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ABSTRACT 
Unmodified/native potato starch (Amylum solani) is a white, odourless and inert multifunctional excipient which is widely used not only 
in conventional pharmaceutical operations, such as tableting, capsule filling or granulation, but also in novel formulation technologies as a 
filler (diluent), binder or disintegrant. In order to improve processability or extend the range of potato starch application, different types of 
modification have been introduced. The present review describes the functional properties of potato starch which promote its utilization in 
pharmaceutical technology, provides an overview of practised starch modifications and summarizes the uses and applications of native 
potato starch and its modifications in drug formulation. 
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UNMODIFIED/NATIVE POTATO STARCH 
 
Key properties 
 
Various starches possess an official status in several Pharma-
copoeias (e.g. Ph Eur, USPNF, BP, DAB, PFX, JP and Ph 
Hg). Due to their special characteristics, only a few starches, 
and especially potato starch, are frequently used as pharma-
ceutical excipients (Table 1). Like starches in general, 
potato starch is a naturally-occurring biopolymer in which 
glucose is polymerized into amylose and amylopectin, for-
ming a densely-packed, semicrystalline, B-type structure. 
Starch granules are built up from alternating amorphous and 
crystalline lamellae, in which amylose and amylopectin are 
embedded (Jenkins et al. 1995; Buléon et al. 1998). Besides 
the two main polymers, starches also contain small quanti-
ties of minor components, such as proteins and lipids. 

Potato starch (Amylum solani) is a fine white powder, 
which is an odourless, tasteless, non-toxic and non-irritant 
substance (Swarbrick et al. 2002). The Ph Eur describes 
exact tests of identity and purity. Furthermore, official 
standards are specified for pH (between 5.0 and 8.0), iron 
content (not more than 10 ppm), total protein content (not 

more than 0.1%), quantity of sulphur dioxide (not more 
than 50 ppm), loss on drying (not more than 20%) and sul-
phate ash (not more than 0.6%). The critical point of potato 
starch application for pharmaceutical aims is linked to its 
carbohydrate nature. As pure carbohydrates, starches tend 
to suffer microbial contamination. Potato starch is not al-
lowed to contain more than 103 bacteria and more than 102 
fungi per gram. 

Dry, unheated, powdered starch is stable, if protected 
from high humidity. Starches in general are compatible with 
the majority of active pharmaceutical ingredients. Only a 
few incompatibilities are known, e.g. starches are not ap-
plicable as fillers in the presence of strongly acidic com-
pounds, since they partially hydrolyse on drying. 

Starch granules are insoluble in alcohol, most solvents 
and cold water. However, when heated in excess water, 
starch granules swell, and the partially-ordered structures 
are disrupted at the gelatinization temperature, resulting in 
an increase in viscosity (Biliaderis et al. 1980; Waigh et al. 
1999; Szepes et al. 2007a). The swelling characteristics are 
closely related to the amylose content of starches (Miles et 
al. 1985). The amylose content and consequently the gela-
tinization temperature of potato starch have been suggested 

® 

Table 1 Sources and characteristics of various starches (Ph Eur) 
Type of starch Extracted from Particle shape Particle size (μm) 
Corn (maize) seed round or polygonal 5-25 
Potato root egg-shaped 15-100 
Rice seed polygonal 3-8 
Wheat seed round or elliptical  2-10 or 20-35 
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to vary with the environmental conditions during the growth 
of the potato tubers (Cotrell et al. 1995). 

Potato starch is regarded as a multifunctional pharma-
ceutical auxiliary. It is utilized as a filler/diluent and disin-
tegrating agent in solid dosage forms. It additionally, finds 
application in the form of starch paste (mucilage) as a bin-
der in solid dosage formulation via the wet-granulation pro-
cess (Fig. 1). Hence, it is clear that the amylose-amylopec-
tin ratio, crystallinity and gelatinization properties of potato 
starch are key characteristics which strongly influence the 
compaction behaviour (plastic-elastic deformation), swel-
ling properties and other formulation properties of potato 
starch. These pharmaceutical features have an essential im-
pact on the final product properties, such as tablet strength, 
disintegration and drug dissolution (Swarbrick et al. 2002; 
Rowe et al. 2003; Talja et al. 2008). 

