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ABSTRACT 
Beginning with the ‘French Paradox’ observations in the 1990’s much interest has been devoted to the profile and contents of plant 
secondary metabolites, not only of grapes and wines, but also of numerous other plant foods, due to their assumed health-beneficial 
properties. Grapes belong to the most important fruit crops, and some 80% of this crop is processed into red and white wines. Anthocya-
nins are the most important phenolic compounds of grapes imparting color to red wines. Together with non-colored phenolic co-pigments 
they are further characterized by their diverse bioactive attributes, which still need unequivocal proof in most cases. For these reasons, 
comprehensive efforts have been undertaken to optimize vinification technology in order to maximize extraction rates of polyphenols 
from the grapes. The present review provides a survey of process strategies applied to achieve this aim, also taking into consideration 
innovative technologies for the production of both red and white wines. Furthermore, novel findings with regard to the evolution of 
phenolic compounds in the course of wine aging and storage and to the potential of winemaking by-products as a source for the recovery 
of phenolic compounds are considered. 
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INTRODUCTION 
 
Polyphenols are ubiquitously found in the plant kingdom as 
plant secondary metabolites and, thus, are an integral part of 
the human diet (Bravo 1998). They exert numerous func-
tions in plants, e.g. they may act as attractants to pollinators 
and seed dispersers by producing appealing colors as in the 
case of anthocyanins, but they may also function as anti-
feedants (Delgado-Vargas et al. 2000; Stintzing and Carle 
2004). Furthermore, phenolic compounds may serve as light 
screens against damaging radiation, which can also be seen 
from the fact that their biosynthesis is upregulated upon 
light exposure, especially UV-B rays (Pan et al. 2009). This 
also explains why most phenolic compounds are mainly 
found in external and aerial tissues. Polyphenols might also 
function as transport vectors for monosaccharides or as 
osmoregulators during periods of drought and low tempera-
tures (Chalker-Scott 1999). From a plant physiological 
viewpoint the antioxidant activity, which is common to all 

phenolic compounds, is probably more important since they 
are assumed to increase the plant response to oxidative 
damage in order to maintain the regular physiological status 
in tissues affected by biotic or abiotic stress factors. Thus, 
plant phenolics also directly and indirectly act against infec-
tions and aggression by microorganisms and as protection 
against herbivorous insects and mammals as feeding deter-
rents (Robards and Antolovich 1997; Harborne and Wil-
liams 2000; Aherne and O’Brien 2002). 

Due to their localization in external parts of the plant 
material food preparation techniques such as peeling, skin-
ning and trimming may reduce total phenolic contents of 
processed foods. The preparation of liquid foods from fruits 
and vegetables, as in the case of winemaking, is also asso-
ciated with significant losses of phenolic compounds due to 
poor extraction yields from the skins and peels. In pro-
cessed foods, flavonoid amounts can, thus, be significantly 
lower compared to fresh products as a consequence of ther-
mal treatment, leaching effects or incomplete extraction. 
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However, due to some adverse effects of phenolic com-
pounds on product quality, this has not always been con-
sidered a drawback. Among other things, polyphenols may 
cause discoloration of plant foods as a result of enzymatic 
browning reactions (Friedman 1996; Robards et al. 1999). 
Fermentation products such as acetaldehyde or further com-
pounds such as glyoxylic acid and furfural were shown to 
induce the polymerization of flavanols and anthocyanins, 
thus, affecting color during processing and aging of fruit-
derived foods (Es-Safi et al. 2003). Depending on their 
structural features and concentrations polyphenols are also 
responsible for astringency and bitterness (Llaudy et al. 
2004; Mateus et al. 2004). Phenolic compounds also contri-
bute to sediment formation by polyphenol-protein interac-
tions resulting in undesirable hazes in products such as wine, 
beer and fruit juices (Siebert 1999). Since proteins are 
effectively precipitated by highly polymerized tannins, by-
products of plant food processing containing high amounts 
of phenolics, e.g. grape pomace, are considered inferior 
when used as a feed because of their negative effect on 
protein digestibility (Robards and Antolovich 1997; Bravo 
1998). Furthermore, polyphenols were shown to negatively 
affect mineral absorption due to complexation reactions 
(Bravo 1998). 

More than 15 years ago, the MONICA project, a world-
wide monitoring system for cardiovascular diseases orga-
nized by the World Health Organization, led to the term 
‘French Paradox’, an apparent discrepancy of a high fat diet 
with a low incidence of coronary atherosclerosis. These 
findings were attributed to the regular consumption of red 
wine (Renaud and De Lorgeril 1992; Frankel et al. 1993) 
and have led to a significant change in the evaluation of 
phenolic compounds, because in search for the active prin-
ciples of wine, much interest has been paid to polyphenols, 
and wine is considered an important contributor of antioxi-
dant activity to the human diet, even though in vitro antioxi-
dant potency does not necessarily prove in vivo biological 
activity (Seeram et al. 2008). Beginning with these obser-
vations, research interest has focused on plant phenolics, 
since numerous epidemiological studies revealed an inverse 
correlation between the dietary uptake of phenolic com-
pounds and risk of certain diseases, such as coronary heart 
diseases, stroke and certain forms of cancer (e.g. Gupta et al. 
2008; Liu et al. 2008), which has mainly been attributed to 
their antioxidant activity and radical scavenging capacity 
(Conde et al. 2007), even though studies on absorption, 
metabolism and in vivo effects of polyphenolics and their 
metabolites are still scarce. Beyond these properties numer-
ous other effects have been revealed in more recent studies 
which may explain the putative health-beneficial properties 
of phenolic compounds, such as an impact on signalling 
pathways regulating cellular growth (Kern et al. 2005, 
2006; Sparwel et al. 2009) or the enhanced synthesis of 
detoxifying enzymes of phase II metabolism (Veeriah et al. 
2006). Furthermore, the protection of DNA by polyphenols 
from oxidative stress may play a role in disease prevention 
(Schaefer et al. 2006a, 2006b). However, the complex pro-
file of phenolic compounds in plant extracts and the limited 
availability of reference compounds hampers studies on the 
bioavailability and physiological and nutritional effects of 
individual compounds. Problems also arise from the fact 
that many experiments have been performed with animals 
and that extrapolation to humans is not straightforward. 

Despite these difficulties in unravelling the mechanisms 
of health-beneficial effects in vivo plant food rich in poly-
phenols and the dietary uptake of high amounts of phenolic 
components are generally considered helpful for disease 
prevention and desirable in terms of a healthy diet. There-
fore, regular consumption of plant food has also been pro-
pagated by health authorities, such as the ‘5 a day cam-
paign’ (Kammerer et al. 2005a), which advises the con-
sumption of three portions of vegetables (400 g) and two 
portions of fruit (250 g) per day. For this reason, food pro-
ducers aim at delivering products high in antioxidant acti-
vity either by optimizing process conditions or by exploit-

ing novel plant materials with desirable profiles and con-
tents of plant secondary metabolites, which can be seen e.g. 
from the discussion of ‘superfruits’, a marketing term, 
which has been introduced by the food and beverage indus-
try. 

Grapes are an important crop both with regard to their 
complex polyphenolic profile and their market share of all 
fruit crops. Most of the grapes are used for winemaking, 
thus, much interest has been devoted to optimizing poly-
phenol recovery during vinification yielding wines with 
high amounts of antioxidant compounds. This review aims 
at providing an overview of the techniques and processes in 
the course of red and white winemaking and storage and 
their impact on polyphenols, also taking into consideration 
novel technologies, which have been developed in recent 
years. 
 
