Culture Vessel Affects Hybrid Cymbidium Protocorm-like Body and Callus Formation

Jaime A. Teixeira da Silva* • Michio Tanaka

ABSTRACT

The number of protocorm-like bodies (PLBs) and embryogenic callus formed in hybrid Cymbidium Twilight Moon ‘Day Light’ is affected by the culture vessel (CV) used. Borosilicate test tubes (CV1), plastic and glass Petri dishes (CV2 and CV3), Whatman filter paper No. 1 membrane rafts (CV4), Milliseseal®-covered jam jars (CV5) and 100-ml glass Erlenmeyer flasks (CV7, control) were tested. CV7, which is the vessel conventionally used for the sub-culture and micropropagation of Cymbidium PLBs, resulted in greater responsiveness of PLBs to callus formation, but differences were not significant. Although some laboratories have their established protocols for PLB proliferation, tests on the use of different CVs should be conducted prior to mass propagation since the choice of CV can affect material and running costs, the ease of multiplication and the quantitative output.

Keywords: embryogenic callus, orchid, PLB
Abbreviations: NAA, α-naphthaleneacetic acid; PLB, protocorm-like body; PGR, plant growth regulator; TDZ, thidiazuron (N-phenyl-N-1,2,3-thidiazuron-5'-ylurea); VW, Vacin and Went

INTRODUCTION

Wimber in 1963 and Morel in 1964 historically initiated the tissue culture of Cymbidium shoot tips, a culturally and economically important orchid genus, which also marked the historical beginning of plant in vitro tissue culture. Cymbidium tissue culture can be achieved by the culture of flower stalks, pseudobulbs, flower buds, shoot tips or protocorm-like bodies (PLBs); a few studies have reported the induction of callus in Cymbidium, either from PLB outer epidermal tissue (Begum et al. 1994b; Huan and Tanaka 2004a, 2004b; Huan et al. 2004), or inner PLB tissue (Begum et al. 1994a) in Cymbidium hybrids, or from pseudobulb sections, rhizomes and roots of seedlings of C. ensifolium, a terrestrial orchid species (Chang and Chang 1998). In the former studies callus induction was rapid, while in the latter it was slow. Studies on PLB formation in Cymbidium hybrids were extended to the use of PLB thin cell layers, conventional PLB segments and other explant types (Teixeira da Silva and Tanaka 2006) to test the effect of medium formulation (Teixeira da Silva et al. 2005), biotic (Teixeira da Silva et al. 2006b) and abiotic factors (Teixeira da Silva et al. 2006a) on PLB formation.

This study investigates the choice of culture vessel (CV) on the formation of PLBs from conventional PLB segments of epiphytic hybrid Cymbidium Twilight Moon ‘Day Light’, a popular hybrid. Since different CVs have different physical properties (Huang and Chen 2005), this parameter should be assessed for optimization of a tissue culture protocol.

MATERIALS AND METHODS

Chemicals and reagents

All plant growth regulators (PGRs) were purchased from Sigma-Aldrich (St. Louis, USA) and were of tissue culture grade. All other chemicals and reagents were of the highest analytical grade available and were purchased from either Wako (Japan) or Nacalai Tesque (Japan), unless specified otherwise.

Plant material and culture conditions

PLBs of hybrid Cymbidium Twilight Moon ‘Day Light’ (Bio-U, Japan) originated from shoot-tip culture on Vacin and Went (VW, 1949) agar medium without PGRs, were induced and subcultured (PLB induction and proliferation medium or VWPLB) every two months on modified VW supplemented with 0.1 mg l⁻¹ α-naphthaleneacetic acid (NAA) and 0.1 mg l⁻¹ kinetin, 2 g l⁻¹ tryptone and 20 g l⁻¹ sucrose, and solidified with 8 g l⁻¹ Bacto agar (Difco Labs., USA). The inclusion of tryptone in the medium improves callus regeneration and proliferation (Huan et al. 2004). Callus induction and proliferation medium (VWCALLUS) was similar to VWPLB, except that thidiazuron (TDZ) was used instead of kinetin. All media were adjusted to pH 5.3 with 1 N NaOH or HCL prior to autoclaving at 100 KPa for 17 min. Cultures were kept on 40 ml medium in 100 ml Erlenmeyer flasks, double-capped with aluminium foil, at 25°C, under a 16-h photoperiod with a light intensity of 45 μmol m⁻² s⁻¹ provided by plant growth fluorescent lamps (Home Lux, Matsushita Electric Industrial Co., Japan). Longitudinally bisected PLB (3-4 mm in diameter) segments, 10 per flask, were used as explants for PLB induction and proliferation and for all experiments. Culture conditions and media followed the recommendations previously established for medium formulation (Teixeira da Silva et al. 2005), biotic (Teixeira da Silva et al. 2006b) and abiotic factors (Teixeira da Silva et al. 2006a) for PLB and callus induction, formation and proliferation.

