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ABSTRACT 
The ageing population of many societies has been accompanied by an increase in the incidence of chronic diseases. At the same time, 
people are more interested in healthy dietary patterns and the use of dietary supplements. It is in this context that olive oil and olive leaf 
have attracted attention. Both products contain a number of biophenols that have been associated with bioactivity and positive health 
outcomes. Data indicate that the phenols are absorbed and metabolised and that a minor fraction of the ingested dose is excreted in the 
urine. This is a necessary pre-requisite to biological activity. However, their metabolic fate remains controversial. The outcomes of in vivo 
human studies are examined and contrasted with in vitro and animal studies. Furthermore, whether the bioactivity translates into 
physiological outcomes has not been established conclusively and will depend on development of suitable biomarkers of functionality. 
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INTRODUCTION 
 
Epidemiological studies demonstrate that those populations 
with a high consumption of plant-based foods, such as fruits, 
vegetables and grains, exhibit a lower incidence of chronic 
disease. Of particular note is the association between the 
traditional Mediterranean diet and the low incidence of 
heart and cardiovascular diseases and some cancers (Simo-
poulos 2001; Martínez-González et al. 2002; Serra-Majem 
et al. 2006). While it is not clear what particular aspect of 
the traditional Mediterranean diet is protective, these fin-
dings have been attributed to dietary fibre, vitamins and 
minerals, and apparent ideal macronutrient ratios (Fraser 
1994; Jenkins et al. 1998; Serra-Majem et al. 2006). More-
over, the specific mechanism(s) behind the apparent favour-
able health outcomes of this eating pattern are yet to be 
determined. Meanwhile, much interest has been evoked, 
and research performed, on the benefits of olive oil con-
sumption. 

Olive oil has been touted for its ability to positively 
affect LDL-cholesterol levels (Gimeno et al. 2002) and 
hence limit atherosclerotic and coronary heart disease deve-
lopment. Recently olive phenols demonstrated a favorable 
effect on triglyceride metabolism in a rat model (Oi-Kano et 
al. 2008). Epidemiological evidence also suggests an inverse 
association for cancer, in particular breast cancer, and olive 
oil consumption (Lipworth et al. 1997; Menendez et al. 
2008). The health benefits of olive oil have been attributed 
to a favourable fatty acid composition (Beardsell et al. 
2002) or, alternatively, to an antioxidant effect by the phe-

nolic fraction which comprises < 1% of the oil (Bravo 
1998; Craig et al. 1999; Tripoli et al. 2005). Phenolic com-
pounds are ubiquitous in the plant kingdom as they are pro-
ducts of plant secondary metabolism from both the shiki-
mate and acetate pathways (Parr et al. 2000). The most cha-
racteristic phenols of olives are the secoiridoids (Damtoft et 
al. 1993). More recently, the interest in olive oil consump-
tion has been extended to include table olives (Kountouri et 
al. 2007; Puel et al. 2007) and the use of olive leaves 
(Malik et al. 2008) as dietary supplements. A method has 
even been proposed to enrich oils such as olive with olive 
leaf biophenols (Salta et al. 2007; Japon-Lujan et al. 2008). 

Several questions arise in relation to the phenolic 
fraction of olive products: Do olive biophenols exhibit in 
vitro and in vivo antioxidant activity? Do they exhibit other 
bioactivities? If yes, does the antioxidant/bioactivity trans-
late to a physiological effect? If so, does the physiological 
effect enhance health? The potential biological activity of 
biophenols per se is dependent on their bioavailability; that 
is, their capacity to be taken up by the body and reach sys-
temic circulation unchanged. This review examines various 
aspects of the bioavailability and bioactivity of phenols 
derived from both olive oil and olive leaf. 
 
