Antioxidant Properties of Berry Fruit Juices as Dependent on Raw Material Quality and Technological Processing: A Review

Eulalia Julitta Borowskay1 • Agnieszka Narwojszy2

1 Food Plant Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-957 Olsztyn, Poland
2 Human Nutrition, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-957 Olsztyn, Poland

ABSTRACT

Berry fruit juices are characterized by a broad spectrum of bioactive properties, among which particular attention should be paid to antioxidant capacity. The highest antioxidant activity is exhibited by secondary metabolites in plants, primarily by polyphenols (phenolic acids, tannins, a large group of flavonoids and anthocyanins), carotenoids, vitamin C, organic acids, calcium, selenium and other. The antioxidant capacity of fruit juices is influenced by a variety of factors, including raw material quality and the conditions of the technological process. This review focuses on the antioxidant properties of berry fruit juices and on the compounds responsible for those properties, contained in various berry fruit species. The significance of environmental factors, such as climate and agricultural conditions, as well as storage conditions prior to processing, are also discussed. The effect of the technological process of juice production on antioxidant properties was determined, with special emphasis on the conditions of fruit crushing, mash maceration, heat treatment and storage. The advantages and disadvantages of the applied procedures and unit operations are presented. Particular attention was paid to fruit mash maceration with the use of enzymatic preparations obtained from genetically modified microorganisms. It was demonstrated that the antioxidant properties of berry fruit juices may be improved by proper selection of raw materials and by control over the parameters of the technological process.

Keywords: antioxidant properties, bioactive substances, berries, storage, technological process

INTRODUCTION

Recent years have witnessed growing consumer interest in products which, in addition to supplying nutritional building blocks and energy, deliver additional health benefits. Berries and berry juice play a very important role in that group of products. They are a rich source of bioactive components which are known for their antioxidant capacity (Deighton et al. 2000; Borowska and Szajdek 2003; Dietrich et al. 2004). Bioactive components neutralize free radicals and prevent many lifestyle diseases. Their antioxidant properties have been validated by in vivo research on volunteers (Netzel et al. 2002; Duthie et al. 2006; Garcia-Alonso et al. 2006). Bioactive components comprise mostly polyphenols, vitamins A and C, carotenoids, organic acids, calcium, selenium and others (Hannum 2004; Borowska et al. 2005; Amarowicz et al. 2009). A study of commercially available juices has shown that those products are abundant in bioactive compounds and show strong antioxidant properties; nonetheless, differences were observed between various brands (Zając and Podśędek 2002; Kalisz and Mitek 2003). Factors that affect the health benefits of fruit juice include fruit species, variety, growing conditions, types of treatment and unit operations during fruit processing. The most important processes are crushing, mash maceration with the involvement of enzymes, clarification, concentration, heat treatment and pulsed electric field treatment (Brownmiller et al. 2008; Oszmiański 2008; Amarowicz et al. 2009; Kozák et al. 2009; Odriozola-Serrano et al. 2009). Those processes support production, but they also lead to changes in antioxidant activity, which is not always beneficial (Czapski 1999; Graiek 2003; Dietrich et al. 2004; Landbo and Meyer 2004). A reduction in antioxidant capacity results from the loss of bioactive compounds, mainly phenolic compounds. According to Dietrich et al. (2004), commercially produced black currant juice shows 59% of the antioxidant activity of its raw material. Many authors also emphasize the importance of juice storage conditions before the product reaches the market (Garzón and Wrolstad 2002; Rein and Heinonen 2004; Walkowiak-Tomczak
Table 1: Total phenols content, anthocyanin content and antioxidant activity (ORAC method) of berry fruits