Selection of culture vessel

In order to test the effect of CV on PLB and callus induction, formation and development, seven CVs were selected, in two separate experiments, the first to test the effect on PLB formation using VWPLB, the second to test the effect on callus formation using...
The choice of CV significantly affected the organogenic outcome of hybrid *Cymbidium* PLB proliferation experiments. This is not a surprising result considering that one of the drawbacks of a completely air-tight CV is poor air exchange, which often leads to the accumulation of ethylene within the CV (Reed and Preece 2003) and which most affects the response of plant tissue culture in vitro. To improve this, different film types, ventilation vessels and accessories to CVs are available (Prakash et al. 2004), but a deeper discussion of these is beyond the scope of this manuscript.

Several studies have shown the advantages of using closures with filters or vented CVs, which allow gas exchange, increasing the photosynthetic capacity, the multiplication rate, and the survival of plants after transfer to *ex vitro* conditions (e.g. Tisserat and Silman 2000; Park et al. 2004; Tsay et al. 2006). Modi et al. (2009) showed how Petri dishes were superior to Erlenmeyer flasks and borosilicate test tubes in the shoot formation of French marigold (*Tagetes patula* L.). In our study, CV2 and CV3, the Petri dishes, produced as many PLBs and callus as Erlenmeyer flasks, but were clearly superior to test tubes (Table 1).

Table 1: Effect of different culture vessels on *Cymbidium* Twilight Moon ‘Day Light’ PLB cultures and callus formation.

<table>
<thead>
<tr>
<th>Culture vessel</th>
<th>Appearance</th>
<th>Explants forming callus (%)</th>
<th>No. PLBs/explant</th>
<th>Neo PLB fresh weight (mg)</th>
<th>Neo PLB dry weight (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV1</td>
<td>Normal</td>
<td>90 a</td>
<td>12.61 ± 1.08 b</td>
<td>642 ± 24 c</td>
<td>58 ± 6 c</td>
</tr>
<tr>
<td>CV2</td>
<td>Normal</td>
<td>90 a</td>
<td>14.93 ± 0.95 a</td>
<td>1077 ± 63 b</td>
<td>134 ± 9 b</td>
</tr>
<tr>
<td>CV3</td>
<td>Normal</td>
<td>90 a</td>
<td>15.86 ± 1.07 a</td>
<td>1049 ± 39 b</td>
<td>123 ± 6 b</td>
</tr>
<tr>
<td>CV4</td>
<td>Bloated and hyperhydric</td>
<td>24 b</td>
<td>3.64 ± 1.65 d</td>
<td>2068 ± 73 a</td>
<td>248 ± 13 a</td>
</tr>
<tr>
<td>CV5</td>
<td>Normal</td>
<td>96 a</td>
<td>9.64 ± 0.97 c</td>
<td>1081 ± 49 b</td>
<td>114 ± 9 b</td>
</tr>
<tr>
<td>CV6</td>
<td>Normal</td>
<td>96 a</td>
<td>9.87 ± 0.65 c</td>
<td>1023 ± 46 b</td>
<td>131 ± 6 b</td>
</tr>
<tr>
<td>CV7*</td>
<td>Normal</td>
<td>90 a</td>
<td>15.63 ± 1.15 a</td>
<td>1056 ± 33 b</td>
<td>136 ± 11 b</td>
</tr>
</tbody>
</table>

* = control; CV = culture vessel (see text for explanation of codes).