A flow diagram of the tablet-making process with wet 
and dry granulations demonstrates the importance of potato 
starch in the preparation of solid dosage forms (Fig. 1). The 
first stage is a powder-mixing process. In this step, the 
potato starch may act as a filler, a disintegrating agent or 
both. The process of granulation (second stage) may be es-
sentially one of size enlargement, and it serves several pur-
poses in the tablet-manufacturing process (better flow pro-
perty, compressibility, bioavailability, etc.). The powder 
mixture is wetted by granulation liquids (e.g. potato starch 
mucilage) and dried by different heating methods. If the 
active agent is unstable in the presence of liquids, the dry 
granulation process is used with potato starch (in solid 
form), for instance, as binder. When the drying process (wet 
granulation) and the compaction of the powder mixture (dry 
granulation) are complete, several important excipients (e.g. 
potato starch as intragranular disintegrant) are added to the 
formulation. After mixing, it can be pressed by tablet ma-
chine into tablets. The effects of potato starch on the pro-
perties of solid dosage forms are discussed by additional 
parts. 
 
Uses and applications of native potato starch in 
drug formulation 
 
Potato starch is frequently used as a filler (diluent) in stan-
dardized triturates of colorants (pigments) or potent drugs 
to facilitate subsequent mixing or blending processes in 
manufacturing operations. Potato starch is also suitable for 
the volume adjustment of the fill matrix in dry-filled cap-
sules (York 1980). 

Besides its utilization in traditional pharmaceutical pro-
cesses, e.g. tableting, capsule filling, or powder preparation 
for oral or topical use (e.g. dusting powder), potato starch 

can also be applied in novel pharmaceutical operations such 
as the freeze-casting process. 

Freeze-casting is a complex shape-forming technique, 
which has been utilized for the preparation of soft tablets. 
The soft tablet is a highly porous solid dosage form which 
is manufactured without compression by tableting equip-
ment and exhibits special product properties, e.g. rapid drug 
dissolution. The first step of the freeze-casting process is 
the preparation of an aqueous suspension containing the 
active pharmaceutical ingredient and other water-dispersi-
ble or water-soluble excipients (Fig. 2). When the aqueous 
suspension is moulded into a form-giving tool and under-
goes freezing, the volume expansion related to ice forma-
tion results in the ‘cold compression’ of the suspended solid 
particles. After evaporation of the ice crystals, a porous 
solid body can be obtained (Walther et al. 2005). The open 
pores are the negative image of the former ice crystals (Fig. 
3A). However, high porosity is always related to poor me-
chanical properties. Adequate mechanical strength is 
achieved by using water-soluble binding agents (citric acid 
and saccharose), which stabilize the matrix via recrystal-
lization during drying (Fig. 3B). 

Potato starch is an ideal filler in the freeze-casting pro-
cess (Szepes et al. 2007b, 2007c). Aqueous suspensions of 
theophylline and potato starch exhibit sufficient flowability 
and can be poured into the moulding form without difficulty, 
the sedimentation of the suspended particles being preven-
ted during the freezing process (Szepes et al. 2007b). As 
illustrated in Fig. 4, the suspensions can be characterized by 
thixotropic flow. The primary advantage of thixotropic be-
haviour is that it confers pourability under shear stress and 
viscosity when the shear stress is removed at rest. 

Direct compression is possible for only a limited num-
ber of pharmaceuticals. To optimize the flowability and 
compressibility of the ingredients, solid substances are 
often tabletted after a granulation process (Fig. 1). Potato 
starch can be used as a solid dry binder (dry granulation or 
roller compaction) and as a component of the granulation 
fluid (wet granulation). The freshly prepared starch muci-
lage utilized as a granulation fluid usually contains 5-25% 
(w/w) of the polymer (Swarbrick et al. 2002). During the 
wet granulation process, the starch mucilage covers the 
particles and forms a macromolecular film on the particle 
surface upon drying. The solid bridges generated between 
the particles during solvent evaporation ensure the adequate 
mechanical properties of the granules. 

The major disadvantageous powder characteristics 
which limit the application of starches in dry granulation 
and direct compression are their poor flowability, high lub-
ricant sensitivity and elastic deformation during compres-
sion (Bolhuis et al. 2006). Elastic compaction behaviour is 
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Fig. 1 Application of potato starch in the tablet manufacturing process 
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known to exert a negative influence on the mechanical pro-
perties of the compacts. Comparison of the tensile strengths 
of wheat, corn and potato starches reveals that native potato 
starch exhibits the best compactibility. Accordingly, the use 
of potato starch as binder is preferred in the dry granulation 
process (Fig. 5). 

Disintegrants are added to solid formulations to ensure 
that, on contact with a liquid, the tablet breaks up into small 
fragments, which promotes rapid disintegration and drug 
dissolution. Ideally, tablets should disintegrate into indivi-
dual drug particles in order to obtain the largest possible 
effective surface area during dissolution. 