Impact of grape phenolic profile and contents on 
wine quality 
 
The phenolic contents and color of red and white wines 
mainly depend on the grape variety, because grapes of dif-
ferent varieties are known to significantly differ both in the 
profile and contents of phenolic compounds. Comprehen-
sive data are available on anthocyanins, phenolic acids, stil-
benes and non-anthocyanin flavonoids of grapes, and their 
fingerprints have been used for regional and cultivar-related 
differentiation (e.g. Mazza 1995; Goldberg et al. 1996; Car-
reno et al. 1997; Soleas et al. 1997; Goldberg et al. 1998; 
Otteneder et al. 2004). Thus, the phenolic profiles of wines 
have also been used for grape cultivar identification (Nik-
fardjam et al. 2007). Basic structures of the most important 
phenolic compounds found in grapes and grape-derived 
products and by-products are illustrated in Fig. 1, revealing 
a highly complex polyphenolic profile. 

Furthermore, vine pruning and training system were 
also shown to affect polyphenol contents of grapes. Cluster 
thinning has a marked impact on setting and veraison and 
also affects the phenolic composition of the grapes and their 
respective wines. Thus, depending on the grape variety, it is 
possible to increase anthocyanin contents up to 70% apply-
ing particular training systems (Gonzáles-Neves et al. 2002; 
Pérez-Lamela et al. 2007). Additionally, the phytosanitary 
conditions of the grapes and their maturity as well as culti-
vation conditions have been shown to affect the phenolic 
contents (Kennedy et al. 2002; Cortell and Kennedy 2006; 
Nikfardjam et al. 2006; Pastor del Rio and Kennedy 2006; 
Cortell et al. 2007a). This is of particular interest, since the 
color and phenolic contents of wines are correlated with the 
polyphenol contents of the grapes they are originating from 
(González-Neves et al. 2004; Cortell et al. 2007b). As an 
example, Fig. 2 illustrates the differences in anthocyanin 
contents in the skins of different grape pomace samples of 
different cultivars and vintages, which do not only depend 
on the vinification techniques but also mainly on the cha-
racteristics of the respective grape cultivars. 

Due to the high impact of phenolic compounds on wine 
quality and characteristics, such as color, astringency and 
bitterness, much effort has been devoted to the optimization 
of polyphenol extraction using different vinification tech-
niques. Among the factors influencing polyphenol extrac-
tion, fermentation temperature and must or grape freezing 
play a predominant role, even though the latter method puts 
additional costs to the technology and, thus, is not com-
monly applied. In contrast, thermovinification is often per-
formed as an alternative to skin maceration. This techno-
logy allows to damage hypodermal cell membranes and to 
denature polyphenol oxidase, which enables enhanced re-
lease of phenolic compounds and prevents browning. Fur-
thermore, carbonic maceration, the fermentation of whole 
berries or clusters under a CO2 atmosphere, prefermentation 
juice runoff (saignée), the application of pectinolytic en-
zymes, pumping-over and punching-down of the cap, which 
is developed as CO2 causes the grape solids to rise to the 
top of the fermentation vessel, the maceration time and 
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Cyanidin 3-O-glucoside OH OH H glc 
Cyanidin 3-O-p-coumaroylglucoside OH OH H p-coumaroyl-glc 
Delphinidin 3-O-glucoside OH OH OH glc 
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Peonidin 3-O-glucoside OCH3 OH H glc 
Peonidin 3-O-acetylglucoside OCH3 OH H acetyl-glc 
Peonidin 3-O-p-coumaroylglucoside OCH3 OH H p-coumaroyl-glc 
Petunidin 3-O-glucoside OCH3 OH OH glc 
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Fig. 1 Structures of important phenolic compounds in grapes and grape-derived products and by-products. Cited from Kammerer DR, Schieber A, 
Carle R (2005) Characterization and recovery of phenolic compounds from grape pomace – A review. Journal of Applied Botany and Food Quality 79, 189-196. 
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yeast selection have been described to potentially affect an-
thocyanin and polyphenol extraction from the grapes (Sac-
chi et al. 2005). 
 
Maceration techniques and their influence on the 
phenolic profile and antioxidant properties of 
wines 
 
The type of maceration, the steeping of grape skins and 
seeds in the must allowing the extraction of grape compo-
nents into the liquid phase, is known to be a key step during 
vinification determining the phenolic profile and contents 
and, thus, the antioxidant potential of the resulting musts 
and wines. Prolonged skin contact during mashing was 
shown to considerably enhance mass transfer and polyphe-
nol extraction into the musts of white grapes, which goes 
along with an increase in the antioxidative capacity of the 
wines as evaluated by the inhibition of human LDL oxida-
tion as compared to wines produced by immediate pressing 
of the grapes after crushing (Hurtado et al. 1997). In the 
course of fermentation of red grape mash individual phe-
nolic compounds were shown to be released into the musts 
at different times, which both reflects their extractability 
and localization within different parts of the grape. Most 
hydroxycinnamates are released at an early stage of fermen-
tation, prior to ethanol formation, such as caftaric and cou-
taric acids, followed by skin anthocyanins and flavonol gly-
cosides. In contrast, the contents of flavan 3-ols and gallic 
acid from the seeds steadily increased with fermentation 
time, especially in the presence of ethanol (Nemanic et al. 

2002; Zou et al. 2002). Expectedly, maceration times do not 
only affect polyphenol yields but also sensory characteris-
tics of the resulting wines, which are closely interrelated 
(Budic-Leto et al. 2008). Wines prepared by skin macera-
tion for several days have been shown to exhibit higher 
concentrations of antioxidant polyphenolics as compared to 
wines produced by thermovinification, which is often ap-
plied due to limited capacity of tanks and containers needed 
for fermentation (Talcott and Lee 2002). 

Generally, the cell wall is the major barrier to be over-
come in the course of polyphenol extraction during wine-
making. For this reason, researchers have tried to correlate 
the differences in cell wall composition between different 
varieties with anthocyanin and polyphenol extractability. As 
an example, ‘Monastrell’ grapes proved to be more difficult 
with regard to anthocyanin extraction. Major differences 
between the cell wall composition of different varieties as 
deduced from multiple regression analyses were found in 
the pectin and cellulose contents, but differences in the 
arabinoxylan, arabinogalactan and xyloglucan fractions 
might also be of importance. However, it must also be kept 
in mind that the thickness or density of the cell walls might 
affect pigment extraction as well (Ortega-Regules et al. 
2006). 

Prior to grape crushing and maceration stems are mostly 
removed. The decision whether to destem the grapes or to 
ferment the mash consisting of skins, seeds and stems, has a 
pronounced effect on the phenolic contents of the resulting 
wines. Grape stems contain significant amounts of polyphe-
nols. Their removal before grape crushing prevents exces-

Fig. 2 Contents of individual anthocyanins in the skins of grape pomace samples of different cultivars and vintages. Data according to Kammerer et 
al. (2004). 
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sive uptake of polyphenols, which is undesired, since stem 
phenolics contribute to bitter and astringent tastes (Benítez 
et al. 2005). Accordingly, red wines, which were made from 
non-destemmed grapes, exhibited higher levels of phenolic 
compounds (Sun et al. 2001). In contrast, the wines 
obtained from ´Palomino fino´ grapes with different degrees 
of destemming did not significantly differ in their polyphe-
nolic contents (Benítez et al. 2005). Thus, when evaluating 
the effects of destemming on polyphenol release during 
maceration, the grape cultivar needs to be taken into consi-
deration. 