Data scored after 90 days and represent the mean ± SD (standard deviation) of at three replicates of n = 20 each, except for 60 replicates in each column, the values with different letters are significantly different (*P* ≤ 0.05) according to DNMRT (Duncan’s new multiple range test) or according to the χ² test (*P* ≤ 0.05) for percentage values.

WVCALLUS.

CV1: Borosilicate test tubes (25 cm tall, 15 ml of medium)

CV2: Plastic Petri dishes (Falcon, 20 cm diameter, 15 ml of medium)

CV3: Glass Petri dishes (20 cm diameter, 15 ml of medium)

CV4: Whatman filter paper No. 1 membrane rafts (filter sterilized filter paper wicks placed in 10 ml liquid medium in 100-ml glass Erlenmeyer flasks)

CV5: Millisell®-covered jam jars (1 L, 25 cm tall, 50 ml of medium)

CV6: The Vitron™ (see e.g. Teixeira da Silva et al. 2007 for details, 108 ml of medium)

CV7 (control): 100-ml glass Erlenmeyer flasks (25 ml of medium)

Ten explants were placed per CV except for CV1, which contained one per tube. In all cases medium was solid medium except for CV4. The medium volume does not affect the outcome of the PLB or callus programmes (Teixeira da Silva et al. 2006a).

Morphogenic analyses

The number of PLBs formed per PLB segment as well the percentage of PLB segments that formed callus were measured. In the former, fresh weight of PLB masses were measured after 90 days while dry weight was established after drying the PLB masses in newspaper bags placed in a dry oven for 72 hrs at 60°C.

Statistical analyses

Experiments were organized according to a randomized complete block design (RCBD) with three blocks of 20 replicates per treatment (except for CV1, which was 60 replicates). Data was subjected to analysis of variance (ANOVA) with mean separation (*P* ≤ 0.05) by Duncan’s New Multiple Range test (DMRT) using SAS® version 6.12 (SAS Institute, Cary, NC, USA) or by the χ² test for percentage values.

RESULTS

Culture vessel (CV) had a pronounced impact on the organogenic outcome of hybrid *Cymbidium* Twilight Moon ‘Day Light’ PLB cultures (Table 1). CV7, which is the vessel conventionally used for the sub-culture and micropropagation of *Cymbidium* PLBs, resulted in the greatest number of PLBs per CV. CV2 and CV3 were as effective as CV7 in PLB proliferation. Even though PLBs that formed in CV4 had higher fresh and dry weights, much fewer PLBs per CV were formed. In general, aerated CVs (CV5 and CV6) did not produce more PLBs per explant but resulted in more callus formation, although differences were not significant (Table 1). Callus formation was poor in liquid culture (i.e. on membrane rafts) (CV4).

DISCUSSION

REFERENCES

Bagum AA, Tamaki M, Kato F (1994b) Formation of protocorm-like bodies (PLBs) and shoot development through *in vitro* culture of outer tissue of *Cymbidium* PLB. *Japanese Society of Horticultural Science* 63, 663-673

evolution in the culture atmosphere of Magnolia cultured in vitro. Physiologia Plantarum 65, 375-379
Hazra S, Kulkarni AV, navalwade SM, Banerjee AK, Agrawal DC, Krishnamurthy KV (2000) Influence of explants, genotypes and culture vessels on spraying and proliferation of pre-existing meristems of cotton (Gossypium hirstatum L. and Gossypium arboreum L.). In Vitro Cellular and Developmental Biology – Plant 36, 505-510
Huan LT, Tanaka M (2004a) Effects of red and blue light-emitting diodes on callus induction, callus proliferation, and protocorm-like body formation from callus in Cymbidium orchid. Environmental Control in Biology 42, 57-64
Jain P, Kashchwa SL, Kothari SL (2009) Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana (Bert.) Bertoni by using high copper levels in the medium. Scientia Horticulturae 119, 315-319
Magdalita PM, Godwin ID, Drew RA, Adkins SW (1997) Effect of ethylene and culture environment on development of papaya nodal cultures. Plant Cell, Tissue and Organ Culture 49, 93-100