The most common disintegrant is potato starch, which 
is applied in a concentration of 3-15% (w/w) in traditional 
tablet formulations (Ingram et al. 1966; Patel et al. 1966; 
Lowenthal 1973; Rudnic et al. 1982). As mentioned above, 
starch particles swell on contact with water and the swelling 
mechanism subsequently disrupts the tablet structure (List 
et al. 1979; Caramella et al. 1984; Hódi et al. 1992). How-
ever, starch particles have also been suggested to facilitate 
disintegration by particle-particle repulsion. 

The swelling force plays an essential role in the mecha-
nism of disintegration of tablet formulations produced by 
using high pressures. Several authors have reported a close 
correlation between the compression force and the swelling 
force of starches. The higher the compression force during 
tableting, the higher the swelling force of the starch parti-
cles during disintegration. 

Low compression pressures (5 kN) lead to insufficient 
particle deformation and a loose tablet texture, while high 
pressures (e.g. 25 kN) result in more compact tablet struc-
tures with highly deformed potato starch particles (Szabó-
Révész et al. 1986) (Fig. 6). 

The pressure has a considerable influence on the tablet 
hardness and the swelling force, and consequently, on the 
time of tablet disintegration. Table 2 includes the above-
mentioned parameters of tablets produced via direct com-
pression (without granulation) by an eccentric tablet ma-

A 

B 

Fig. 3 SEM pictures of potato starch matrices prepared by the freeze-
casting technique. Figure reprinted from Szepes A, Ulrich J, Farkas Zs, 
Kovács J, Szabó-Révész P (2007b) Freeze-casting technique in the develop-
ment of solid drug delivery systems. Chemical Engineering and Processing 46, 
230-238, ©2006, with kind permission of Elsevier B.V. 
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Fig. 4 Flow curve of an aqueous suspension containing potato starch 
and theophylline. Figure reprinted from Szepes A, Ulrich J, Farkas Zs, 
Kovács J, Szabó-Révész P (2007b) Freeze-casting technique in the develop-
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Table 2 Physical parameters of tablets containing potato starch and microcrystalline cellulose (from Szabó-Révész et al. 1986). 
Pressure 
(kN) 

Hardness 
(N) 

Disintegration time 
(s) 

Swelling force 
(bar) 

5 33 19 1.381 
15 116 21 1.690 
25 147 26 2.167 

Fig. 5 Influence of compaction force on tensile strength (hardness) of 
different starches. Figure reprinted from Rowe RC, Sheskey PJ, Weller PJ 
(2003) Handbook of Pharmaceutical Excipients (4th Edn), pp 603-608, ©2003, 
with kind permission of Pharmaceutical Press and American Pharmaceutical 
Association. 
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chine at different pressures. Higher pressure (25 kN) and 
consequently higher swelling force (2.167 bar) result in 
faster dissolution, which can be explained in terms of the 
higher efficiency of the disintegration process (particle by 
particle). 
 
MODIFIED POTATO STARCH 
 
Practised modifications of potato starch for 
pharmaceutical aims 
 
As summarized above, potato starch possesses several 
physico-chemical properties which promote its utilization 
with the aim of drug formulation. However, its unfavoura-
ble characteristics, such as its poor flowability and elastic 
compaction behaviour, must be optimized. Furthermore, 
with regard to the current requirements of drug formulation 
and development, polymer characteristics often have to be 
modified or improved to ensure special product perfor-
mance and functionality (Andreev 2004; Jobling 2004). 

The practised starch modification procedures which re-
sult in valuable excipients for drug formulation are sum-
marized in Table 3. 

The techniques for the physical modification of starch 
include mechanical, thermal and thermomechanical proces-
sing of the polymer. It should be noted that isostatic ultra-
high pressure (IUHP) and microwave irradiation are cur-
rently of no practical importance in starch processing. 
These physical treatments are regarded as non-conventional 

methods of starch modification and have not provided com-
mercially available excipients so far (Tomasik et al. 1995). 
The research focusing on their pharmaceutical application is 
currently at a laboratory scale. The results, however, are 
very promising. 

Ultrahigh pressure treatment is a preservation technique 
frequently used in the food industry, since it offers a gentle 
alternative for the sterilization and pasteurization of heat-
sensitive substances (Hendrickx et al. 2003). Biopolymers, 
such as starches and proteins, display changes in their na-
tive structure under high hydrostatic pressure, analogous to 
the changes occurring at high temperatures (Knorr et al. 
2006). A number of papers are available in the literature 
which describe the differences induced in the gelatinization 
mechanism of starches by heat and pressurization (Hibi et 
al. 1993; Stute et al. 1996; Katopo et al. 2002; Blaszczak et 
al. 2005). This topic is therefore not discussed in detail here. 