A systematic comparison of ‘Monastrell’ wines pro-
duced by applying maceration times of 4, 5 and 10 days, 
respectively, clearly revealed that long maceration times 
resulted in wines with higher anthocyanin and polymeric 
phenolic contents, greater color density and an overall im-
proved color quality. However, it has also been stated that 
not all grape varieties, e.g. ‘Muscadine’ grapes, are suitable 
for extended skin fermentation, because of greater astrin-
gency upon longer skin contact. Furthermore, SO2 addition 
at the moment of grape crushing enhanced the transfer of 
polyphenols from the skins to the must. Together with sto-
rage temperatures below 20°C, early SO2 addition and long 
maceration times produced wines with highest anthocyanin 
contents and color retention (Gómez-Plaza et al. 2001, 
2002). However, it has also been reported that, in contrast to 
the release of non-colored phenolic compounds, the amounts 
of which steadily increase with the length of maceration, 
anthocyanin contents were lowered after a few days of 
maceration (Budic-Leto et al. 2003). 

The grape temperature during crushing and maceration 
also significantly affects the quantitative composition and 
evolution of phenolic compounds, since the temperature 
strongly influences the rate of polyphenol extraction from 
grape skins during the first days and also has an impact on 
the reactions occurring during the very first moments of 
vinification, such as enzymatic oxidation and polymeriza-
tion reactions. Upon further steps of vinification tempera-
ture effects become less predominant, since the fermenta-
tion process itself raises the temperature of the must, and 
differences are then less pronounced as vinification prog-
resses (Gil-Muñoz et al. 1999). 

Cold maceration techniques have now often been 
evaluated as a further tool to improve polyphenol extraction, 
not only of red but also of white grapes, and to produce 
high-quality wines suitable for aging, and such a process 
was shown to increase anthocyanin concentrations and color 
intensity (Nemanic et al. 2002). These general trends were 
also observed in a study evaluating the cold maceration of 
‘Sangiovese’ grapes at temperatures ranging from -5 to 
+5°C by adding either liquid nitrogen or solid CO2. With 
CO2 the improvement of wine quality was directly propor-
tional to the decrease in temperature, whereas for liquid 
nitrogen differences between maceration at +5 and 0°C 
were insignificant (Parenti et al. 2004). Thus, this effect is 
not only dependent on temperature. Some contradictory 
results concerning the effects of cold maceration have been 
reported in the literature. It has been generally found that 
the improvement in quality, which is attributed to cold 
maceration, varies with different grapes and vintages and 
that the choice of cold maceration temperature and duration 
is of utmost importance with regard to sensory and chemi-
cal characteristics of the resulting wines allowing to obtain 
different qualitative results (Parenti et al. 2004). When dry 
ice is added to the grape mash, freezing causes lysis of the 
grape skin cells, which is caused by the increase of the 
volume of the intracellular liquids, thus disrupting the cell 
membranes. This may serve as an explanation for the en-
hanced release of anthocyanins and non-colored phenolic 
compounds as well as of aromatic volatiles, which signifi-
cantly affects must and wine quality (Álvarez et al. 2006). 
However, it still needs to be assessed whether the improve-
ment in wine quality will justify the additional costs caused 
by cold maceration. 

Carbonic maceration is an alternative to traditional 

winemaking techniques and is mainly applied to obtain very 
young, fruity red wines. For this purpose, whole grapes are 
fermented in a CO2-rich environment prior to crushing. 
Carbon dioxide permeates through the skins and stimulates 
alcoholic fermentation in the intact grape berries. Signifi-
cant differences in the color and phenolic composition of 
wines obtained by carbonic maceration and by traditional 
skin contact fermentation are known to differ, which is 
mainly due to the anaerobic fermentation in the case of car-
bonic maceration. When compared to mash fermentation 
processes with or without stem contact, the wines resulting 
from carbonic maceration were characterized by lower 
color intensities and lower phenolic contents (Spranger et al. 
2004). Similar results were obtained in another study com-
paring carbonic maceration with traditional skin contact fer-
mentation of ‘Syrah’ grapes. From the former process red 
wines with lower anthocyanidin monoglucoside contents 
and lower amounts of total phenolics were obtained. These 
exhibited higher lightness values, and the color was less 
saturated, whereas hue angle values were comparable to the 
traditionally produced wines (Gómez-Míguez and Heredia 
2004). In contrast to these reports, carbonic maceration was 
also shown to enhance extraction of some particular com-
pounds, namely catechins and oligomeric and polymeric 
procyanidins (Sun et al. 2001). 

The release of polyphenols during maceration may fur-
ther be enhanced by using horizontal or vertical rototanks or 
macerators, which allow to automatically homogenize the 
grape mashes throughout maceration, thus improving the 
transfer of phenolic compounds into the must (Budic-Leto 
et al. 2005), or of other sophisticated maceration containers 
making use of CO2 formed during fermentation to effec-
tively agitate the mash and, thus, to improve the extraction 
of solid grape parts (Garde-Cerdán et al. 2008a), since 
otherwise the contact between juice and the skins and seeds 
is significantly reduced. The effects of different techniques 
on polyphenol release have recently been reviewed (Sacchi 
et al. 2005). 

The steady increase of phenolic contents in the course 
of maceration goes along with an increase of the antioxidant 
capacity of the musts and wines, which has been evaluated 
using in vitro test systems, such as the DPPH, ABTS, 
DMPD, FRAP or ORAC assays, by electron spin resonance 
spectroscopy, by a chemiluminescence assay and by methods 
evaluating biomarkers of oxidative stress, such as lipid 
peroxidation inhibition and inhibition of damage to DNA, 
respectively, also trying to correlate antioxidative capacity 
with the contents of individual phenolic compounds (Bren-
na and Pagliarini 2001; Burns et al. 2001; Fernández-Pa-
chón et al. 2004; Girotti et al. 2006; Lachman et al. 2007; 
Rivero-Pérez et al. 2007; Noguer et al. 2008). 
 
Technical enzyme preparations used for 
enhancing polyphenol release in the course of 
vinification 
 
Pectinolytic enzyme preparations are commonly applied in 
the winemaking industry for several reasons. Inter alia, they 
allow a faster start of fermentation, an increase in must 
yield and easier pressing, and an improved clarification of 
the wines. One of the most important reasons for the applica-
tion of pectinases is the enhanced release of polyphenols 
from the solid parts of the grapes, which may result in 
higher color densities, anthocyanin and total phenolic con-
tents when applied to red grape mashes. Thus, pectinolytic 
enzymes are commonly used for improving red wine color 
(Pardo et al. 1999), which also enhances visual color inten-
sity (Guadalupe et al. 2007). However, treatment with pec-
tinases is also performed in white winemaking processes, 
mainly to improve clarification and stabilization. As de-
monstrated for red winemaking, white grape mashes treated 
with cell wall degrading enzymes were also shown to pro-
duce wines with significantly higher polyphenol amounts 
(Pérez-Magarino and González-San José 2001). Obviously, 
enzymatic cell wall hydrolysis does not negatively affect 
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polyphenol and anthocyanin stability, which might be ex-
pected from the loss of colloidal polyphenol stabilization by 
hydrocolloids, since studies with mannoprotein addition to 
red wines did not reveal neither any effect on anthocyanin 
and non-colored polyphenol contents nor on color (Guada-
lupe and Ayestarán 2008). However, there are also reports 
in the literature showing that pectinolytic enzymes do not 
necessarily improve anthocyanin extraction or that they 
may even cause decreased pigment levels (Sacchi et al. 
2005). This may be due to glycosidase side activities of 
technical enzyme preparations, which may cause hydrolysis 
of anthocyanins (Kammerer et al. 2005b). 
 
