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ABSTRACT 
The presence of toxic acrylamide in a wide range of food products such as potato crisps, French fries or bread was confirmed by Swedish 
scientists from Stockholm University. The neurotoxity, and possible carcinogenicity, of this compound and its metabolites imposes a duty 
to control them by quantitative and qualitative assays. Acrylamide forms an adduct with hemoglobin (Hb) as a result of the reaction with 
the �-NH2 group of the N-terminal valine of Hb. This interaction is the basis of a new voltammetric biosensor to detect acrylamide. The 
biosensor was constructed using a carbon-paste electrode modified with hemoglobin (Hb), which contains four prosthetic heme-Fe(III) 
groups. Such an electrode displays a reversible reduction/oxidation process of Hb-Fe(III)/Hb-Fe(II). Interaction between Hb and 
acrylamide was observed through a decrease of the Hb-Fe(III) reduction peak current. Exposing acrylamide to pH extremes results in its 
hydrolysis to acrylic acid. Apart from natural host molecules, synthetic receptors such as tetralactam or macrocyclic polyamine 
derivatives were applied as active elements of sensors for voltammetric detection of acrylic acid. The synthetic host molecules were 
immobilized on an electrode surface by covalent Au-S bond or by an embedment method into the thiol layer via hydrophobic and van der 
Waals interactions. The applicability of sensors was proved by a validation procedure made in the matrix obtained by water extraction of 
potato chips. The proposed sensor parameters such as sensitivity, selectivity, wide dynamic range, simplicity of sample preparation, in 
comparison to those presented by others in already reported methods, will be discussed. 
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INTRODUCTION 
 
Acrylamide (AA) is a well known neurotoxin and potential 
carcinogen (Tareke et al. 2002; Friedman 2003; Ruden 
2004). High levels of this compound have been found in 
potato chips, French fries and several other common foods 
(Tareke et al. 2002; Becalski et al. 2003; Gökmen et al. 
2005). The first such report was announced by scientists 
from Stockholm University in 2002 (Tareke et al. 2002). 

It is known that AA can create adducts with hemo-
globin (Hb) (Tareke et al. 2002; Friedman 2003; Stobiecka 
et al. 2007). Therefore AA-Hb adducts can serve as a useful 
biomarker of human exposure to AA. The Hb-adduct method 

for in vivo monitoring of reactive compounds like AA was 
developed by Margareta Törnqvist of Stockholm University 
(Tareke et al. 2002). This method was used to determine 
adduct levels in blood of workers, who in 1997 constructing 
a railway tunnel in Hallandsas, Sweden, when AA was used 
as a monomer in the grouting agent. Swedish scientists 
discovered the adduct level in their blood as high as 4000 
pmol/g Hb. Reference samples taken from people who were 
not exposed to AA contained 30-40 pmol/g Hb (Erickson 
2004). This result suggested that the general population 
may be constantly exposed to AA and induced scientist to 
search for a possible source of this exposition. Research 
showed a higher Hb-AA adduct level in smokers than non-
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smokers blood (Schettgen et al. 2002), suggesting that bur-
ning or high temperature may be involved. Analysis of diets 
led to the conclusion that heating food can be responsible 
for the elevated background levels in the general population. 
Many studies have supported this theory (Tareke et al. 
2002; Becalski et al. 2003; Friedman 2003; Svensson et al. 
2003; Hoenicke et al. 2004; Gökmen et al. 2005; Kim et al. 
2007; Geng et al. 2008). 
 