OLIVE PRODUCTS AS SOURCES OF 
BIOPHENOLS AND BIOACTIVITIES 
 
The phenolic fraction of olive oil is extremely complex and 
dependent on fruit cultivar and processing practices but in-
cludes hydroxytyrosol, tyrosol, oleuropein derivatives, caf-
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feic acid, vanillic acid, syringic acid, protocatechuic acid, 
and p-hydroxyphenylacetic acid (Visioli et al. 1998; Obied 
et al. 2005). A number of these compounds are known to 
exert a strong antioxidant effect in vitro (Speroni et al. 
1998; Benavente-García et al. 2000; Paiva-Martins et al. 
2001; Franconi et al. 2006). Table olives have been shown 
to also be a good source of phenolic compounds, with the 
hydroxytyrosol content higher than in olive oil (Romero et 
al. 2004). The leaves of the olive tree (Silva et al. 2006) and 
small branches (Japon-Lujan et al. 2007) while not com-
monly consumed, contain many of the same, or structurally 
related, phenolic antioxidants that occur within the oil but 
in much higher concentrations. These include oleuropein, 
demethyloleuropein, ligstroside, oleuroside, oleuropein 
aglycone, tyrosol, hydroxytyrosol, syringic acid, gallic acid 
and ferulic acid (Briante et al. 2002; Di Donna et al. 2007). 
The phenolic content of the leaf depends on a number of 
factors (Japon-Lujan et al. 2006). Oleuropein concentration 
increases in the olive leaf during fruit maturation (Ortega-
Garcia et al. 2008) but decreases in the fruit (and probably 
extracted oil) (Malik et al. 2006). Copper sprays used to 
control olive fungal diseases caused a decrease in total phe-
nolic content of the treated leaves (Ferreira et al. 2007). 
Olive leaf extracts are marketed as being beneficial for a 
number of conditions and have been used traditionally to 
combat fevers especially those associated with malaria 
(Benavente-García et al. 2000). Commercially, olive leaf 
extracts are available in powdered capsule form, in liquid 
tonics and also combined with other herbs and vitamins. 

The bioactivity and health benefits of olive oil-derived 
phenols have been studied extensively and numerous re-
views have been published. Specifically, functional effects 
on human wellbeing (Saija et al. 2001; Tripoli et al. 2005; 
Covas et al. 2006b), the effect on the cardiovascular system 
(Covas 2007) and antioxidant plus other biological activi-
ties (Visioli et al. 2002) and (Visioli et al. 2002; Yang et al. 
2007) bioavailability (Vissers et al. 2004) have been exa-
mined in recent reviews. Antioxidant activity (Frankel et al. 
2008) has received much attention and in vitro studies 
establish unequivocally the antioxidant potential of olive 
biophenols (Papadopoulos et al. 1991; Visioli et al. 1998; 
Caruso et al. 1999; Fitó et al. 2000; Owen et al. 2000a; 
Owen et al. 2000b; Cabrini et al. 2001; Bendini et al. 2007; 
Lavelli 2007; Rietjens et al. 2007; Romani et al. 2007). For 
example, both hydroxytyrosol and oleuropein potently and 
dose-dependently inhibited copper sulfate induced oxida-
tion of LDL at physiologically significant concentrations 
(Visioli et al. 1994, 1995). The protective effects of hydroxy-
tyrosol are demonstrated through assessment of various oxi-
dation biomarkers. Pre-incubation of LDL from human 
plasma with hydroxytyrosol prevented copper-sulfate in-
duced isoprostane accumulation, with a decline in forma-
tion of TBARS (Salami et al. 1995). Hydroxytyrosol inhib-
ited in vitro platelet aggregation, and the production of ara-
chidonic acid metabolites in human blood (Petroni et al. 
1995). Similarly, antioxidant activity has been demonstrated 
in both animal, ex vivo (Ruiz-Gutiérrez et al. 1995; Manna 
et al. 1997; Coni et al. 2000; Tuck et al. 2001; Del Boccio 
et al. 2003; Somova et al. 2003; Manna et al. 2004; Al-
Azzawie et al. 2006; Andreadou et al. 2006; Puel et al. 
2006; Puel et al. 2008) and cell culture (Hamdi et al. 2005) 
studies of biophenols. Such results are encouraging. 