Effects of pressing parameters on grape juice 
composition 
 
The composition of grape musts and wines also depends on 
the type of press and the pressures applied to the mash. The 
press type may have an impact, because different systems 
may differ in the way and the homogeneity the pressure is 
exerted on the mash. A systematic comparison of different 
pressures revealed the free run juices to contain highest 
concentrations of glutathione, while they were low in poly-
phenolic contents, thus, also exhibiting a low browning po-
tential. Moderate pressures yielded juices with high concen-
trations of proteins and polyphenol oxidase activity, and 
polyphenol oxidase activity in the course of vinification 
was shown to be highest immediately after pressing (Wisse-
mann and Lee 1980). Maximum polyphenol concentrations 
were found in juices from high pressure pressing (Valero et 
al. 1989; Yokotsuka 1990). This might also be partially 
attributed to shorter pressing times, which go along with a 
reduced exposure to oxygen. In particular those phenolic 
compounds, which are easily oxidized by grape polyphenol 
oxidases, such as hydroxycinnamic acids, have been studied 
in detail with regard to their transfer into the must as a 
function of pressing pressures due to their contribution to 
the browning potential of white and red wines. In a study on 
the composition of ‘Sauvignon blanc’ musts the duration of 
skin contact and the level of pressure during pressing were 
shown to be important factors determining the composition 
of the grape musts (Maggu et al. 2007). Longer skin contact 
times resulted in a greater release of varietal aroma com-
pounds into the must. At the same time and with increasing 
pressures exerted on the mashes this enhanced aroma re-
lease was offset by an increase of the oxidative potential, as 
could be deduced from a decline in the glutathione content 
and an increase of easily oxidizable phenolic compounds, 
which favor browning reactions and lead to a loss of varie-
tal aroma components (Maggu et al. 2007). The localization 
of phenolic compounds within the grape plays an important 
role with regard to the transfer into the musts during pres-
sing (Barroso et al. 1987). 

The application of a decanter centrifuge after pressing 
has been demonstrated in the case of white wines to de-
crease the need for fining agents and to increase the overall 
quality of the wines by reducing the browning quality (Fos-
ter and Cox 1984). 
 
Alcoholic and malolactic fermentation and their 
effects on the evolution of phenolic compounds 
 
Yeasts may significantly affect the polyphenol contents and 
color of wine due to surface adsorption (Vasserot et al. 1997, 
2007), the formation of metabolites such as pyruvic acid 
and acetaldehyde that further react with phenolic compounds, 
or yeast glycosidase activities. Such differences have been 
demonstrated with several Saccharomyces strains producing 
wines, which significantly differed in their color intensity, 
total phenolic and monomeric anthocyanin contents and 
antioxidant capacity, which was also reflected by the wine 
composition after aging (Caridi et al. 2002, 2004; Brando-
lini et al. 2007; Bautista-Ortín et al. 2007; Sidari et al. 
2007; Romano et al. 2008). More detailed studies were also 
performed on the effects of yeast on the evolution of indi-

vidual phenolic compounds. As an example, yeasts were 
shown to significantly affect the amounts of cis- and trans-
resveratrol and the respective glucoside isomers in wines. 
Differences may be due to adsorption onto the yeast surface 
and hydrolysis catalyzed by yeast glucosidases (Poussier et 
al. 2003; Clare et al. 2005). Different potential of various 
Saccharomyces strains to adsorb phenolic compounds was 
also shown for anthocyanins and tannins (Sidari et al. 2007). 
More detailed investigations into the adsorption of antho-
cyanins by yeast cell walls revealed pronounced differences 
of individual pigments with regard to their potential to be 
bound by the yeasts. Acetylated and coumaroylated antho-
cyanins were more prone to adsorption than their non-acy-
lated counterparts (Vasserot et al. 1997, 2007). Among the 
non-acylated monoglucosides malvidin 3-glucoside was 
most adsorbed, indicating that more hydrophobic com-
pounds are preferably bound. However, significant differen-
ces were also found in the adsorption capacity of different 
yeast strains with some of them adsorbing more than twice 
the amounts as compared to other strains (Morata et al. 
2003). In some studies, the impact of yeasts on the evolu-
tion of anthocyanins and non-colored phenolic compounds 
of wines appeared of minor relevance (Nikfardjam and 
Pickering 2008). The effects of yeasts on the polyphenolic 
profile always need to be associated with the presence of 
oxygen. A certain amount of oxygen is needed for optimal 
yeast growth and lipid and sterol synthesis by the yeasts. 
When oxygen is abundant, reactive oxygen species (ROS) 
are produced. Thus, yeasts also play a dominant role in wine 
aging, since they can consume oxygen for at least three 
years if the wines are not clarified or lees are added back to 
the wine. The release of ROS by yeast cells may favor the 
oxidation of wine phenolics. On the other hand, yeasts may 
compete with polyphenols for oxygen, thus, hindering 
microoxygenation, however, this interrelation between 
yeasts, oxygen and wine aging has not been studied so far 
(Salmon 2006). 

Whenever yeast assimilable nitrogen contents are low, 
diammonium phosphate is commonly added to grape musts 
to avoid the risk of slow and stuck fermentation. Such a 
supplementation was shown to affect wine color and phe-
nolic profile as well. Whereas no difference was observed 
for polymeric anthocyanins and tannins as compared to 
control samples, diammonium phosphate supplementation 
caused a significant increase in malvidin 3-glucoside levels 
of the respective wines, which was possibly due to higher 
ethanol contents in the supplemented samples enhancing 
anthocyanin extraction or protecting the pigments against 
degradation reactions. This went along with higher color 
intensities and total color differences, which were even per-
ceivable by the human eye (Ugliano et al. 2008). 

One step of traditional enological practice is wine aging 
on yeast lees, which is applied for the production of some 
white wines and which has gained increasing popularity in 
recent years for the aging of red wines. Lees consist of dead 
or residual yeasts which are deposited at the bottom of wine 
vats. Normally, the lees are removed in the course of vini-
fication by transferring the wine to another container, a pro-
cess which is known as racking. In a study on the interac-
tion of yeast lees and red wine polyphenols adsorption of 
phenolic compounds onto the yeast surface followed a 
biphasic kinetics. The first phase (~0.2 h) was characterized 
by a rapid binding of phenolic compounds followed by a 
slow, constant adsorption, which reached its saturation after 
about one week, where about one third of the total free an-
thocyanins were bound to the yeast surface. This went along 
with a noticeable decrease of absorbance at 420 and 520 nm. 
Significant differences between the relative adsorption rates 
of individual pigments were not observed (Mazauric and 
Salmon 2005). 

Malolactic fermentation, the conversion of malic acid 
into lactic acid, which is usually performed after alcoholic 
fermentation, is an additional step during vinification re-
ducing wine acidity and providing additional flavors for the 
wines through metabolic reactions, mainly of Oenococcus 
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oeni. Expectedly, polyphenol amounts of the wines are af-
fected by the fermentation conditions, such as aeration and 
temperature (Reguant et al. 2005). More detailed compari-
sons of different lactic acid bacteria revealed differences in 
the malolactic reactions with regard to the wine composi-
tion, with wild populations showing a greater impact on the 
contents of phenolic compounds as compared to selected 
monocultures. Malolactic fermentation caused the forma-
tion of novel compounds, which were not detected in the 
wines prior to this fermentation step, such as trans-ferulic 
acid and several flavanols. Furthermore, the contents of 
catechin, epicatechin, trans-resveratrol, tyrosol and trypto-
phol, which were already present after alcoholic fermenta-
tion, significantly increased. Fermentation with wild lactic 
acid bacteria strains caused significant hydrolysis of the 
hydroxycinnamoyl derivatives trans-caftaric and trans-cou-
taric acids releasing free trans-caffeic and trans-coumaric 
acids, whereas other strains showed little or no effect on 
these compounds. Accordingly, the contents of the myrice-
tin and quercetin aglycones were increased after spontane-
ous malolactic fermentation, which is also probably due to 
hydrolytic activities (Hernández et al. 2007). A significant 
decrease in caftaric and coutaric acid contents upon malo-
lactic fermentation and the concomitant increase in caffeic 
and coumaric acid levels was also observed in another study 
concluding that an alteration of the phenolic profile due to 
fermentative processes will also have an impact on color 
evolution and stability (Hernández et al. 2006). Accordingly, 
trans- and cis-piceid levels of wines showed a significant 
decrease, which went along with an increase of the trans- 
and cis-resveratrol amounts. This observation was attributed 
to ß-glucosidase activities of microorganisms involved in 
malolactic fermentation, especially Oenococcus oeni (Yu-
noki et al. 2001; Poussier et al. 2003). 
 