TOXICICITY OF AA 
 
AA has been classified as ‘‘probably carcinogenic to 
humans’’ by the International Agency on Research on Can-
cer (group 2A, IARC, 1994). In volume 60 of IARC Mono-
graphs on the Evaluation of Carcinogenic Risks to Humans 
it was stated that results of experiments on animals gave 
sufficient evidence for the carcinogenicity of AA (Raport 
IARC). Epidemiologic studies of possible health effects 
from exposures to AA have not produced consistent evi-
dence of increased cancer risk, in either occupationally ex-
posed workers (Granath et al. 2001) (except for a statis-
tically significant doubling of risk for pancreatic cancer 
which was found for workers with highest cumulative expo-
sure (Marsh et al. 1999) or in the general populations of 
several countries in which AA is present in certain foods 
and beverages (Dybing and Sanner 2003; Mucci et al. 2003; 
Pelucchi et al. 2003; Rice 2005). Nevertheless, positive bio-
assays of AA for carcinogenicity in experimental animals 
established that AA is a multi-organ (e.g. lung, skin, thyroid, 
brain) carcinogen in both rats and mice, when given in 
drinking water or by other means (Ruden 2004; Rice 2005; 
Besaratinia and Pfeifer 2007). These data strongly imply 
that AA presents a potential carcinogenic hazard to humans. 

The mechanism of AA carcinogenicity is still unknown. 
It is supposed that AA-induced DNA adduction and muta-
genesis can play a significant role in this process (Besara-
tinia and Pfeifer 2007). AA showed low reactivity towards 
DNA in vitro and in AA-treated rats only DNA adducts 
from the AA metabolite - glycidamide (GA) were detected 
(Maniere et al. 2005). GA is the product of the biotransfor-
mation of AA to its epoxide (Fig. 1), which is chemically 
more reactive. This process occurs in vivo catalyzed by 
cytochrome P450 enzymes in the liver (Raport IARC). 

Therefore, GA is assumed to be the genotoxic agent in 
AA exposure (Dearfield et al. 1995; Paulsson et al. 2001, 
2003). The linearity of the dose-response suggests that AA 
and GA are DNA-reactive clastogens and induce lethal 
mutations in spermatids of mice and rats and are considered 
to be a mammalian germ cell mutagen (Waters et al. 1993; 
Ghanayem et al. 2005). 

Exposure to high levels of AA cause damage to the 
human nervous system proving that this compound is a 
human neurotoxin. Workers exposed to AA exhibited symp-
toms of peripheral neuropathy. High Hb-AA adducts level 
in their blood was correlated with neurologic symptoms 
such as tingling or numbness in their hands or feet (Erick-
son 2004). Two mechanistic hypotheses of AA neurotoxin-
city were considered: inhibition of kinesin-based fast axonal 
transport (Sickles et al. 2002) and direct inhibition of neuro-
transmission (LoPachin 2002). AA acts directly at nerve 
terminal sites to cause primary presynaptic dysfunction (im-
pairs neurotransmitter release) and eventual degeneration. 
The mechanism of toxic injury might involve an inhibition 
of membrane fusion processes (LoPachin 2004, 2005). 
Mechanism of adverse effects may include also alteration of 

the expression of genes governing the synthesis of brain 
proteins (neurofilament gene expression) (Lin et al. 2000). 
 
FORMATION IN FOOD 
 
A number of potential mechanisms for the formation of AA 
in food have been published. Preliminary investigations 
showed that carbohydrate-rich food is involved in AA for-
mation. Analyses of fried potato revealed 10-100 times 
higher AA content than in protein-rich food (for example 
fried beef). Frying of another type of carbohydrate-rich 
food (e.g. beetroot) gave similar results (Tareke et al. 2002). 

It was proved that AA can be generated from food com-
ponents during heat treatment (above 100°C) as a result of 
the reaction between reducing sugars such as glucose and 
amino acid asparagine (Fig. 2). The Millard reaction mecha-
nism has been proposed to account for its formation (Mott-
ram et al. 2002; Stadler et al. 2002; Zyzak et al. 2003). Pro-
ducts of this reaction are responsible for flavour and colour 
generating during baking and roasting. During this reaction 
reducing sugars react with amino acids initiating a cascade 
of events leading to the browning of food. An important 
associated reaction is the Strecker degradation of amino 
acid by these intermediates, in which the amino acid is 
decarboxylated and deaminated to form an aldehyde. 