Since microwave irradiation enables rapid and uniform 
heating (volumetric heating), microwave technology has re-
ceived considerable attention in the pharmaceutical industry. 
There are a wide variety of applications of microwaves in 
this field, such as microwave-assisted drug synthesis, 
microwave-vacuum drying of heat-sensitive substances in 
the wet granulation process, the sterilization of injections 
and infusions, or the enhancement of the dissolution rate of 
poorly water-soluble drugs from microwave-prepared solid 
dispersions (Joshi et al. 1989; Sintzel et al. 1998; Genta et 
al. 2002; McMinn et al. 2005; Kelen et al. 2006; Papadi-
mitriou et al. 2008). As starch is one of the most commonly 
used excipients in drug formulation, and the critical proper-
ties of both raw and in-process materials must be controlled 
during the manufacturing process to ensure the final pro-
duct qualities, studies focusing on the effects of microwave 
irradiation on the structure and physico-chemical properties 
of starches are of essential practical importance. 

Pregelatinized starches are prepared by heating an 
aqueous slurry of the polymer, followed by a thermal de-
hydration process via drum drying, extrusion or a controlled 
pregelatinization spray-drying technique (Herman et al. 
1989a, 1989b). Mechanical stress coupled with heat transfer 
(thermomechanical processing) leads to irreversible, partial 
or complete damage to the polymer structure and generates 
a cold-water-swelling and partly water-soluble starch modi-
fication (Andreev 2004). 

During the production of thermoplastic starch, the poly-
mer is heated in the presence of water in injection-moulding 
machines or extruders (Stepto 2006). As a consequence, the 
polymer/water mixture is subjected to both thermal (heat) 
and mechanical energy (shear), which results in the forma-
tion of a homogeneous melt. 

Potato starch undergoes many chemical reactions cha-
racteristic of alcohols, which can be explained by the pre-
sence of numerous hydroxy groups in the structure. The D-
glucopyranosyl units of potato starch can be modified, e.g. 
by esterification, etherification or hydrolysis (BeMiller 
1997). The chemically modified products include starch de-
rivatives and the modifications obtained by debranching of 

A 

B 

Fig. 6 SEM pictures of tablet surface containing potato starch and 
microcrystalline cellulose. Pressure: 5 kN (A); 25 kN (B). Figure printed 
from Szabó-Révész P, Pet� K, Pintye-Hódi K (1986) Untersuchung der 
Verwandbarkeit von mikrokristallinen Cellulosen bei der Herstellung von 
Phenobarbital-Tabletten. Pharmazeutische Industrie 48, 289-291, ©1986, with 
kind permission of Editio Cantor, Verlag für Medizin and Naturwissenschaften 
GmbH, Aulendorf. 

 

Table 3 Practised modifications of potato starch for pharmaceutical aims 
Physical modification 

Mechanical 
Thermal 
Thermomechanical 

Chemical modification 
Derivatization/Substituted starch 

Monostarch substituation 
Polymer grafting/graft copolymers 

Cross-linking 
Depolymerization 

Enzymatic modification 
Enzyme-catalysed hydrolysis 
Enzyme-catalysed cyclization 
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the polymer structure. Starch derivatives can be prepared by 
esterification of the glucopyranosyl rings with different 
chemical agents (monostarch substitution) or by coupling 
starch with synthetic polymers (polymer grafting). A fre-
quently used starch modification strategy is controlled deg-
radation, during which depolymerization of the starch 
macromolecule occurs. The debranching reactions are based 
on the fact that the glycosidic links in starch molecules are 
vulnerable to acids, oxidizing agents and amylases. 

Enzymatic modification means hydrolysis or cycliza-
tion catalysed by different enzymes, which results in the 
formation of dextrins. 
 
Uses and applications of potato starch 
modifications in pharmaceutical technology and 
drug formulation 
 
The possible application of IUHP has been investigated 
with the aim of drug formulation (Szepes et al. 2008). 
Aqueous suspensions of potato and maize starches con-
taining theophylline as a model drug have been processed 
by IUHP and the mechanism of drug dissolution from the 
pressurized samples has been investigated, with an aqueous 
theophylline suspension as reference (Fig. 7). 

The hydrogels exhibit different dissolution profiles, 
which can be attributed to the different pressure sensitivities 
of the polymers, depending on their botanical origin. The 
drug dissolution from the hydrogel containing potato starch 
as a gel-forming polymer can be characterized by the Hix-
son-Crowel kinetic model, which refers to vertical drug 
release from the matrix. The mechanism of theophylline re-
lease from the maize starch gel obtained by IUHP pro-
cessing is mainly governed by Fickian diffusion, although 
the relaxation of the pressurized polymer chains plays an 
increasing role during the dissolution process. 