The fining of wines – impact of process 
parameters on wine composition 
 
Wine clarification using fining agents is performed to pro-
duce clear, bright wines devoid of suspended or colloidal 
compounds. Clarification processes go along with a reduc-
tion of phenolic contents, especially of compounds involved 
in unwanted oxidation reactions and particularly contri-
buting to excessive astringency, however, they should have 
only little or no effect on essential aromatic and flavor com-
pounds of wine. Thus, fining aims at improving the organo-
leptic characteristics of wine. By lowering polyphenol con-
tents, fining may also be applied to minimize browning 
reactions, especially of white wines, during vinification and 
storage. Polyvinylpolypyrrolidone (PVPP) was more effec-
tive than casein and gelatin regarding the color of wines 
(Puig-Deu et al. 1996; Vrhovsek and Wendelin 1998; Puig-
Deu et al. 1999; Marti et al. 2001). However, decreased 
polyphenolic contents do not always go along with a lower 
susceptibility towards browning (López et al. 2001). In 
addition to the aforementioned fining agents egg albumin, 
microcrystalline cellulose, activated charcoal and bentonite 
may also be used. Wines produced from ‘Vinhão’ grapes 
and fined with the aforementioned agents did not show any 
significant change of the hues as compared to unfined wines. 
However, the color density and anthocyanin concentrations 
in fined wines were lower, especially when PVPP was used 
for clarification (Castillo-Sánchez et al. 2008). In contrast 
to these findings, investigations into the effects of wine-
making techniques on the color of ‘Monastrell’ wines 
revealed best color characteristics when low-temperature 
maceration wines were clarified with PVPP as compared to 
a bentonite/gelatin fining (Gómez-Plaza et al. 2000). Such 
contrasting results illustrate the complex interdependencies 
of various vinification treatments and also show that these 
processes may not be assessed separately and that different 
varieties and wines may behave differently. 

Oenological gelatins are also mainly used for clarifica-
tion and stabilization in order to reduce the turbidity and to 
decrease the astringency of musts and wines, which may be 

caused by certain phenolic compounds. At the pH value of 
wines, oenological gelatins are positively charged, thus 
interacting with the negatively charged colloids, such as 
tannins. When a critical size is reached, the colloid complex 
precipitates. Five gelatins differing in their net charge den-
sity and molecular weight distribution were compared with 
regard to their effects on wine composition. They showed 
different sedimentation behavior. The net charge density 
seemed to be correlated to the minimum active dosage pro-
ducing an appreciable flocculation. The treatments with 
these gelatins significantly reduced turbidity, total polyphe-
nol contents, color intensity and the amount of brown poly-
mers. The extent to which these parameters were modified, 
depended on the type of gelatin used for clarification (Ver-
sari et al. 1998). More detailed studies on the clarification 
of different wines with a commercial gelatin and two frac-
tions derived from it, which differed in their molecular 
weights, revealed a different precipitation potential of gela-
tin, depending on the evaluated wine. Gelatin did not preci-
pitate low-molecular phenolics but was selective for highly 
polymerized and galloylated tannins. The gelatin prepara-
tion with a molecular weight of 16,000 Da precipitated 
more polymerized tannins as compared to a gelatin with a 
molecular weight of 190,000 Da, thus, providing the oppor-
tunity to selectively remove specific high-molecular pheno-
lic compounds by choosing the appropriate fining agent 
(Maury et al. 2001). In contrast, PVPP binds and precipi-
tates also low-molecular phenolics. 

The haze-forming potential of wines may also be low-
ered by bringing it into contact with macromolecular hydro-
philic compounds capable of forming hydrogen bonds with 
phenolic compounds, thus removing those components, 
which may otherwise cause protein-polyphenol precipitates 
during storage (Katzke et al. 2008) or by micro- or ultrafil-
tration (Goncalves and Norberta de Pinho 2003). However, 
the latter method is also known to significantly reduce pig-
ment amounts, even when cut-off sizes of > 10.000 Da are 
chosen. It is important to note that bovine spongiform ence-
phalopathy caused a situation of crisis leading the public 
and winemakers to loose their confidence in the use of gela-
tins and animal proteins in general for wine fining. Studies 
have therefore been performed to search substitutes for 
gelatins and egg proteins. In this context, plant proteins 
were successfully tested, namely showing that fining using 
plant proteins such as glutens did not alter the color of red 
and white wines (Marchal et al. 2002a, 2002b, 2003). 
 
Co-pigmentation phenomena and their role in the 
vinification process 
 
Much interest has been devoted to the color of red wines 
and ways to stabilize the color by technological means. Co-
pigmentation is one important effect contributing to pig-
ment and color stabilization in wines. Co-pigments such as 
caffeic acid and ferulic acid are effective in stabilizing 
anthocyanins, whereas phenolics such as epicatechin and 
catechin are weak co-pigments. Since there are grape vari-
eties which are rich in phenolic co-pigments effectively 
stabilizing wine anthocyanins, whereas other cultivars are 
lacking these stabilizing principles, the co-winemaking, 
which means co-maceration and co-fermentation of differ-
ent grape varieties, might be a helpful tool for obtaining 
color-stable red wines. The co-winemaking of ‘Monastrell’ 
grapes together with ‘Cabernet Sauvignon’ and ‘Merlot’ 
grapes was assessed in terms of phenolic content, pigment 
stabilization and color. The resulting wines showed hyper-
chromic effects at 530 and 620 nm. Furthermore, the ad-
dition of ‘Cabernet Sauvignon’ or ‘Merlot’ grapes during 
vinification increased the total phenolic contents and, thus, 
favored co-pigmentation and stabilized anthocyanins, which 
gave rise to enhanced formation of polymerized pigments, 
which are characterized by higher color stability as com-
pared to monomeric anthocyanins (Lorenzo et al. 2005). 
Even white grapes may be added during the production of 
red wines. However, in a study on the addition of white 
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grapes to red grape mash only minor differences with re-
gard to the phenolic profile and color evolution were ob-
served (Etaio et al. 2008). 

Co-winemaking may not be mixed up with blending or 
“coupage”. Wines are usually blended to improve color, 
taste, alcohol content, body and aroma, thus, to enhance 
product quality. Expectedly, the polyphenolic profile of 
blended wines is depending on the wines used for blending, 
which may significantly differ in their phenolic profile and 
contents. This also modifies the reactions occurring during 
wine aging, which depends on the initial phenolic profile 
(Monagas et al. 2006a). 