As a possible substrate in the AA formation, few amino 
acids were tested: glycine, cysteine, methionine, glutamine, 
aspartic acid and asparagine. Asparagine was a particularly 
good suitable reactant as it already has an amide group 
attached to a chain of two carbon atoms (Mottram et al. 
2002). Higher yield of AA from asparagine, a major amino 
acid in potato and cereals, demonstrated that it is a predo-

Fig. 2 Route of AA formation from asparagine and glucose. Fig. 1 AA metabolized in vivo by CYP 2E1 enzymes to form GA. 
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minant amino acid responsible for the formation of AA 
(Mottram et al. 2002; Becalski et al. 2003; Zyzak et al. 
2003). The results of series of stable isotope substitution 
experiments done by LC/MS technique with using isotope-
substituted asparagine shown that three AA carbon as well 
as one nitrogen atom came from the amide side chain of 
asparagine (Stadler et al. 2002; Zyzak et al. 2003). 

Heating asparagine on its own did not produce AA. This 
confirmed that Strecker degradation and dicarbonyl reactant 
(as glucose) was involved in the production of AA (Mott-
ram et al. 2002). Further investigations showed the neces-
sity of carbonyls in the formation of AA, but that dicarbo-
nyls were not essential for the formation of AA from aspa-
ragine (Becalski et al. 2003; Zyzak et al. 2003; Knol et al. 
2005). 

Reaction of reducing sugars with amino acids lead to 
the formation of N-glycosides (Schiff bases when viewed in 
their open chain tautomeric form). Stadler et al. (2002) re-
ported that N-glycosides formed by the reaction of aspara-
gine, when heated, result in significant levels of AA, while 
reactions of methionine and glutamine result in minor 
amounts of AA (Stadler et al. 2002). This also confirms the 
role of asparagine in the process of AA formation. 

Investigations on the kinetic model of AA formation 
showed that it is formed in the temperature range of 120-
200°C. Higher temperatures resulted in higher AA content 
(Mottram et al. 2002; Knol et al. 2005). At 180 and 200°C 
an increase and subsequent decrease of AA concentration 
was observed. This suggests that AA is an intermediate of 
the Maillard reaction rather than an end product, and it can 
undergo a degradation reaction at higher temperatures 
(Knol et al. 2005). 
 
ANALYSIS OF AA 
 
The presence of toxic AA in a wide range of food products 
has been confirmed by Swedish scientists from Stockholm 
University. The neurotoxicity and possible carcinogenicity 
of this compound and its metabolites compel scientists to 
control them by quantitative and qualitative assays. 

AA is formed from compounds intrinsically present in 
foods. Among analytical methods used to determine AA 
levels in food predominate chromatographic techniques 
based on gas chromatography (GC), high-performance 
liquid chromatography (HPLC), mass spectrometry (MS) 
and combinations of these (Table 1). Only a few examples 
of using different techniques for detection of AA exist. 

Published data indicated that potato food products con-
tain the highest amount of AA after frying (Table 1). 

Preparation of samples from food involves extraction 
using water or methanol and the clean-up step typically 
consists of a combination of several solid-phase extractions. 
GC-MS often needs the additionally bromination step to 
form more volatile AA derivative and increase selectivity of 
determination (Wenzl et al. 2003). 
 
SENSORS AND BIOSENSORS 
 
Sensor towards AA based on hemoglobin 
 
As was mentioned above, AA can create adducts with Hb 
(Tareke et al. 2002; Friedman 2003; Stobiecka et al. 2007). 
It is known that AA, and related conjugated vinyl com-
pounds, undergo the Michael-type nucleophilic addition re-
action of amino (NH2) and sulfhydryl (SH) groups of amino 
acids, peptides and proteins to its double bound (Friedman 
2003). Investigations showed that AA-Hb adducts form as a 
result of reaction between the �-NH2 group of N-terminal 
valine of Hb with AA (Tareke et al. 2002; Friedman 2003). 
Because of that, Hb can serve as useful biomarker of human 
exposure to AA. The tracing of background exposure to AA 
through biomarker measurements were conducted by GC-
MS/MS method in the negative ion/chemical ionization 
mode (Hagmar et al. 2005) or with GC-MS (Paulsson et al. 
2002). 