 Microwave irradiation does not result in significant 
changes in the particle morphology and particle size distri-
bution of potato starch (Szepes et al. 2005). The micromor-
phological parameters, such as the specific surface area, 
mesopore volume and pore diameter, are not changed signi-
ficantly after microwave treatment. Volumetric heating re-
sults in reversible moisture loss from the polymer (Szepes 
et al. 2007d). During storage (25 ± 2°C, 50 ± 5% RH for 6 
months), potato starch readsorbs 50% of its initial moisture 
content by the third day of storage, with a moisture uptake 
rate of 10-11 mg/g/day, depending on the conditions of 
microwave treatment. The water-retention capacity and 
swelling power of potato starch are increased irreversibly, 
and its swelling capacity is increased reversibly by dielec-
tric heating. The changes in swelling characteristics are in 
accordance with the results of the X-ray studies, which re-
veal that volumetric heating degrades the crystallinity of the 
polymer (Fig. 8). Microwave irradiation reduces the surface 
free energy and the polarity of tablets containing potato 
starch and microcrystalline cellulose. The tensile strengths 
of the compacts are decreased, while their wetting proper-
ties are enhanced by the physical processing of potato 
starch. 

 From investigations relating to IUHP and microwave 
irradiation, it can be concluded that starches of different 
botanical origins (e.g. potato and maize starches) exhibit 
different susceptibilities against physical treatments, which 
permits the utilization of these methods as selective means 
of starch modification. 

Conventional pregelatinized starches (e.g. Paselli 
WA4®: pregelatinized potato starch) deform plastically and 
find utilization as direct compaction excipients in tablet for-
mulations (Te Wierik et al. 1997a, 1997b). They form a soft 
gel layer on contact with the dissolution medium, which 
acts as a barrier for drug diffusion, resulting in a non-linear 
drug release profile. In order to achieve controlled drug 
release, a new generation of pregelatinized starches, the 
Preflo® starches, were prepared via gelatinization followed 
by precipitation (retrogradation) (Sanghvi et al. 1993). The 
Preflo modified potato starches (P-250, PI-10 and PJ-20) 

demonstrate good flowability and undergo plastic deforma-
tion during tableting. Dissolution studies reveal that Preflo 
starches are good candidates as hydrophilic matrix-forming 
agents for oral drug delivery. 

The thermoplastic processing of natural hydrophilic 
polymers in the presence of water is widely used to obtain 
polymer materials utilized in many industrial applications. 
The first commercial thermoplastic starch polymer was the 
drug-delivery capsule Capill® (Fig. 9). The injection-moul-
ded liquid-filled Capill® capsules are a possible alternative 
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A B 

Fig. 9 Injection-moulded starch capsule (A) and conventional dip-
moulded hard gelatine capsule (B). Figure printed from Stepto RFT 
(1997) Thermoplastic starch and drug delivery capsules. Polymer International 
43, 155-158, ©2000-2008, with kind permission of John Wiley and Sons, Ltd. 
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for hard gelatine capsules because of their reduced suscepti-
bility to changes under storage conditions. Further advanta-
ges of thermoplastic starch capsules are the smaller closure 
area and the suitability for enteric coating (Burns et al. 
1996; Stepto 1997). 

Cross-linking of the polymer chains leads to network 
formation via intermolecular bridges between the molecules. 
The cross-links reinforce hydrogen bonds to hold the 
granules together, which initiates considerable changes in 
the gelatinization properties and leads to retarded swelling 
properties (Bharadwaj et al. 2000). Contramid® is a free-
flowing, highly compressible powder in the dry state, which 
is obtained by cross-linking of high amylose starch (Rah-
mouni et al. 2001, 2002). On contact with water, Contra-
mid® forms a surface membrane that is able to control the 
drug release from orally administered solid dosage forms, 
such as tablets. This excipient has been applied for the 
once-daily formulation of tramadol, due to its high drug-
loading capacity and ability to maximize therapeutic ef-
ficacy and minimize side-effects (Kardu et al. 2007). 

The preparation and application of biodegradable micro-
spheres have been widely investigated recently with the aim 
of increasing the systemic absorption of drugs with short 
biological half-lives and pronounced instability. In general, 
degradable starch microspheres are produced by cross-
linking hydrolysed potato starch with epichlorhydrin via the 
emulsion polymerization process. However, the cross-
linking reaction is very time-consuming, and special efforts 
have therefore been made to shorten the reaction time by 
using other cross-linking agents, such as formaldehyde 
(Selek et al. 2007). Hydrolysed potato starch exhibits seve-
ral desirable characteristics, such as the ability to entrap a 
wide range of drug molecules, which promotes its applica-
tion in the preparation of degradable starch microspheres. 
The utilization of starch in dosage forms intended for pul-
monary drug delivery has the great advantage that the poly-
mer can be degraded by �-amylase, which is also present in 
the broncho-alveolar fluid. In addition, starches do not sti-
mulate an albumin-like antigen response in vivo. These 
microspheres have been reported to be capable of parenteral 
and nasal administration (Illum et al. 2001; Mao et al. 
2004). Furthermore, starch microspheres have been intro-
duced as drug carriers for the chemoembolization of tumours, 
in combination with the simultaneous local delivery of che-
motherapeutic agents (e.g. Spherex®) (Liu et al. 2006; 
Morise et al. 2006). 

Poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) are 
widely used polymer components of biodegradable micro-
spheres for sustained-release protein delivery. These are 
usually prepared by dispersing an aqueous protein solution 
in an organic polymer solution to create a water-in-oil emul-
sion and then extracting/evaporating the solvent (Woo et al. 
2001; Jiang et al. 2003). Two major shortcomings of these 
drug-delivery systems are that the manufacturing process 
can have a disadvantageous influence on the protein sta-
bility, and solvent evaporation can lead to the burst release 
of the active agent during drug dissolution. In order to over-
come these problems, composite microspheres are prepared 
by using hydroxyethyl and acryloyl-hydroxyethyl starch. 
The therapeutic protein is incorporated into starch hydrogel 
microparticles by a swelling technique and, in a following 
step, the microparticles are encapsulated in a poly(D,L-lac-
tide-co-glycolide) matrix by using the solvent extraction/ 
evaporation method. 

Substitution of starch with alkylating agents provides 
modifications with increased swelling properties. Heta-
starch® is ethoxylated amylopectin derived from potato 
starch, which is a complex mixture of derivatized amylo-
pectin molecules with various molecular sizes (Hulse et al. 
1983). Hetastarch is applied as a diluent and binder in solid 
dosage forms and as a plasma volume expander for paren-
teral administration (Hespan® - injection, Hextend® - infu-
sion). 

Carboxymethylated starches are obtained by treating 
native starch with acetic acid in an alkaline medium. It is to 

be noted that the commercially available products are car-
boxymethylated and cross-linked potato starches character-
ized by a high water-absorption capacity and rapid swelling 
(Young et al. 2005, 2007). The capability of water absorp-
tion and subsequent swelling make them excellent disinteg-
rants in tablet formulations prepared either by wet granula-
tion or by direct compression (Guyot-Herman et al. 1983). 
A well-known member of this group is sodium starch gly-
colate (Explotab®, Primojel®, Vivastar®), which has been 
described as a superdisintegrant typically used in tablet for-
mulations and for enhancement of the dissolution rate in 
solid dispersions (Chowdary et al. 2000). Although this 
potato starch modification exhibits poor compactibility and 
a highly hygroscopic nature, these unfavourable properties 
do not significantly affect the final product quality, since 
superdisintegrants are usually added to formulations in 
small quantities (1-5% (w/w)). 

Starch acetates have been reported as multifunctional 
direct compaction excipients, since they exhibit good flow 
properties and plastic deformation during the tableting pro-
cess (Korhonen et al. 2000). They form mechanically strong 
tablets with various disintegration times, depending on the 
substitution degree of the polymer. Starch acetates are tradi-
tionally prepared via the chemical reaction of barley starch 
with acetic acid or acetic anhydride in aqueous solution 
(Bolhuis et al. 2006). However, potato starch acetate has 
been investigated as a novel film-forming polymer (Tarvai-
nen et al. 2002, 2003; Tuovinen et al. 2003). Compared to 
ethylcellulose coatings used as reference, potato starch 
acetate films display better mechanical properties and lower 
water vapour and drug permeabilities. 

Starch phosphates are obtained by heating dry mixtures 
of different types of starch and ortho-, pyro- or tripolyphos-
phoric acid salts (Swarbrick et al. 2002). Monostarch phos-
phates exhibit good gel- and film-forming properties. Starch 
phosphate diesters contain ester bridges between two or 
more starch chains. Due to the cross-links, these starch deri-
vatives can be characterized by retarded swelling and resis-
tance to heat, agitation and low pH. The modified physical 
properties of distarch phosphates promote their application 
in antiseptic powders, because they do not swell during 
steam sterilization (Andreev 2004). 

Octenyl succinate-modified starches are permitted food 
additives in the USA and Europe (Kuentz et al. 2006). The 
substitution of hydrophilic starch moieties by lipophilic n-
octenylsuccinic acid groups results in a starch modification 
with increased hydrophobicity. 