<table>
<thead>
<tr>
<th>Species</th>
<th>Total phenols</th>
<th>Anthocyanins</th>
<th>ORACa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilberry (Vaccinium myrtillus)</td>
<td>577-614</td>
<td>Giovanelli and Buratti 2009</td>
<td>330-344</td>
</tr>
<tr>
<td>Blackberry (Rubus fruticosus)</td>
<td>361</td>
<td>Heinonen et al. 1998</td>
<td>80-230</td>
</tr>
<tr>
<td>Blackcurrant (Ribes nigrum)</td>
<td>275-650</td>
<td>Moyer et al. 2002</td>
<td>134-152.2</td>
</tr>
<tr>
<td>Blueberry (Vaccinium corymbosum)</td>
<td>128-411</td>
<td>Moyer et al. 2002</td>
<td>128-411</td>
</tr>
<tr>
<td>Cranberry (Ficus carica)</td>
<td>298-310</td>
<td>Giovanelli and Buratti 2009</td>
<td>92-129</td>
</tr>
<tr>
<td>Raspberry (Rubus idaeus)</td>
<td>662.5</td>
<td>Borowska and Szajdek 2003</td>
<td>428</td>
</tr>
<tr>
<td>Strawberry (Fragaria x ananassa)</td>
<td>181.1-473.0</td>
<td>Prior et al. 1998</td>
<td>62.6-235.4</td>
</tr>
</tbody>
</table>

a mg/100 g fw

2007).

This study analyzes berry fruit species which are most frequently used in juice production by investigating their antioxidant properties and bioactive components responsible for that activity. It also discusses the effect of technological process and storage conditions on selected attributes of fruit and juice.

RAW MATERIAL

Berries – bioactive components and antioxidant properties

Juice is made from fresh berry fruit directly after harvesting, from fruit which has been cold stored for 2–3 weeks and, less frequently, from deep-frozen fruit. Concentrated fruit juice is also used (Rommel et al. 1990; Oszmiański 2002). Berry fruit owes its antioxidant activity to the presence of phenolic compounds, including phenolic acids, flavonoids, stilbenes and tannins (González et al. 2003; Benvenuti et al. 2004; Szajdek and Borowska 2008). Many research results suggest the occurrence of a correlation between the total content of phenolics, including anthocyanins, and antioxidant activity (Wang et al. 1996; Kalt et al. 1999; Jiao and Wang 2000; Wang and Lin 2000; Ehlenfeldt and Prior 2001; González et al. 2003; Bartolomé et al. 2004; Taruscio et al. 2004). Various authors have demonstrated that antioxidant activity is more correlated with the total content of phenolics than with the level of anthocyanins (Prior et al. 1998; Moyer et al. 2002; Zheng and Wang 2003).

The quantitative and qualitative profile of bioactive components in fruit and their antioxidant properties are largely determined by species, variety, agricultural conditions, ripeness, duration and conditions of storage (Heinonen et al. 1998; Prior et al. 1998; Häkkinen et al. 1999; de Ancos et al. 2000; Häkkinen and Törnroth 2000; Jeppsson 2000; Vinson et al. 2001; Wang and Stretch 2001; Wang and Zheng 2001; Connor et al. 2002; Hoffner et al. 2002; Skupień and Oszmiański 2004; Anttonen and Karjalainen 2005; González et al. 2003; Bartolomé et al. 2004; Taruscio et al. 2004). Various anthocyanins are dominant in various berry fruit, subject to their structure (Cao et al. 1998; Kähkönen and Heinonen 2003). They are characterized by high antioxidant activity among all anthocyanins. The dominant anthocyanin in strawberry fruit is pelargonidin-3-glucoside (82%) (Heinonen et al. 1998) and prevents the formation of NO radicals (Wang and Mazza 2002).

Variatel features are also believed to have a strong impact on the antioxidant properties of berry fruit. The above has been validated by Dietrich et al. (2004) who investigated the process of juice extraction from various blackcurrant varieties (Table 2).

The results of numerous studies indicate that phenolic extracts of berry fruit are marked by higher levels of antioxidant activity than many pure phenolics or vitamins, which is indicative of synergistic interactions between antioxidants (Vinson et al. 2001). According to Liao and Yin (2000), Vinson et al. (2001), the protective effect of ascorbic acid and α-tocopherol on lipoproteins increases with the addition of catechin, epicatechin or caffeic acid. Clinical research has also shown that owing to their bioavailability and effectiveness, the antioxidants present in natural products such as juice and fruit deliver greater health benefits than pharmaceutical dietary supplements (Wang et al. 1996). Different mechanisms are responsible for the antioxidant activity of the bioactive components of berry fruit, subject to their structure (Cao et al. 1997; Wang et al. 1997; Heim et al. 2002; Kähkönen and Heinonen 2003). Flavonoids inhibit lipid oxidation, they chelate metals and scavenged active oxygen species in vitro and in vivo (Heim et al. 2002). Anthocyanins, a flavonoid subgroup, inhibit the oxidation of human LDL and liposomes, and they show free radical scavenging capacity in vitro (Satú-Gracia et al. 1997; Wang et al. 1997; Kähkönen and Heinonen 2003). They prevent the oxidation of ascorbic acid in vitro (Sarma et al. 1997). In chokeberries, the dominant anthocyanin is cyanidin-3-galactoside (57%), showing the highest antioxidant capacity among all anthocyanins. The dominant anthocyanin in strawberry fruit is pelargonidin-3-glucoside (82%), generally believed to be a relatively weak antioxidant (Bridle and García-Viguerà 1997; Espín et al. 2000; Wang and