Stobiecka and co-workers introduced a voltammetric 
sensor based on the reaction of Hb with AA (Stobiecka et al. 
2007). The authors introduced a novel electrochemical bio-
sensor designed for the direct determination of AA in food 
samples. The reversible conversion of Fe(III) to Fe(II) of 
heme (prosthetic group of Hb) was responsible for its 
electroactivity (Chan 2000; Scheller et al. 2005). 

The rate of electron transfer from the protein to the sur-
face of the electrodes modified directly by Hb is slow. It is 
connected with a large, three-dimensional structure of Hb, 
which make the direct electron transfer between the Hb and 
electrode difficult (Scheller et al. 2005). Intensification of 
electron transfer rate between Hb and electrode surface can 
be achieved using electromediators (Rusling et al. 1993; Gu 
et al. 2001; Ma et al. 2005; Zhang et al. 2005) like carbon 
nanotubes and gold nanoparticles, or surfactant like di-
methyldioctadecyl-ammonium bromide (DDAB) as in the 
case of described biosensor. 

Stobiecka and co-workers reported electrodes filled 
with carbon paste prepared by mixing graphite powder and 
paraffin oil. Than DDAB-Hb liposomes resulted from dis-
persion of Hb and DDAB in aqueous buffer solution were 
dropped on smooth surfaces of carbon paste electrodes 

Table 1 Acrylamide levels in processed foods. 
Food Acrylamide level (mean value) [μg/kg] Method of analysis 
potato chips (crisps) 620 

1739 
1305.4, 1814.8 (in two different commercial samples)
 
980 
1377 

HPLC-MS-MS (Hoenicke et al. 2004) 
LC-MS/MS (Tareke et al. 2002) 
LC–DAD (liquid chromatography coupled with diode array detection) 
(Geng et al. 2008) 
LC–MS–MS (Svensson et al. 2003) 
LC-MS/MS (Kim et al. 2007) 

French fries 424 
410 

LC-MS/MS (Tareke et al. 2002) 
LC–MS–MS (Svensson et al. 2003) 

bread 40 
33 

LC–MS–MS (Svensson et al. 2003) 
LC-MS/MS (Kim et al. 2007) 

crisp bread 439 
208 
135 

HPLC-MS-MS (Hoenicke et al. 2004) 
LC-MS/MS (Tareke et al. 2002) 
LC–MS–MS (Svensson et al. 2003) 

biscuits 546 
119.7, 182.8 (in two different commercial samples) 
230 
714.2 

HPLC-MS-MS (Hoenicke et al. 2004) 
LC–DAD (Geng et al. 2008) 
LC–MS–MS (Svensson et al. 2003) 
LC-MS/MS (Kim et al. 2007) 

coffee, roasted 282 
25 

HPLC-MS-MS (Hoenicke et al. 2004) 
LC–MS–MS (Svensson et al. 2003) 

coffee, soluble 816 HPLC-MS-MS (Hoenicke et al. 2004) 
hamburger 18 LC-MS/MS (Tareke et al. 2002) 
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(CPE). 
Investigated electrodes modified with Hb-DDAB dis-

played a quasi-reversible electrochemical reaction of Hb-
Fe2+/Hb-Fe3+ (Fig. 3). The cathodic peak potential was 
located at Ecat =�234mV, anodic at Ean =�102mV and the 
formal potential was about E0’ =�168mV. Cathodic peak 
currents Ip were linearly dependent on scan rate � (Fig. 3). 
This indicates that redox reaction is not a diffusion-con-
trolled process, but a surface-controlled one, as expected for 
an immobilized system (Bard and Faulkner 2001). 