In vivo studies generally involve olive oil, typically 
virgin or extra virgin in recognition of the higher levels of 
phenols in these grades, or the extracted biophenols. In 
some cases, the olive oil phenols are identified and quan-
tified although this frequently involves a hydrolysis step 
thereby restricting the information content. Thus, when 
hydrolysis is employed oleuropein is not measured and al-
though a minor component of most olive oils, it can be a 
significant contributor to the phenol content in some cases 
(Miró-Casas et al. 2003b; Tripoli et al. 2005). In other 
instances, oils with varying levels of phenols (usually desig-
nated low, medium, and high or phenol-rich/phenol-poor) 
are examined. Studies of antioxidant activity typically look 

for changes in oxidative status of the test individuals fol-
lowing ingestion of the oil or extracted biophenols. 

In the case of in vivo human studies (e.g. Vissers et al. 
2001) results are more confusing and controversial and yet 
randomized, controlled, double-blind clinical trials (level I 
evidence) and large cohort studies (level II evidence) 
(Covas et al. 2006b) are required to clearly establish health 
benefits. In a notable study, Vissers et al. (2004) identified 
11 papers (seven human studies; four animal studies) that 
addressed the antioxidant effects of consumption of phenol-
rich versus phenol-poor olive oil. Data for the various stu-
dies, covering the period 1996 to 2002, were tabulated to 
compare treatment, phenol dosage, experimental design and 
oxidation biomarkers. The trials showed diversity in terms 
of methodology, sample population (e.g. age, health status), 
control of diet, specificity of the biomarkers of oxidative 
stress, and measurement or not of biomarkers of the com-
pliance of the intervention (Spencer et al. 2008). Some 
general observations are possible. The animal studies sug-
gested that olive oil phenols protected LDL against oxida-
tion (Vissers et al. 2004) whereas the human studies did not 
indicate protective effects of olive oil phenols on oxidisabi-
lity. Indeed, there was a single oxidation biomarker, namely, 
lag time of LDL oxidation, that could be compared across 
studies and this suggested that olive biophenols enhanced 
rather than decreased LDL oxidisability. A more recent 
comparison (Covas et al. 2006b) tabulated results of nine 
human trials for the period 1998 to 2005, with four of the 
studies common to the earlier tabulation (Vissers et al. 
2004). Outcomes of the comparison were similar to those 
previously reported and it appears, in the case of human 
studies, that a positive outcome, seen as a change in oxi-
dative status, depends on the population (male, elderly, low 
antioxidant diet, hyperlipidemic, coronary heart disease 
patients more likely to show positive outcome), nature of 
the intervention (time, type, etc), correct choice of biomar-
ker and end point (appropriate to stage of pathophysiology 
or hypothesis being tested). Covas et al. (2006b) made 
several recommendations in this regard for future studies. 
The tabulation was updated (Covas 2007) by the addition of 
four studies in 2006-2007 with a new tabulation of four stu-
dies investigating anti-inflammatory effects of olive oil bio-
phenols. However, the main conclusions from the original 
comparison have not changed. 