These modified starches are prepared by coupling a 
hydrophilic polysaccharide chain with hydrophobic groups, 
and can therefore be regarded as amphiphilic derivatives 
with surface-active properties. In contrast with traditional 
surfactants, which are able to disrupt the membrane struc-
ture and exhibit cytotoxicity, hydrophobically modified 
starches demonstrate good in vivo tolerability (Baydoun et 
al. 2004). A further advantage of these derivatives is that 
they are tasteless, while most oral surfactants have a bitter 
taste. Since the majority of new chemical entities synthe-
tized by modern drug discovery exhibit poor wetting pro-
perties and the lack of water solubility, amphiphilic starches 
provide a new alternative with which to overcome formula-
tion problems concerning wetting, solubilization and bio-
availability enhancement. HiCap® 100 and Capsul® HS are 
commercially available octenyl succinate-modified waxy 
maize starches. The physical characterization of such modi-
fied potato starch has also been reported. However, this 
potato starch derivative does not possess adequate rheologi-
cal properties and is likely to find only limited application 
in drug formulation (Bao et al. 2003). 

Cationic starches are starch derivatives of great com-
mercial value that are used in the paper industry as wet-end 
additives. They are tertiary or quaternary aminoalkyl ethers 
manufactured by the reaction of a basic starch slurry with a 
tertiary or quaternary amine containing a halogenated alkyl 
group (Swarbrick et al. 2002). As compared to native starch, 
these starch modifications are characterized by lower gela-
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tinization temperatures and improved swelling properties. 
Vermeire et al. (1999) examined the emulsifying properties 
of different cationic potato, maize and waxy maize starches, 
assuming that positively charged emulsions exhibit pro-
longed residence in the skin or the cornea, thereby enhan-
cing lipophilic drug biodisposition. Emulsions prepared 
from cationic starches with a high degree of substitution 
have furnished promising results concerning stability and 
droplet size distribution. 

Starch sulphates are widely utilized in the sizing of 
paper and textiles and as food additives. The chemical modi-
fication of starch by using sulphating agents results in deri-
vatives that gelatinize at lower temperatures than those for 
native starches, and possessing a high water-retention capa-
city (Cui et al. 2007). Besides the modified physical proper-
ties, sulphated oligo- and polysaccharides have gained 
much attention recently due to their biological effects, such 
as their anti-viral and anti-HIV activities. Sulphation is car-
ried out by using strongly hydrolytic sulphating agents (sul-
phuric acid, sulphamic acid, sulphur trioxide, etc.), which 
can lead to extended degradation of the polymer chains. 
Furthermore, the organic solvents used as reaction medium 
are environmentally hazardous. Cui et al. described a new 
sulphation route for potato starch in aqueous medium in 
order to avoid the drawbacks of the traditional reaction. 

Spraying acid on dry starch granules and parallel 
heating results in random hydrolysis of the polymer chains 
to short fragments called dextrins. These acid-etched modi-
fications, obtained via partial hydrolysis, are soluble in cold 
water and possess a good gel-forming ability (Manelius et 
al. 2005). Polysaccharide gels prepared by using hydrolysed 
starch are characterized by reduced viscosity, enhanced 
transparency and high stability on storage (Belyaev 2000). 

When starch granules are dispersed in an aqueous solu-
tion of an acid (HCl or H2SO4) and the suspension is heated 
up to a temperature close to gelatinization onset, more ex-
tensive hydrolysis occurs, resulting in maltodextrins. Malto-
dextrins can also be obtained via enzymatic hydrolysis cata-
lysed by microbial �-amylase (e.g. Paselli SA2®: enzy-
matically hydrolysed potato starch). Both amylose and 
amylopectin undergo hydrolytic cleavage of the �-(1�4)-
glucose bonds and form water-soluble oligosaccharides. 
Maltodextrins have been reported to behave plastically 
during the tableting process and to form strong tablets. These 
characteristics promote their application as direct compac-
tion excipients in tablet formulations. However, it must be 
noted that these starch derivatives exhibit high lubricant 
sensitivity. Potato maltodextrins have been found to be sui-
table matrix-forming agents for the preparation of freeze-
dried tablets and matrix mini-tablets manufactured via melt 
granulation followed by compression (Corveleyn et al. 
1998; de Brabander et al. 2000). The oligosaccharides have 
been successfully applied as amorphous cryoprotectants and 
binders in lyophilized dry emulsion tablets, enhancing the 
delivery of poorly water-soluble drugs, while sustained drug 
release is observed for matrix mini-tablets based on a com-
bination of microcrystalline wax and potato maltodextrin. 
The coprocessing of active pharmaceutical ingredients with 
maltodextrin solutions via spray-drying has improved the 
physical properties of the active compound, such as powder 
flowability and compressibility. Co-spray-dried powders 
have been selected for formulation optimization in direct 
compression (Gonissen et al. 2008). 