The applicability of the proposed sensor was tested 
using the Osteryoung square wave voltammetry (OSWV) 
technique, which was more sensitive than cyclic voltam-
metry (CV). The responses of the carbon-paste electrodes 
modified with Hb-DDAB towards AA concentrations were 
measured in the presence of sample solutions based on 
water extract from potato crisps. The extraction procedure 
consisted on few steps: first crisps were homogenized in a 
mortar, then after addition of water left for swelling and 
incubation. The next step was centrifugation. Then the re-
sulting supernatant was deffated by extraction with n-
hexane and cleaned up with Carrez I and Carrez II solutions. 
It is a procedure typically used in chromatographic analysis. 

The representative OSWV curves are illustrated in Fig. 
4A. The presence of the matrix obtained from potato crisps 
influenced electrode sensitivity towards AA very little. 
These results allow to state that the sensor under study was 
very resistant to interference coming from the matrix ob-
tained by extraction of potato crisps. Fig. 4B illustrates the 
relationship between the concentration of AA in sample 
solution and a decrease of peak current values. The limit 
detection was 1.2×10�10 mol/L. The linear range of this res-
ponse was from 1.3×10�11 to 4.8×10�5 mol/L. 

The most important advantage of this biosensor is very 
good sensitivity in the 10�10 mol/L range. Also, the applica-
tion of the proposed sensor for AA determination does not 
require sophisticated sample preparations. 

It was proved that heme from hemoglobin molecules is 
not directly involved in the process of AA recognition (Sto-
biecka et al. 2007). This process relies on the interaction 
between AA and the hemoglobin valine, which leads to the 
formation of Hb-AA adduct. Formation of this adduct is 
associated with Hb structure change (Friedman 2003), what 
is probably responsible for the decrease of accessibility of 
redox-active centers of Hb immobilized on the surface of 
the electrode, which causes a decrease of current values of 
Hb redox reaction. 

The carbon paste electrodes modified with Hb were 
very stable after cycling of the potential. After preparation, 
they could be stored in the buffer (at 4°C) ca. 1 month, but 
the interaction between Hb and AA is irreversible. There-
fore, after contact with AA solution electrodes should be 
prepared again. 
 
Sensor towards AA based on tetralactam 
 
Kleefisch and co-workers reported a sensor in which AA 
and acrylic acid (AAc) were detected at a gas–solid inter-
face using an ‘electronic nose’-type quartz crystal micro-
balance (QCM) sensor covered with a tetralactam active 
layer (Kleefish et al. 2004). 

Tetralactams (Fig. 5) belong to a wide group of neutral 
compounds able to complex anions by hydrogen bond for-
mation (Sigel and Martin 1982; Choi and Hamilton 2003). 
These macrocycles have been used recently as the macro-
cyclic host for detection of carbonyl compounds like p-
benzoquinone (Hunter 1991), and anions (Br-, Cl-) (Hubner 
et al. 1999). 

The measuring chamber accommodates up to 24 quartz 
sensors (QCM) at one time. Each sensor consists of a thin 
quartz plate with gold electrodes deposited onto both sides. 
The top electrode was coated with the sensor-active mate-

Fig. 3 The cyclic voltammetry (CV) curves for carbon-paste electrodes 
modified by Hb-DDAB liposomes measured vs. scan rates: (1) 0.2, (2) 
0.25, (3) 0.4, (4) 0.45, (5) 0.5, (6) 0.6, (7) 0.8, (8) 1.0 V/s. The electrolyte 
composition: 0.05 mol/L NaBr, acetate buffer 0.2 mol/L, pH 4.8. Inset: 
linear relationship between cathodic peak current vs. scan rate. Based on 
and modified from data in Stobiecka et al. (2007). 