In another approach, isolated co-pigments, namely caf-
feic acid, rutin, catechin and tannins from white grape skins 
and seeds, were added to musts obtained from ‘Tempra-
nillo’ grapes prior to fermentation. Again, co-pigment sup-
plementation favored co-pigmentation reactions, thus, pro-
ducing wines characterized by more intense colors, higher 
anthocyanin retention, superior contribution of anthocya-
nins to the color of the wine and improved sensory charac-
teristics with regard to astringency (Álvarez et al. 2009). In 
contrast, rutin enhanced co-pigmentation when it was added 
prior to fermentation of ‘Tempranillo’ or ‘Cabernet Sauvig-
non’ mashes, whereas hydroxycinnamic acids showed even 
converse results (Schwarz et al. 2005). 
 
Wine aging and microoxygenation as a means to 
stabilize wines 
 
Wine aging is an important process in the course of wine-
making significantly affecting the aroma and phenolic pro-
file, because compounds genuinely found in grapes may be 
degraded or transformed into novel products. As an exam-
ple, numerous aldehydes and ketones are formed from alco-
hols in wine, which may further react with both anthocya-
nins and non-anthocyanin phenolic compounds (Water-
house and Laurie 2006). This is most apparent for anthocya-
nins, showing a progressive loss, which is mainly due to 
their participation in numerous chemical reactions, also 
causing color change from the bright red of young red 
wines to brick red hues of aged wines. These reactions have 
been shown to be highly complex and to produce a wide 
range of novel anthocyanin derivatives, which are stable 
under the conditions prevailing in wine, thus imparting a 
range of red colors to wine, which are retained for up to 
several decades. Among these derivatives pyranoanthocya-
nins, such as the vitisins, carboxypyranoanthocyanins and 
pyranoanthocyanin-phenol pigments, and reaction products 
between anthocyanins and flavanols mediated by aldehydes, 
such as anthocyanin-alkyl-flavanol-pigments, pyranoantho-
cyanin-flavanol pigments and vinylpyranoanthocyanin-fla-
vanol pigments, as well as direct condensation products 
between anthocyanins and flavanols have been characterized 
(Brouillard and George 1997; Hayasaka and Kennedy 2003; 
Schwarz et al. 2004, 2003; de Freitas and Mateus 2006; 
Rentzsch et al. 2007a, 2007b). However, wine aging may 
also be monitored by measuring the concentrations of fur-
ther phenolic compounds, such as gallic acid, catechin, p-
coumaric acid and trans-resveratrol (Brenna et al. 2005). 
When red wines were stored in bottles under non-oxidative 
conditions, the decrease of monomeric anthocyanins showed 
a first-order kinetics, revealing up to 66% loss of initial 
total monomeric anthocyanins. Interestingly, degradation 
rates were significantly different depending on the grape 
cultivar. Acylated anthocyanins revealed higher losses as 
compared to their non-acylated counterparts, which is pos-
sibly due to their hydrolysis releasing non-acylated antho-
cyanins. Compounds with different anthocyanidin back-
bones did not show significant differences in their aging 
behavior. Pyranoanthocyanins formed upon reaction of 
genuine grape anthocyanins with further wine constituents, 
such as anthocyanin-pyruvic acid adducts showed similar or 
lower disappearance rates than the respective precursors in 
the first months of aging, whereas anthocyanin-vinylphenol 
and anthocyanin-vinylflavanol adducts did not show any 

significant variation in their contents during the whole 26 
month storage period (Monagas et al. 2005a, 2006b). In 
contrast, the non-anthocyanin phenolics of these wines 
differed in their evolution patterns during aging. As an 
example, trans-caftaric and coutaric acids showed a signifi-
cant decrease in their contents with a concomitant increase 
in trans-caffeic and p-coumaric acids. Flavanol contents 
also exhibited a major decrease, being greater for dimeric 
procyanidins as compared to the monomeric compounds. 
These changes are also attributed to the formation of novel 
colored and uncolored oligomeric and polymeric com-
pounds, which in turn is responsible for a change of the sen-
sory properties of the wines (Monagas et al. 2005b). 

The extent of aging and oxidation reactions of wines 
stored in bottles also depends on the type of closures. Wines 
sealed with screwcaps exhibited a lower drop of SO2 con-
tents as compared to cork closures, which went along with 
lower browning of the wines as a result of decreased brow-
ning reactions (Brajkovich et al. 2005). The fact that oxy-
gen availability plays a predominant role in wine aging 
becomes evident from a study performed with wines stored 
in both glass and polyethylenterephthalate (PET) bottles 
with and without an oxygen scavenger. Expectedly, degra-
dation and oxidation rates were highest in wines stored in 
PET bottles due to the high oxygen permeation rate of this 
material, whereas an oxygen scavenger in the PET material 
significantly reduced oxidation reactions, which could be 
deduced e.g. from a less pronounced decline of the antioxi-
dant potential of wines stored in the latter material (Giova-
nelli and Brenna 2007). 

Oxygen content during aging is the predominant factor 
determining sensorial characteristics of the wines, because 
it significantly affects the profile and contents of phenolic 
and aromatic compounds and, thus, also color, astringency 
and aroma. The changes during aging are mainly reflected 
by oxidation, condensation and polymerization reactions, 
forming novel pigments and polymerized compounds. Fur-
thermore, acetaldehyde, which is formed from ethanol upon 
oxidation, serves as a bridging agent between phenols, 
among others between anthocyanins and non-colored phe-
nolics. Microoxygenation, which is increasingly applied in 
the wine industry since the nineties, implies the continuous 
and controlled addition of small amounts of oxygen during 
wine aging, bringing about high-quality wines. When 
microoxygenation was performed prior to malolactic fer-
mentation, a general decrease in total phenolic contents, but 
also the stabilization of wine color and better retention of 
color intensity were observed. Therefore, a significant color 
loss, characteristic of non-oxygenated wines after malolac-
tic fermentation, could be avoided (Pérez-Magarino et al. 
2007). Depending on storage time and oxygen supply the 
color of red wines changes significantly, and the concentra-
tions of anthocyanin derivatives present in grapes, such as 
pyranoanthocyanins, ethyl-briged compounds and products 
resulting from cycloaddition reactions between anthocya-
nins and flavanols, which are mediated by acetaldehyde, in-
creased (Atanasova et al. 2002). Preliminary one-dimensio-
nal 1H NMR experiments with oxygenated wines also re-
vealed an increase in the amount of oxygenated compounds, 
which was attributed to the wine aging process (Conte 
2008). 

Furthermore, the determination of the wine redox po-
tential may be a valuable tool to monitor the aging process. 
Besides being affected by the pH value, the redox potential 
is influenced by numerous components of wines, which can 
be present both in oxidized and reduced forms. Variations of 
the redox potential throughout wine storage have been 
shown to reflect oxidation reactions occurring during the 
aging period. This parameter also proved helpful for dis-
criminating between wines which have been aged in barrels 
or using oak chips and oak staves, respectively (del Álamo 
et al. 2006). 

With this background it is not astonishing that the ad-
dition of SO2 markedly affects such aging reactions. The 
decrease of monomeric pigment contents and the increase 
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of polymeric compounds were largely suppressed in wines 
treated with 200 mg/L SO2. This is due to the fact that SO2 
can reduce oxidized polyphenol structures and that it is 
likely to hinder pathways involving the formation of carbo-
cations at the C4 position of proanthocyanidins. When the 
respective wines were stored in bottles devoid of oxygen, 
oxidation and polymerization reactions were slowed down 
(Tao et al. 2007). 

Several attempts have been made to accelerate wine 
aging, e.g. by electrochemical oxidation of wine compo-
nents, however, these have not been put into practice so far 
(Bertuccioli et al. 2007; Fell et al. 2007). 