Various explanations have been offered for the discre-
pancy between in vitro/animal studies and human trials. For 
example, the similarity of metabolism between animals and 
humans has been questioned (Visioli et al. 2003), and hence 
comparison between human and animal studies must be 
cautioned. Additionally, animals can be fed over 2 g/kg 
body weight of olive biophenols without toxic side-effects 
(D'Angelo et al. 2001); this is much more than humans 
generally consume. The duration of the study protocol may 
also be a determining factor: animal and human experimen-
tal studies generally last less than a month. It may be that 
habitual dietary intake, and not acute experimental con-
sumption, of olive biophenols is required for health out-
comes to be affected. Therefore, both the concentration of 
consumed olive biophenols and the study durations must be 
considered. The most significant study to date in relation to 
the effects of olive oil phenols on cardiovascular health was 
reported by Covas et al. (2006a). This involved a ran-
domized, crossover, controlled study of 200 healthy adult 
males from several countries consuming olive oil over three 
weeks with low (2.7 mg/kg), medium (164 mg/kg) and high 
(366 mg/kg) biophenol content. Serum levels of HDL-
cholesterol increased linearly with phenol content, while 
total cholesterol: HDL cholesterol ratio and triglycerides 
decreased for all oils. Oxidative biomarkers (conjugated 
dienes, hydroxy fatty acids and circulating oxidized LDL) 
decreased linearly with the phenolic content of the oils. 
Phenolic content of the oils was quoted as total phenols 
based on HPLC measurement of tyrosol and hydroxytyrosol 
as “simple forms or conjugates” (Owen et al. 2000b; Covas 
et al. 2006b). Data for individual biophenols were not pre-
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sented although tyrosol and hydroxytyrosol were stated as 
the “2 major phenolic compounds.” The referenced paper 
(Owen et al. 2000b) illustrates the distinction between total 
phenols as measured by summation and total concentration 
of individual phenols. There is clearly a significant phenolic 
pool that is not included in the usual data. Potentially this 
includes a range of phenolic material including recently 
identified oleuropein oligomers found in olive pulp and 
pomace (Cardoso et al. 2006). The significant role of lig-
nans such as pinoresinol in the total phenolic pool is also 
notable. 

Studies have emphasised hydroxytyrosol and this can be 
attributed to three factors. It is the major component of 
olive oil and the emphasis is understandable on this basis 
alone. Moreover, it has a hydrophilicity/lipophilicity (Visi-
oli et al. 2002) that gives it potential functionality in both 
aqueous and lipoidal systems. However, the emphasis may 
also be a result of methodological considerations associated 
with its facile measurement as total hydroxytyrosol fol-
lowing a hydrolysis step. In contrast to the significant body 
of literature on hydroxytyrosol, there are limited data exa-
mining the contribution of olive leaf on health outcomes 
(Zarzuelo et al. 1991). However, interest in olive leaf (De 
Leonardis et al. 2008) and notably oleuropein is increasing 
as seen in papers dealing with improved extraction metho-
dologies (Japon-Lujan et al. 2006) and bioactivity (Andrea-
dou et al. 2006; Giamarellos-Bourboulis et al. 2006; Puel et 
al. 2006). For instance, acute doxorubicin cardiotoxicity in 
rats expressed by the alteration of intracellular and peri-
pheral markers (e.g. creatine phosphokinase, creatine phos-
phokinase-MB, lactate dehydrogenase, aspartate amino-
transferase and alanine aminotransferase) was successfully 
treated with oleuropein through suppression of oxidative 
and nitrosative stress (Andreadou et al. 2007). 

An electron paramagnetic resonance and spectrophoto-
metric study of oleuropein oxidation has been reported 
(Tzika et al. 2008). Kinetic autoxidation data were derived 
from the results. Moreover, oleuropein has been shown to 
bind to endogenous peptides and it has been calculated to 
adopt a closed conformation where its phenolic hydrogens 
form a hydrogen bond network with the hydroxyl groups of 
the glucose moiety (Gikas et al. 2007). An understanding of 
its conformation may ultimately shed light on its mecha-
nism of action. Interestingly, oleuropein exhibited anti-HIV 
activity by blocking the HIV virus entry to host cells (Lee-
Huang et al. 2007a, 2007c). However, it was hydroxytyro-
sol that was identified as the main moiety for binding to 
HIV-1 fusion protein gp41 (Bao et al. 2007; Lee-Huang et 
al. 2007b). 
 