Fig. 4 (A) The response of carbon paste electrodes modified with Hb-
DDAB liposomes towards acrylamide in the presence of water extract 
from the potato crisp. Measuring conditions: for electrolyte composition 
see Fig. 3; step potential of 0.0024 V; square-wave frequency 100 Hz; 
square-wave amplitude 0.025 V. (B) The ratio of OSWV peak current in 
the presence of a given concentration of AA (Ip) to that in absence of 
analytes (Ip,0) as a function of concentration of AA in water extract from 
the potato crisp. The currents were measured at the peak potential in 
OSWV curves in the solution with no analyte (Ep,0 =�242 mV); (n = 3; 3.1 
< S.D. < 9.1). Based on and modified from data in Stobiecka et al. (2007).
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rial using the electrostatic spray method. The coated quartz 
plates are then transferred into the measuring chamber and 
exposed to the different analytes, i.e. the volatile organic 
compounds (VOCs). The sensor response was monitored by 
a computer-based data system. 

Proposed sensor characterized very good sensitivity. 
Even at concentrations of AA as low as 10 ppb the sensor 
yields a well detectable signal. 

To analyze the characteristic responses toward AA, a 
series of tetralactam macrocycles and its derivatives were 
used (Fig. 5). Receptor marked as 5 in the Fig. 5 gave the 
best response. Results showed that the closed macrocycles, 
were favored over the open-chain analogues, which likely 
exists in an extended conformation. These findings lead to 
the conclusion that an interaction of the macrocycles with 
AA takes place within the cavity. 

The QCM electrodes coated with tetralactam exposing 
to propionic amide, AAc, and propionic acid, showed lower 
response as compared with response for AA. The difference 
between AA and propionic amide and that between AAc 
and propionic acid are of the same order of magnitude. This 
effect could reflect the influence of the additional double 
bond of AA and AAc on the recognition process by tetra-
lactam. One might speculate that �-� interactions of double 
bond present in target molecules with the aromatic rings of 
the macrocycle hosts play some role. 
 
Sensor towards AAc based on tetralactam 
 
Exposing AA to pH extremes results in its hydrolysis to 
acrylic acid (AAc), or its salt. The most frequently used me-
thods of AAc determination similarly as in the case of AA 
include GC (Steward et al. 1995) and HPLC (Casella et al. 
2006). 

One example of a biosensor for detection of AA and 
AAc was prepared based on respiratory activity of micro-
bial cells (Ignatov et al. 1996). 

The gold electrodes coated with self-assembled mono-
layers (SAMs) containing tetralactam macrocycle and its 
acyclic derivative (Fig. 5) as active elements were used for 
voltammetric detection of AAc in water solution (Krajew-
ska et al. 2009). The receptor molecules have been im-
mobilized on an electrode surface by covalent Au-S bonds 
(receptor 1 with disulphide group) (Fig. 6) or by embed-
ment method into the thiol layer via hydrophobic and van 
der Waals interactions (macrocyclic and open-chain recap-
tors 2 and 3 possessing long lipophilic side chains) to create 
a ion-channel type sensors (Sugawara et al. 1987; Umezawa 
and Aoki 2004). 

The determination of AAc by tetralactam incorporated 

gold electrodes was examined using Osteryoung square 
wave voltammetry (OSWV) in 0.01 M KNO3 with redox 
marker [Ru(NH3)6]Cl3,. This marker was the most suitable 
for the investigated system. The measurements were per-
formed in a pH = 5.0 solution. To evaluate electrodes res-
ponses, the parameter of relative decreasing of peak current 
was used. The ratio of OSWV peak current in the presence 
of different concentrations of AAc (Ip) to that in the absence 
of AAc (Ip,0) (Ip/Ip,0 x 100%) was plotted versus the AAc 
concentration. Comparison of responses showed by elec-
trodes modified by covalent method with macrocyclic 
receptor 1 and by embedment technique with macrocyclic 
receptor 2 allowed to state that in both cases detection limit 
was similar (1.0 × 10-5 mol/L), but linearity region was 
slightly different (Fig 6). In the case of covalent modifica-
tion it was from 1.0 × 10-5 to 2.5 × 10-4 mol/L, with slope -
42.8 %/logC and regression coefficient 0.980. In the case of 
embedment it was from 1.0 × 10-5 to 1.0 × 10-3 mol/L with a 
-10.6 %/logC slope and a regression coefficient of 0.930. 