Wine lees also play an important role with regard to 
aging reactions, since yeasts have been shown to be respon-
sible for considerable oxygen consumption. Experiments 
simulating wine aging revealed strong interaction of wine 
lees and polyphenols with regard to reactivity towards oxy-
gen. With increasing contact times, oxygen consumption 
capacity of polyphenols increased, whereas that of the yeast 
lees was strongly lowered resulting in a total decrease of 
reactivity towards oxygen as compared to the reactivity of 
both components studied separately. Such interactions are 
probably due to adsorption of phenolic compounds onto the 
yeast surface (Salmon et al. 2002; Mazauric and Salmon 
2005). 

Must oxygenation has also been proposed for the pro-
duction of white wines rich in phenolic compounds, which 
are susceptible to browning reactions during storage. Con-
trolled oxygenation leads to a significant decrease in total 
phenolic contents, thus, bringing about low browning capa-
city of the resulting wines (Guerzoni et al. 1981; Vaimakis 
and Roussis 1993; Schneider 1998), and the S-glutathionyl 
caftaric to caftaric acid ratio has been suggested as an index 
of must oxidation even in finished wines (Singleton et al. 
1985). The susceptibility of wines towards browning during 
storage is a highly important attribute for wine producers. 
Thus, accelerated browning tests have been developed to 
evaluate this parameter, such as the electrochemical oxida-
tion of the wines and monitoring of the absorbance at 420 
nm, yielding results comparable to those of real-time sto-
rage experiments (Palma and Barroso 2002). 
 
Maturation of red wines in wood barrels 
 
Aging of wines, which is increasingly performed in wood 
barrels, is of particular importance for improving color sta-
bility and the organoleptic properties of the products. This 
aging process significantly alters the phenolic profiles of 
the wines due to extraction of wood phenolics into the 
wines or adsorption of polyphenols derived from the grapes 
onto the barrel material as well as because of oxidation and 
polymerization reactions of phenolic compounds. For this 
reason, the barrel material, i.e. the oak species and the geo-
graphical origin, and its treatment, i.e. the type and length 
of seasoning and the degree of oak toasting, are important 
determinants of the phenolic profile and contents of the 
wines. The toasting has the highest impact on the profile 
and quantity of oak wood compounds which are likely to be 
extracted in the wines, thus, also affecting their organoleptic 
properties. Thorough studies of the evolution of phenolics 
from oak woods revealed a time-dependent increase of the 
concentrations of most benzoic and cinnamic acids of Spa-
nish, French and American oak woods. The toasting was 
more important with regard to the formation of extractable 
phenolics, since significant increases especially of sinapic 
and coniferyl aldehydes, of syringaldehyde, vanillin, syrin-
gic and vanillic acids were observed. The woods of differ-
ent origins behaved similarly, however, quantitative dif-
ferences were found regarding these compounds, also enab-
ling a differentiation between the woods of different origins 
(Cadahía et al. 2001; Gougeon et al. 2009). A Rioja wine 
aged in barrels made of wood from these three origins ex-
hibited significant differences in their chromatic parameters 
and total anthocyanin contents. Additionally, the evolution 
of non-colored low-molecular phenolic compounds also de-

pended on the type of barrel wood, which allowed the pro-
duction of wines with different characteristics. Apart from 
the barrel material the changes also depend on the condi-
tions and duration of the winemaking process (Fernández 
de Simón et al. 2003). Such differences were also found in 
another study comparing the effects of oak origin, the barrel 
volumes and the age of the barrel used for wine aging. The 
latter parameter is an important issue to be considered by 
enologists, since extended use of oak barrels is known to 
cause a progressive colmatation of the wood pores reducing 
oxygen diffusion rates and with it reduced oxygen contents 
of the wines, which significantly lowers oxidation and 
aging reactions. Thus, the barrels can only be used a very 
limited number of times. The barrel size is of particular im-
portance because it determines the surface/volume ratio and, 
thus, the permeation of oxygen per volume of wine. Expec-
tedly, the study showed that polymerization of wine antho-
cyanins is favored in small and new barrels, which is crucial 
for enhancing color stability. Furthermore, the sensory ana-
lysis also revealed the wines aged in smaller barrels to 
reach higher scores (Perez-Prieto et al. 2003). Even though 
oak is commonly used for producing wine barrels, futher 
woods, e.g. from acacia, cherry, chestnut and mulberry have 
been evaluated with regard to their potential for wine aging. 
The comparison of these materials demonstrated mulberry 
wood to be unsuitable for the aging of red wines due to a 
significant decrease of fruity notes, producing wines which 
do not meet consumer expectations from a sensory point of 
view. Furthermore, cherry wood barrels proved to provide 
an environment favoring oxidative reactions and, thus, 
making it less suitable for longer aging periods (de Rosso et 
al. 2009). 

Since aging in barrels is a time-consuming process and 
also adds high costs due to the limited reusability of the bar-
rels, alternatives for wine aging have been searched, such as 
the application of oak chips or oak staves. The comparison 
with barrel aging revealed oak chips to accelerate the aging 
process and trigger polymerization reactions. Differences 
between the aging systems as deduced from discriminant 
analysis were observed with regard to the contents of low-
molecular phenolic compounds, some of which were lost 
when oak chips were used (del Alamo Sanza et al. 2004). 
Several further attempts have been made to accelerate wine 
aging, e.g. by the application of macerates from oak sha-
vings, however, such processes have not been implemented 
in modern vinification practices (Monedero et al. 1998). 

The decrease of total polyphenols during aging in wood 
barrels may not necessarily be ascribed only to polymeriza-
tion reactions but also to sorption of the compounds onto 
the barrel surface. The latter phenomenon is characterized 
by a two-step kinetics. The first step is probably due to a 
surface sorption mechanism, whereas the slower second 
step might result from a diffusion mechanism. The propor-
tion of phenolic compounds adsorbed onto the wood sur-
face and that polymerized in the course of wine aging de-
pends on the chemical structure. Whereas only minor parts 
of monomeric anthocyanins are adsorbed by the wood and 
the predominant part is polymerized, up to 50% of com-
pounds such as trans-resveratrol may be adsorbed by the 
barrel material (Barrera-García et al. 2007). 
 
Innovative vinification technologies to improve 
grape polyphenol extraction into the must 
 
Among the more sophisticated technologies pulsed electric 
field (PEF) treatment as a non-thermal treatment method 
has also recently been applied to improve the quality of red 
wine. Three different field strengths (2, 5 and 10 kV/cm) 
were applied to treat the mashes of three grape varieties, 
‘Garnacha’, ‘Graciano’ and ‘Mazuelo’, in order to optimize 
maceration and, thus, enhance the transfer of polyphenols 
into the must and improve the color of the resulting wines. 
PEF treatment caused a significant increase in color inten-
sity, total anthocyanin and total phenolic contents as com-
pared to the control wines from non-treated musts. The 
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study also revealed that the effect of an increase in field 
strength on the release of phenolic compounds was cultivar-
dependent. Higher field strengths did not always imply a 
further increase in mass transfer rates (López et al. 2008a, 
2008b). Alternatively, PEF treatments may also be applied 
to preserve grape musts before inoculation with yeasts al-
lowing to reduce SO2 concentration, which is usually added 
to control undesirable microorganisms and enzyme activi-
ties, without significantly changing the sensory properties 
of the resulting wines (Garde-Cerdán et al. 2008b). 

The flash release treatment is another technique, which 
may be applied to produce polyphenol-enriched grape jui-
ces and musts. This process comprises rapid heating of the 
grapes at high temperatures (> 95°C) with vapor at atmos-
pheric pressure and subsequent exposure of the grapes to a 
strong vacuum, causing instantaneous vaporization, which 
itself results in a cooling of the grapes and cell wall rupture, 
again enabling enhanced polyphenol release into the must. 
This treatment was shown to significantly raise polyphenol 
levels in the must, but it also modified the phenolic profile 
as compared to control musts, which can probably be attri-
buted to different extraction kinetics of tannins from seeds 
and skins. Both heating and cell wall rupture are responsi-
ble for the enhanced release of phenolic compounds, and 
thermovinification itself without pressure release was shown 
to be only partly responsible for increased mass transfer 
rates (Morel-Salmi et al. 2006). 
 
