1992) Klinische Ernährung (1st Edn), Weinheim,
VCH, 240 pp
Kreft I (1989) Breeding of determinate buckwheat. Fagopyrum 9, 57-60
Kreft I, Skrabavaná V, Ikeda S, Bonafacia G (1996) Dietary value of buck-
wheat. Research Reports Biotechnological Faculty of the University of
Ljubljana 67, 73-78
Lim HL, Kim SY, Na SH, Huh CHS, Lee SM, Lee Wk (2006) The hypocho-
lesterolemic effects of lactic acid bacteria isolated from human intestine and
rutin in buckwheat-enriched bread in rats fed high cholesterol diet. Laboratory
Animal Research 22, 401-407
Lin L, Peng Ch, Yang Y, Peng RY (2008) Optimization of bioactive com-
 pounds in buckwheat sprouts and their effect on blood cholesterol in hams-
ters. Journal of Agricultural and Food Chemistry 56, 1216-1223
prvky a lidský organizmus, Príroda, Bratislava, 188 pp
L, Hellwellman O (Compilers) Report of a Network Coordinating Group on
Minor Crops. Ad hoc meeting, 16 June 1999, Turkul, Finland, IPGRI, Rome,
Italy, pp 56-66
L, Knüpffer H, Ellis R, Legget JM, Kleijer G, Faberová I, Le Blanc A (Com-
 pilers) Report of a Cereals Network. First Meeting, 3-5 July 2003, Yerevan,
Armenia, IPGRI, Rome, Italy, pp 196-200
American Medical Association 198, 336-338
Příhoda, J, Humpolíková P, Novotná D (2003) Základy Pekárenské Technolo-
gy. Pekač a cukrář s. o. Praha, 263 pp
relationships of flavonoids and phenolic acid. Free Radical Biology and
Medicine 20, 933-956
Rice-Evans C (2001) Flavonoid antioxidants. Current Medicinal Chemistry 8,
797-807
Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic ef-
facts, and safety. Annual Review of Nutrition 22, 19-34
starch. Cereal Chemistry 75, 365-373
Qian J, Kuhn M (1999) Physical properties of buckwheat starches from vari-
ous origins. Starch 51, 81-85
Qing-Fu Ch (2008) A study of resources of Fagopyrum (Polygonaceae) native
to China. Botanical Journal of the Linnean Society 130, 53-64
Queutele-Delu C, Gressier E, Nasseur J, Dine T, Brunet C, Luyckx M,
Cazin M, Casin JC, Bailleul F, Trotin F (2000) Phenolic compounds and