A stronger response toward AAc showed electrodes 
modified by covalent method in relation to those modified 
with embedment (Krajewska et al. 2009). The highest AAc 
concentration studied (1.0 × 10-3 mol/L) caused 67.5% 
current decrease in OSWV in the case of covalent modifica-
tion and 21.3% for electrodes modified by embedment (Fig. 
6) 

Electrodes modified with acyclic derivative (receptor 
3) were also investigated. These electrodes prepared by em-
bedment and measured in the same conditions of pH, 
showed inconsiderable response towards AAc. This sug-
gested that only interaction between macrocyclic tetralac-
tam and AAc was sufficient for the generation of an analy-
tical signal. As a control experiment electrodes modified 
only with 1-dodecanethiol were used. These electrodes 
showed only negligible response toward the analyte in the 
solution pH = 5.0. This proved that only the tetralactam 
host presence was responsible for the recognition process. 
At pH=5.0 analyte existed in the solution in 85% as anionic 
form and in 15% as neutral form, whereas tetralactam exis-
ted in the layer on the electrode surface as a neutral com-
pound. 

Geometry optimization of a number of different confor-
mations of the macrocycle in vacuum using CaChe Work-
space programme (CaChe Workststem Pro Version 7.5.0.85) 
and AM1 geometry procedure (MOPAC 2002 Version 2.5.3, 
J. J. P. Stewart, Fujitsu Ltd., Tokyo, Japan) as well as using 
Corey-Pauling-Koltun (CPK) atomic model (Fig. 7) showed 
that most favorable conformation of the host molecule is 
when all four amide-NH group (acceptors of H-bond) are 
oriented inside the macrocycle cavity. AAc in dissociated 

Fig. 5 Tetralactam derivatives synthesized by Kleefisch and co-workers and used as active element of electronic nose’-type quartz crystal
microbalance (QCM) sensor for detection of acrylamide and AAc. Based on and modified from Kleefish et al. (2004). 
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form possess stronger electron donor characters and, because 
of that, stronger affinity to the tetralactam cavity in com-
parison with neutral form, which suggests that the observed 
response was caused more by anionic than by neutral form 
of analyte. 

In measuring conditions the acrylate anion can interact 
with neutral tetralactam molecules to form a negatively 
charged complex. Even though the positive charged electro-
active marker [Ru(NH3)6]+3 was used,  the sensor reported 
showed the decreasing of redox peak current upon increa-
sing concentration of acrylate anion in the sample solution. 
Probably the physical blocking of intermolecular spaces 
prevented access of marker ions to the electrode and played 
a decisive role in the generation of the investigated sensor 
response. This can be explained by the idea of an intermole-

cular ion-channel mechanism (Sugawara et al. 1987; Ume-
zawa and Aoki 2004). 
 
Sensor towards AAc based on polyamine 
 
Polyamine is a macrocycle characterized by the presence of 
a six amine group (Fig. 8). Macrocyclic polyamine hosts 
have strong affinity towards protons. This property makes 
them very useful for sensing anionic species. Therefore, 
lipophilic macrocyclic polyamine derivative was chosen as 
a ionophore capable to complexation of �,�-unsaturated 

Fig. 6 The ratio of OSWV peak current for electrodes modified with receptor 1(A), receptor 2 (B) and receptor 3 (C) in the presence of different 
concentrations of AAc (Ip) to that in the absence of AAc (Ip,0) as a function of the AAc concentration. The electrolyte composition: 0.01 mol/L KNO3, 
pH=5.0, 0.1 mmol/L [Ru(NH3)6]3+. Step potential: 5 mV, square-wave frequency 100 Hz, and square-wave amplitude 25 mV. Based on and modified from 
data in Krajewska et al. (2009). 