The potential of winemaking by-products for the 
recovery of phenolic antioxidants 
 
Vinification may generally be characterized as an aqueous 
or hydro-alcoholic extraction of the grape skins and seeds, 
where most phenolics are located. The grape berries are 
only squeezed to obtain a mash, and a significant reduction 
of the grape skin particle size does not occur. For this rea-
son, polyphenol extraction from the skins and seeds in the 
course of winemaking is usually poor. Grapes are among 
the world’s largest fruit crops with an annual world produc-
tion of around 66 million tons in 2007 (FAO 2009). The 
vinification by-products represent some 13-20% of the 
weight of grapes processed and consist of skins, seeds and 
stems. Annual grape pomace amounts reported in the liter-
ature are estimated values taking into account that about 
80% of the crop is used in winemaking (Mazza and Miniati 
1993). Accordingly, amounts reported in the literature differ 
significantly, ranging from 5-7 million tons to 14.5 million 
tons solely in Europe (Hang 1988; Meyer et al. 1998; 
Schieber et al. 2001; Torres and Bobet 2001). Given these 
figures, ways have been searched to exploit the press resi-
dues, which are characterized by high moisture contents and, 
thus, are susceptible to rapid microbial spoilage. The pro-
duction of organic fertilizers from grape pomace is limited 
due to germination problems caused by the resulting soils 
containing high amounts of phenolic compounds (Bonilla et 
al. 1999; Negro et al. 2003), whereas the use as animal feed 
is limited due to poor digestibility as a consequence of high 
amounts of polymeric polyphenols, which inhibit celluloly-
tic and proteolytic enzymes and the growth of some rumen 
bacteria (Famuyiwa and Ough 1982; Schurg et al. 1980). 

Based on the ‘French Paradox’ observations revealing a 
positive impact of grape or wine phenolics on human health, 
from an economic viewpoint the polyphenol fraction of 
grape by-products is more interesting than the aforemen-
tioned options. Anthocyanins are considered the most valu-
able phenolic compounds of grape pomace, which is cha-
racterized by a highly complex phenolic profile, similar to 
that of grapes consisting of hydroxybenzoic and hydroxy-
cinnamic acids, monomeric, oligomeric and polymeric 
flavan 3-ols, stilbenes and flavonols and flavonol glyco-
sides. Total polyphenol amounts have been reported to range 
up to 4% of the dried pomace (Lu and Foo 1999). Storage 
of the pomace without drying does not only affect the micro-
biological state but also the phenolic profile, since the for-
mation of novel compounds may be observed under oxida-

tive conditions (Fan et al. 2004). 
To assess the potential of grape pomace for the indus-

trial recovery of polyphenols, the phenolic profile and con-
tents of individual compounds were determined in 14 pom-
ace samples originating from red and white winemaking 
and, thus, allowing to compare polyphenol amounts in by-
products originating from different grape cultivars and dif-
ferent vinification techniques. Up to 40 individual com-
pounds were identified and quantified in the skins and seeds, 
revealing very high polyphenol contents in most samples 
demonstrating grape pomace to be a valuable raw material 
for polyphenol extraction (Kammerer et al. 2004). The stu-
dy also revealed great differences in the contents of indivi-
dual compounds depending on cultivar and vintage. 

Anthocyanins have often been extracted from winery 
by-products using sulfite-containing water or alcohols to 
yield pigment preparations (“oenocyanin”), which can be 
applied as natural colorants (Bocevska and Stevcevska 
1997; Ayed et al. 1999). Since sulfite cannot be removed 
quantitatively from the extracts and due to its pseudoaller-
genic potential, alternatives to sulfite-assisted extraction 
procedures have been studied. Among these the application 
of cell wall degrading enzymes, such as pectinases and cel-
lulases, has been demonstrated to enhance polyphenol yields 
during grape pomace extraction (Meyer et al. 1998). More 
detailed studies of the yields of individual phenolics upon 
enzymatic digestion of grape skin cell wall polysaccharides 
showed significantly improved extraction rates for most 
polyphenols compared to aqueous extraction. The moni-
toring of individual compounds revealed that technical en-
zyme preparations may contain side activities detrimental to 
the release of phenolics, such as glycosidase activities, which 
underlines the necessity to carefully screen the enzymes 
used for cell wall degradation (Kammerer et al. 2005b). 
Systematic optimization of cell wall polysaccharide hydro-
lysis using a D-optimal design and analysis by response 
surface methodology allowed to improve polyphenol yields 
and to reduce enzyme dosages required to hydrolyze the 
polysaccharide matrix and improve the release of phenolic 
antioxidants, thus enhancing the economic feasibility of the 
process. The yields obtained were comparable to those from 
sulfite-assisted extraction. Therefore, such a process may be 
considered a suitable alternative to the application of sulfite 
(Maier et al. 2008). 

The crude pomace extracts obtained by enzymatic 
hydrolysis of grape cell wall polysaccharides may either be 
directly spray-dried to yield a stable product or further 
purified and concentrated. For this purpose, adsorption 
technology using apolar macromolecular resins, which is 
applied in the food industry e.g. for the debittering of citrus 
juices, is a suitable tool. Anthocyanins extracted from red 
wine grape pomace samples were adsorbed onto a styrene-
divinylbenzene copolymer, and the analyses revealed the 
pigment losses during sample loading and washing out of 
co-extracted non-phenolics from the adsorbent column to be 
negligible. Elution with acidified alcohols resulted in reco-
very rates ranging up to 96-100 %, thus facilitating pigment 
concentration without any loss, since highly concentrated 
alcoholic eluates were obtained, which allow concentration 
to dryness under mild conditions (Kammerer et al. 2005c). 
Further purification and fractionation of phenolic com-
pounds from grape pomace may be achieved using chro-
matographic techniques, such as high-speed counter-current 
chromatography. This sophisticated method even allows to 
isolate individual compounds from crude mixtures, which 
may then be used for in vitro and in vivo studies or as ref-
erence substances for analytical purposes (Maier et al. 
2006). 
 
CONCLUSIONS 
 
A comprehensive overview of currently applied technolo-
gies to enhance polyphenol release in the course of vinifi-
cation is given. Furthermore, the fate of phenolic com-
pounds during wine aging and storage is considered. There 
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are efficient ways to produce wines with stable colors and 
high antioxidant potential. However, it also becomes obvi-
ous that the effects of vinification treatments are strongly 
cultivar-dependent. Thus, the particular grape used for wine-
making with its distinctive phenolic profile and contents is 
one of the most important factors determining the phenolic 
contents of the wines derived from it. Grape cultivar and 
vinification techniques further determine the polyphenol 
contents of winemaking by-products, which may serve as a 
source for the recovery of phenolic antioxidants. 

The development of sophisticated analytical techniques 
in recent years has significantly increased the knowledge of 
the phenolic profile and contents of grapes and products 
derived therefrom, which is of utmost importance both from 
a technological and biofunctional point of view. With even 
more powerful analytical tools we will be able in the future 
to thoroughly assess the health effects of wines and trace 
back these properties to individual compounds or classes of 
compounds or probably to synergistic effects of complex 
mixtures of these components. Based on this knowledge, 
vinification techniques may further be developed and im-
proved to obtain wines with optimized sensory attributes 
and desired health-related properties. 
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