Amylodextrin is a linear starch polymer which is pre-
pared from potato starch by enzymatic hydrolysis followed 
by precipitation, filtration and dehydration. From the aspect 
of drug formulation, the key characteristic of this polymer 
is that amylodextrin does not swell in water (Steendam et al. 
2001). As a consequence, the mechanism of drug release 
from dosage forms containing amylodextrin is not con-
trolled by a swelling boundary gel-layer; instead, the drug 
dissolution is based on a leaching mechanism. The dissolu-
tion medium penetrates the matrix through the pores and 
dissolves the dispersed drug particles. Due to the porous 
and tortuous network formed by the cavities left after dis-

solution of the drug particles, the profile of drug release 
from leaching-type devices can be characterized by the 
Higuchi square root time model. 

Cyclodextrins are crystalline, water-soluble, cyclic 
oligosaccharides that can be obtained via the enzymatic 
cyclization of starch by cyclodextrin-glycosyltransferase. 
The toroidal structure of cyclodextrins is built up from six 
(�), seven (�), or eight (�) glucopyranose units containing a 
hydrophobic central cavity and a hydrophilic outer surface. 
This structure allows the molecular encapsulation of hydro-
phobic hostmolecules in the central cavity, while the hydro-
philic surface characteristics result in improved wettability 
and water-solubility (Sourbaji et al. 2000; Taneri et al. 
2002; Challa et al. 2005). 

 Packaging on a molecular level is a widely used for-
mulation strategy for the bioavailability enhancement of 
poorly water-soluble drugs (Aigner et al. 1996; Amin Kreaz 
et al. 1999). Furthermore, the formation of inclusion com-
plexes can contribute to improvements in physical and che-
mical stability (protection against evaporation, oxidation, 
heat, light, etc.) and in odour and taste masking. Via com-
plexation with cyclodextrins, liquids can be transformed 
into a crystalline form suitable for tabletting, or incompati-
ble compounds can be mixed and used together. �-Cyclo-
dextrins are applied as binders in tablets, while highly-swel-
ling cyclodextrin polymers are effective tablet disintegrants. 

 The possible application of starch as a polymeric 
carrier for drug immobilization has been reported (Jantas 
et al. 2007). Starch-salicylic acid adducts were synthetized 
via the covalent coupling of the bioactive compound to the 
reactive hydroxy groups of starch. A gradual release of the 
bioactive agent was achieved via hydrolytic or enzymatic 
cleavage of the covalent bonds. 

Graft copolymerization has become a popular method 
in natural polymer processing in order to eliminate or dimi-
nish unfavourable characteristics and improve processabi-
lity (Bravo-Osuna et al. 2005). Starch-acrylic acid graft co-
polymers have been synthetized to enhance the bioadhesion 
capacity of native maize, rice and potato starches via 60Co 
irradiation. The grafted polymers have been successfully 
utilized as bioadhesive drug carriers for systemic delivery 
in tablet formulations developed for the buccal application 
of testosterone and theophylline (Ameye et al. 2002; Geresh 
et al. 2004). 

A new generation of graft copolymers contain semi-
synthetic starch derivatives, such as hydroxypropyl (Per-
fectamyl®) and carboxymethyl derivatives (Quicksolan®) of 
potato starch, and synthetic polymers (methyl methacrylate 
and hydroxypropyl methacrylate) (Bravo-Osuna et al. 2005). 
These grafted copolymers, produced by the Ce(IV) redox 
initiation method, have been introduced as direct compac-
tion excipients for oral controlled-release matrixes (Goni et 
al. 2002). Substitution with an acrylic component modifies 
the particle characteristics of native starch, such as particle 
size and morphology, micromeritics, flow properties and 
compressibility, and decreases the hygroscopicity. 
 
CONCLUDING REMARKS 
 
Potato starch is a renewable and biodegradable resource 
which can be modified in order to obtain products with spe-
cific properties. The tremendous diversity of potato starch 
modifications and their functional properties have extended 
the range of starch application considerably in recent dec-
ades. Besides the traditional auxiliary materials, potato 
starch derivatives and copolymers are finding increasing 
utilization in drug formulation and pharmaceutical product 
design. The literature reveals that extensive research acti-
vity is continuing in this field. Novel studies are focusing 
on starch application for specific formulations such as deg-
radable microspheres, once-daily preparations, pulmonary 
and trans-nasal mucoadhesive dosage forms and colon drug 
delivery systems. Promising results have been reported on 
the biological (e.g. anti-viral) activity of chemically modi-
fied starches, and further progress is expected in the field of 
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controlled drug delivery, achieved by coupling starch poly-
mers with bioactive compounds. 
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