 

Fig. 7 Corey-Pauling-Koltun atomic model of complex that forms 
between tetralactam and acrylate. 

 

Fig. 8 The ratio of OSWV peak current in the presence of a given 
concentration of AAc (ip) to that in the absence of analyte (ip,0) as a 
function of the concentration of CH2=CHCOOH. The currents were 
measured at the peak potential in OSWV curves in the solution with no 
analyte (Ep,0 = -166.0 mV), n=4. The electrolyte composition: 0.01 mol/L 
KNO3, pH = 6.2, 0.1 mmol/L [Ru(NH3)6]3+. Step potential: 5 mV, square-
wave frequency 100 Hz, and square-wave amplitude 25 mV. Based on and 
modified from data in Krajewska et al. (2008). 
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AAc (Krajewska et al. 2008). Polyamine with six side 
chains – CH2COC10H21 was used for chemical modification 
of gold electrodes by embedment method. 

Our previous results demonstrate SAM prepared using 
this method showed better sensitivity in comparison with 
covalent method of modification (Radecka et al. 2005; 
Radecki et al. 2006). What is more, such modification is 
stable and reproducible. 

The sensing of AAc molecules by gold electrodes modi-
fied with macrocyclic polyamine host was examined with 
OSWV technique. The measurements were performed in 
the presence of borate buffer, because components of this 
buffer showed no influence on the voltammetric behavior of 
gold electrodes coated with macrocyclic polyamine film. 

 The polyamine incorporated electrodes showed the 
current decrease of reduction/oxidation processes of 
[Ru(NH3)6]3+ with increasing concentrations of anionic ana-
lyte (Fig. 8). 

The OSWV measurements were performed in the pre-
sence of a borate buffer of pH = 6.0. At this pH value the 
AAc is dissociated and the macrocyclic polyamine SAM 
films immobilized on the gold electrodes were protonated. 
The partial neutralization of the positive charge of the 
macrocyclic polyamine SAM films upon interaction with 
anionic guests may decrease the repulsion between the elec-
trode and positively charged redox marker [Ru(NH3)6]3+, as 
could be expected according to general idea of ion-channel 
mimetic sensors (Sugawara et al. 1987; Umezawa and Aoki 
2004). These results indicated that sensitivity and selectivity 
of sensor under discussion is related with intramolecular 
recognition between polyamine (host molecule) and AAc 
(guest molecule). In such type of ion–channel sensors, the 
decreasing of  permeability of monolayer deposited onto 
electrode surface upon creation of host – guest complexes is 
the main factor which govern the analytical signal genera-
tion (Radecka et al. 2005; Radecki et al. 2006). 
 
SUMMARY 
 
The formation, occurrence and determination of AA have 
been extensively studied in the last few years. Toxicity of 
AA compels us to control its level in food, especially in 
potato products, where the highest occurrence of AA was 
observed. 

Chromatographic techniques are most frequently used 
to determine AA and AAc. These methods are time con-
suming and expensive, therefore using of electrochemical 
sensors and biosensors seems to be good alternative. In this 
paper we introduce sensors based on synthetic ionophores 
like tetralactam or polyamine and biosensors based on 
neutral receptor hemoglobin. Interactions between receptor 
and analyte can be observed using OSWV technique, which 
provides good sensitivity of measurements. 

Taking into account the parameters such as: good sensi-
tivity and selectivity, lack of interferences form natural mat-
rix components, the relatively easy and inexpensive way of 
preparation, the proposed sensors and biosensors could be 
recommended for the direct determination of acrylamide 
and acrylic acid in food samples. 
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