Table 2 Total phenols content, 1-ascorbic acid content and antioxidant capacity in blackcurrant juices of different cultivars (Dietrich et al. 2004)

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Total phenols</th>
<th>1-ascorbic acid</th>
<th>Antioxidant capacity TEACa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ometa</td>
<td>5713</td>
<td>660</td>
<td>27.9</td>
</tr>
<tr>
<td>Rosenthanls</td>
<td>5627</td>
<td>1020</td>
<td>27.2</td>
</tr>
<tr>
<td>Ben Lomond</td>
<td>5940</td>
<td>1180</td>
<td>33.2</td>
</tr>
<tr>
<td>Titania</td>
<td>3950</td>
<td>830</td>
<td>24.6</td>
</tr>
<tr>
<td>Ben Nevis</td>
<td>5939</td>
<td>1305</td>
<td>26.8</td>
</tr>
<tr>
<td>Black Dawn</td>
<td>5968</td>
<td>1043</td>
<td>37.7</td>
</tr>
<tr>
<td>Tsema</td>
<td>7758</td>
<td>1267</td>
<td>33.3</td>
</tr>
<tr>
<td>Ben Tirran</td>
<td>8719</td>
<td>1345</td>
<td>39.0</td>
</tr>
<tr>
<td>Ben More</td>
<td>7417</td>
<td>961</td>
<td>35.6</td>
</tr>
</tbody>
</table>

a mg/L

©2009 Global Science Books
Lin 2000). According to Cao et al. (1997), the antioxidant capacity determined in the ORAC test is 1.54 for pelargonicidin and 2.24 for cyanidin. Cranberries contain large amounts of pelargonid-3-galactoside, and blackcurrant fruits – of delphinidin-3-rutinoside (Andersen 1989; Slimedest and Solheim 2002). According to the results of in vitro tests, hydroxyquinamic acid and proanthocyanins are also capable of inhibition LDL oxidation (Meyer et al. 1998; Porter et al. 2007). The level of total antioxidants is strongly dependent on the cultivar. Ayala-Zavala et al. (2004) have observed that differences in the extractability of polyphenols from blackcurrant mash to fruit juice. At the cellular level, anthocyanins are found in vacuoles in the form of different-sized granules, while cell walls contain no anthocyanins. Mechanical or heat-induced damage to the cellular structure leads to the pigmentation of all tissues with chlorogenic acid. Those adverse changes may increase the oxidative potential of the environment and lead to the formation of antioxidant-derivatized pro-oxidants. The most effective method of inhibiting the adverse changes catalyzed by native enzymes is through their inactivation by mash heating (Kader et al. 1997, 1999; Skrede et al. 1994; Versari et al. 1997; Meyer 2002; Muñoz et al. 2000; Wilska-Jeszka 2002). Polyphenol oxidase enzyms found in the cytoplasm have a destructive effect on catalyzing the oxidation of polyphenolic compounds and facilitating the access of oxygen to polyphenols released from cellular structures. Anthocyanins, found in the rind of most shrub berry fruit species, are highly susceptible to oxidation (Wrolstad et al. 1994; Muñoz et al. 2000; Meyer 2002; Skrede et al. 2000; Wilska-Jeszka 2002; Grajek 2003). Mash maceration

In the juice production process, mash maceration before pressing plays an important role in formation of the antioxidant capacity of berry juice (Oszmiańska and Sożyński 1989; Czyżowska and Pogorzelski 2002; Bagger-Jorgensen and Meyer 2004; Dietrich et al. 2004; Landbo and Meyer 2004; Buchert et al. 2005; Szajdek et al. 2006). Mash maceration increases the yield of juice pressing, it improves the extractability of bioactive components and enhances the product’s antioxidant properties (Helbig 2001; Urlaub 2002; Muñoz et al. 2004; Koponen et al. 2008; Wang et al. 2009). Fruit mash is subjected to thermal and enzymatic processing or a combined processing method involving the application of both heat and enzymes (Oszmiańska 2002; Landbo and Meyer 2004; Buchert et al. 2005; Szajdek et al. 2006, Borowska et al. 2009). Heat processing leads to the denaturation of cell membrane proteins and causes their structural loosening, which facilitates the extraction of pigments from the skin to the juice. It removes air from the mash, thus preventing the oxidation of bioactive components, it destroys surface microflora and inactivates enzymes. Thermal processing is believed to deliver the best results at a temperature of 80-90°C. Enzymatic processing and the selective activity of enzymes, mainly pectinolytic enzymes, leads to polysaccharide degradation and decreases the system’s viscosity. This, in turn, supports the exudation of juice with dissolved bioactive components. The findings of Buchert et al. (2005) indicate a positive linear correlation between the degree of polysaccharide degradation and the quantity of polyphenols released from bilberry and blackcurrant mash to fruit juice. As noted by Landbo and Meyer (2004), the use of preparations with different enzymatic composition leads to a selective release of bioactive compounds which is responsible for blackcurrant juice’s selective capacity of inhibiting LDL oxidation (Table 3). Bagger-Jorgensen and Meyer (2004) observed that differences in the extractability of phe-
nolic compounds in the same fruit species treated with different enzymatic preparations could also be due to various types of side activity induced by those preparations. The above authors (2004) also demonstrated that phenolic concentrations in fruit juice are also affected by the degree of fruit crushing, preparation dosage, temperature and time of mash maceration. The above has been validated by Landbo and Meyer (2004) who reported the presence of polyphenols in blackcurrant juice within a wide range of 1340-3220 mg/L, subject to mash maceration conditions. The work of Skrede et al. (2000) also points to significant differences in the extractability of various compounds treated with different enzymatic preparations. A high level of anthocyanin extractability from chokeberry mash was reported by Oszmiański and Wojdyla (2005) as a result of combined thermal and enzymatic processing with the use of Rapidase Super BE. According to Oszmiański and Sożyński (1989), the anthocyanin content of juice produced from frozen fruit was around 1.6-fold lower than that of fresh fruit juice. The above could be due to native enzymes’ destructive effect on anthocyanins in fruit which was not thermally processed prior to freezing. The above results validate the earlier findings of Rosa and Krugly (1987).

Thermal processing is recommended for fruit with a low pectin content, such as bilberry, while enzymatic processing delivers optimal results in pectin-abundant fruit, such as blackcurrant and blackberry (Oszmiański 2002; Landbo and Meyer 2004; Szajadi et al. 2006). Yet in some cases, the activity of the accompanying enzymes may destroy bioactive substances, lower their antioxidant capacity, and lead to undesirable changes in color and flavor (Wrolstad et al. 1994; Wightman and Wrolstad 1996; Versari et al. 1997; Buchert et al. 2005). The presence of β-galactosidase or β-glucosidase in some preparations may lead to anthocyanin hydrolysis and the formation of aglycones which are easily converted to brown-colored polymers or colorless compounds (Wrolstad et al. 1994, Versari et al. 1997). Maceration time is an important consideration. According to Wightman and Wrolstad (1996), strawberry mash maceration with the use of commercial enzymatic preparations for more than 2 hours lowered the anthocyanin content of juice. The above authors claim that this reduction was due to the fact that the applied preparations contained β-glucosidase which has an antagonistic effect on cyanidin-3-glucoside. Similar observations were made by Versari et al. (1997) as regards raspberry juice. When maceration time was extended to 4 and 6 hours with the use of Pectinex BE 3-L, Rohapect B1L, Rohament MAX and Pectinex 3XL preparations, an estimated 20% reduction in anthocyanin levels was reported in comparison with control. The presence of β-glucosidase, β-galactosidase and β-arabinosidase in enzymatic preparations was also noted by Buchert et al. (2005). Anthocyanin hydrolysis can be avoided by strictly adhering to preparation dosages and reaction times recommended by the manufacturers (Wightman and Wrolstad 1996). According to Skrede et al. (2000), the fruit’s endogenous enzymes also contribute to anthocyanin destruction. The above has been validated by Lee et al. (2002) and Rossi et al. (2003) who steam-blanch highbush blueberry fruit before crushing. This processing method inactivated endogenous polyphenol oxidase, and the anthocyanin concentrations of the resulting juice were approximately two-fold higher. According to Plocharski and Markowski (2003), the maceration of blackcurrant mash with a combination of Pectinex BE XXL and Pectinex BE Color preparations (1:1) contributed to the extractability of anthocyanins, while previous thermal processing treatment did not produce such results.

The choice of the right enzymatic preparation is difficult, especially in view of the wide selection and availability of such products on the market. Recent years have witnessed the introduction of new generation pectinases produced by genetically modified microorganisms and showing one or two types of enzymatic activity. Those pectinases comprise mainly pectin lyase or pectinesterase plus polygalacturonase without side activity. Single, pure enzymes extracted from modified strains are sometimes added to enhance traditional pectinases (Grassín et al. 2005). Enzymatic mash maceration is generally more widely recognized than thermal processing.

Despite numerous research attempts to optimize the production of fruit juice showing high antioxidant properties, large quantities of bioactive substances remain in press residues (Landbo and Meyer 2001; Meyer 2005; Oszmiański and Wojdyla 2005). Owing to its high anthocyanin concentrations, fruit pomace is used in the production of dyes and pharmaceuticals (Briddle and Tierler 1997; Meyer 2002; Muñoz et al. 2004).

Table 3: Total phenols yield, anthocyanins yield, ascorbic acid content and antioxidant activity in blackcurrant juices (Landbo and Meyer 2004).

<table>
<thead>
<tr>
<th>Maceration enzyme</th>
<th>Total phenols<sup>a</sup> (mg/kg berry mash)</th>
<th>Anthocyanins<sup>a</sup> (mg/kg berry mash)</th>
<th>Ascorbic acid<sup>a</sup> (mg/L)</th>
<th>Antioxidant activity at<sup>c</sup> (µM TEAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macer<sup>TM</sup> [FJ]</td>
<td>4547</td>
<td>2036</td>
<td>1120</td>
<td>84</td>
</tr>
<tr>
<td>Pectinex Superpress</td>
<td>4385</td>
<td>1917</td>
<td>1200</td>
<td>51</td>
</tr>
<tr>
<td>Pectinex BE</td>
<td>4324</td>
<td>2118</td>
<td>1118</td>
<td>49</td>
</tr>
<tr>
<td>Pectinex Ultra Sp-L</td>
<td>4441</td>
<td>2082</td>
<td>1328</td>
<td>42</td>
</tr>
<tr>
<td>Rapidase BE Super</td>
<td>4392</td>
<td>1966</td>
<td>1210</td>
<td>20</td>
</tr>
<tr>
<td>Rohapect BSL</td>
<td>4480</td>
<td>2120</td>
<td>1168</td>
<td>25</td>
</tr>
<tr>
<td>Rapidase EX Color</td>
<td>4394</td>
<td>2038</td>
<td>1372</td>
<td>43</td>
</tr>
<tr>
<td>Klerzyme Color</td>
<td>4480</td>
<td>1982</td>
<td>1220</td>
<td>22</td>
</tr>
<tr>
<td>Rapidase Vino Super</td>
<td>4468</td>
<td>2029</td>
<td>1160</td>
<td>34</td>
</tr>
<tr>
<td>Vinozyme G</td>
<td>4521</td>
<td>2113</td>
<td>1316</td>
<td>55</td>
</tr>
</tbody>
</table>

^a mg/kg berry mash

^b mg/L

^c Antioxidant activities of black currant juices toward in vitro human LDL oxidation; antioxidant activities are given as the average net prolongation times of the induction time for the conjugated diene hydroperoxide formation

Juicye preservation

Conventional juice preservation methods, such as pasteurization, guarantee product safety and a long shelf-life, but they lead to changes in the product’s sensory properties, bioactive substance content and antioxidant activity (Table 4). The above is largely due to the profile of phenolic compounds and to the presence of other substances, such as sugars, ascorbic acid, oxygen and metals. The conditions of particular operations, such as mash maceration prior to juice pressing, are also an important consideration (Oszmiański 2002; Dietrich et al. 2004, Oszmiański and Wojdyla 2005; Szajadi et al. 2006). The findings of Dietrich et al. (2004) indicate that the pasteurization of blackcurrant juice (85°C, 30 s) lowers its antioxidant capacity (TEAC) by 11%. The reduction in phenolic and ascorbic acid concentrations reached 20 and 10%, respectively. The author noted that during pasteurization, phenolic acids may contribute to the formation of new structures with antioxidant properties. This process may also result in the development of Maillard reaction products which enhance the antioxidant capacity of fruit juice. Walkowiak–Tomczak (2007) observed a correlation between the pH of black currant juice and changes in...
anthocyanins and TEAC during pasteurization. According to the author, the optimum pH level is 3. The work of Szajdek et al. (2006) gives supporting evidence to changes in concentration levels of bioactive compounds and a decrease in DPPH• and ABTS•− radical scavenging activity in the juice of chokeberry, bilberry, blackcurrant, strawberry and cranberry fruit as a result of pasteurization (Table 4). The authors also noted that the degree of the said changes varied subject to fruit species and the method of mash maceration prior to juice pressing. The least stable anthocyanins were found in strawberry and cranberry juice (their concentrations decreased 2- to 4-fold after pasteurization). Pasteurized strawberry juice was also characterized by the lowest DPPH• and ABTS•− radical scavenging capacity. According to Skrede et al. (2000), delphinidin glycoside was the most thermolabile substance, cyanidin and petunidin derivatives were more resistant to heat, while malvidin glycoside was marked by the highest stability. The hydrolysis of the anthocyanidin–sugar bond opens the ring and leads to the formation of chalcone or β302-diketone, a colorless or light yellow compound. Alternatively, the process of oxidative polymerization is responsible for the brown coloring of products. Factors that speed up those adverse changes during pasteurization include metal ions (Cu2+) and ascorbic acid which may form colorless copigments with anthocyanins (Stasiak et al. 1998). According to Oszmianski and Sozynski (1989), a significant loss of anthocyanins may follow from the depectinization of the fruit mash which leads to aglycone formation. Aglycones are less stable and are more likely to undergo undesirable change.

Recent years have witnesses the advent of modern juice processing methods which preserve the attributes of the raw material, among them non-thermal methods such as high pressure processing (HPP), pulsed electric fields (PEF), high-intensity pulsed electric fields (HIPEF) and high-frequency ultrasound (2000 cycles/s). The HPP method is used on an industrial scale in Japan and the USA. The European Commission has included products preserved by HPP in the novel foods group (Oszmianski 2008; Odrzozola-Serrano et al. 2009). There is scant published research that looks into the effect of those methods on antioxidant capacity. The findings of Odrzozola-Serrano et al. (2009) indicate that HIPEF-treated strawberry juice maintained higher amounts of phenolic acids (ellagic and p-coumaric acid) and total anthocyanins than thermally treated juices. Regarding the antioxidant capacity, similar DPPH• and ABTS•− values were obtained so that differences among pasteurized juices were not significant. HIPEF processing may be as effective as thermal treatment not only to achieve safe and stable juices, but also to obtain juices with a high content of antioxidant compounds.

JUICE STORAGE

Bioactive components undergo changes during juice storage, and this process alters the products antioxidant capacity. The stability and direction of changes in phenolic compounds are determined primarily by their qualitative and quantitative profile in juice as well as by pH, temperature, period of storage, light access, and other factors (Garzón and Wrolstad 2002; Rein and Heinonen 2004; Walkowiak-Tomczak 2007). The least stable substances are strawberry/anthocyanins, in particular the predominant pelargonidin 3-glucoside (around 77% share) (Garzón and Wrolstad 2002; Protegge et al. 2002). Rein and Heinonen (2004) found that the stability of anthocyanins in stored strawberry juice can be improved through the addition of phenolic acids. These authors demonstrated that sinapic acid has a beneficial influence on anthocyanin stability in strawberry juice, while sinapic and ferulic acids improve anthocyanin stability in raspberry juice. Sinapic and ferulic acids formed new intramolecular copigmentation molecules with strawberry and raspberry anthocyanins, which were detected as novel peaks in the HPLC chromatograms. Presumably, the new molecules are a result of covalent bonding between an anthocyanin and a phenolic acid since they endure the acidic HPLC conditions. Rosmarinic acid obviously stabilized lingonberry and cranberry anthocyanins via intermolecular copigmentation reactions since their color was stabilized and the diminishing of anthocyanins was reduced, but no new anthocyanin compounds were detected with HPLC. According to Piljac-Zegarac et al. (2009), changes in the polyphenol content of six dark fruit juices, determined with the use of the Folin-Ciocalteu reagent, were negligible after 29 days of cold storage (4°C). The authors noted much more pronounced changes in vitamin C concentrations and DPPH• radical scavenging capacity. The highest decrease in this activity was reported in cherry and strawberry juice. According to Walkowiak-Tomczak (2007), an increase in the storage temperature of chokeberry juice from 10 to 30°C over a period of 30 days decreased the ABTS•− radical scavenging capacity by 7 and 35%, respectively. The author also observed that the pH of juice significantly contributed to changes in antioxidant capacity, and the optimum pH level was 3. Juice with lower acidity was characterized by a lower level of anthocyanin stability and a greater reduction in antioxidant activity.

CONCLUSIONS

Berry fruit juices are characterized by strong antioxidant properties and constitute a rich source of natural antioxidants, among which particular attention should be paid to phenolic compounds. Antioxidant capacity is also affected by vitamin C content, though to a lesser degree. According to the findings of numerous authors, antioxidant capacity may be increased before juice pressing, at the stage of fruit mash maceration with the use of “new generation” enzymatic preparations obtained from genetically modified microorganisms. Modern approaches to juice preservation, such as HPP, PEF, HIPEF and high-frequency ultrasound treatment, also seem promising.

Many international studies have led to the conclusion that the health benefits of fruit juices, including their antioxidant properties, may be improved in the course of the optimization process comprising, in particular, proper selection of fruit varieties and control over the parameters of unit operations during processing, as well as over preservation and storage conditions.

REFERENCES

Andersen QM (1999) Anthocyanins in fruits *Vaccinium oxyccouc L.* (small
cranberry). Journal of Food Science 54, 383-384, 387
Grajké W (2003) Zmiany potencjału przeciwciałnieniowego surowców roślinnych w procesach przetwarzania w czasie trawienia. Żywność Nauka Technologia Jakość 4, 26-35
Grassin C, Van der Weijden C, Van der Hoeven RM, Van Dijk PWM, de Bot BWR (2005) SKF 525-A metabolite handling by porcine peptidases: a study stowed in the presence of soków owocowych. Przysmak Przemyślowy i Owoce-Warzywa 8-9, 42-45
Martin-Aragón S, Basabe B, Benedí JM, Villar AM (1998) Antioxidant...
Skupień K, Oszmiański J (2004) Comparison of six cultivars of strawberries (Fragaria × ananassa Duch.) grown in northwest Poland. European Food Research and Technology 219, 66-70
Szajdek A, Dąbkowska E, Borowska EJ (2009) Impact of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidative capacity of composite berry juice. Journal of Agricultural and Food Chemistry 57, 3106-3114
Szajdek A, Dąbkowska E, Borowska EJ (2009) Impact of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidative capacity of composite berry juice. Journal of Agricultural and Food Chemistry 57, 3106-3114
Szajdek A, Dąbkowska E, Borowska EJ (2009) Impact of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidative capacity of composite berry juice. Journal of Agricultural and Food Chemistry 57, 3106-3114
Taruscio TG, Barney DL, Exon J (2004) Content and profile of flavonoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium berries. Journal of Agricultural and Food Chemistry 52, 3169-3176
Urlaub R (2002) Enzymes from genetically modified microorganisms and their use in the beverage industry. Fruit Processing 12, 158-163
Wang SY, Stretch AW (2001) Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. Journal of Agricultural and Food Chemistry 49, 969-974
Wright JD, Wrolstad RE (1996) B-glucosidase activity in juice-processing enzymes based on antioxidant analysis. Journal of Food Science 61, 544-547, 552
Zając KB, Podeszka A (2002) Skład i właściwości przeciwutleniające wybranych handlowych soków owocowych. Przemysł Fermentacyjny i Owocowo-Warzywny 2, 14-17

action of Vaccinium myrtillus L. Phytotherapy Research 12, S104-S106