End-point measures 
 
Antioxidant activity is just one of a vast range of potential 
bioactivities (Waterman et al. 2007) that includes anti-
inflammatory, antiatherogenic, antibacterial (Bazoti et al. 
2005; Medina et al. 2006; Fitó et al. 2008) and antifungal 
activities (Korukluoglu et al. 2006). Visioli et al. (2002) in 
reviewing the biological activities of olive oil biophenols 
distinguished in vitro studies of antioxidant activities and in 
vitro studies on enzyme modulation leading them to con-
clude that the biological activities of olive biophenols ex-
tend beyond their antioxidant properties to include enzyme 
modulation and binding to cellular components. This con-
clusion is now well accepted (Yang et al. 2007) and Visioli 
et al. (2002) and Obied et al. (2005) have tabulated the vari-
ous reported bioactivities of olive biophenols. 

The bioactivity of phenols may be exerted via interac-
tion with food components (Kanner et al. 2001; Gorelik et 
al. 2008a; Ligumsky et al. 2008) in the gastrointestinal tract 
in which case antioxidant action and protein-binding capa-
city are probably important. A recent experiment tested the 
hypothesis that the stomach functioned as a bioreactor and 
the gastric fluid as a medium for further dietary component 
oxidation and antioxidation (Gorelik et al. 2008b). In rats 
with an intake of red meat and red wine, postprandial 

malondialdehyde levels declined in those consuming the 
mixture relative to those fed red meat alone. Moreover, a 
dual antioxidant/pro-oxidant behaviour of oleuropein has 
been demonstrated in vitro (Mazziotti et al. 2006). If this 
behaviour extends in vivo it can lead to formation of qui-
none derivatives which interact with DNA either forming 
covalent adducts or causing depurination. Such modifica-
tions in critical genes can induce mutations. We need to ask 
the more fundamental question; what is bioactivity? 

There are many definitions of bioactivity ranging from 
the very general (which would see every chemical as bio-
active) (e.g. Miriam-Webster Dictionary) to much more 
restricted definitions in which a substance to be considered 
bioactive must impart a measurable biological effect at a 
physiologically realistic level that affects health in a bene-
ficial way (Schrezenmeir et al. 2000). However, regardless 
of definition or the particular bioactivity, we must be able to 
observe and measure a physiological impact. For example, 
oxidative stress is believed to be a component of disease 
development, in particular, atherosclerosis and cancer. In 
theory, characterisation of this stress comprising target 
macro-biomolecules, a stressor (usually one or more free 
radicals), and endogenous/exogenous antioxidants, could be 
achieved by measurement of any one or more of these com-
ponents. In practice, measurement of antioxidant concentra-
tions is useful but interpretation of the data is complicated 
as concentration does not equate with activity. On the other 
hand, methods for direct measurement of the reactive spe-
cies and, particularly free radicals responsible for this stress, 
are of limited use in humans (for example, many potent 
reactive species only have a very short half-life). Moreover, 
only a small fraction of known reactive species induce pot-
entially severe oxidative damage. Thus, the measurement of 
outcomes of oxidative damage is probably more meaningful. 
Biomarkers for this procedure would be useful and could 
serve as important tools in developing and assessing agents 
to decrease damaging oxidation, and hence disease deve-
lopment. 

Established biomarker techniques are diverse and vary 
from measurement of blood pressure and vascular tone 
(Halliwell et al. 2004) to liver enzymes (Vissers et al. 2001). 
Techniques have also been developed to quantify oxidation 
products of macromolecules in body samples, the most 
common being cells, serum and urine but skin, sperm and 
tissue biopsies may also be used (Halliwell 1999). Measure-
ments include malondialdehyde, lipid peroxides and protein 
carbonyls (Vissers et al. 2001). However, the most common 
of the more specific molecular biomarkers are those of lipid 
peroxidation and DNA oxidation, namely, F2�-isoprostane 
(8-isoPGF2�) and 8-hydroxy-2'-deoxyguanosine, respec-
tively. The literature on these biomarkers is extensive and 
there are a number of excellent reviews (Halliwell 1999; 
Hermans et al. 2007; Hwang et al. 2007). There are no 
studies addressing the impact of olive leaf biophenol intake 
on such markers whilst a number of papers have been pub-
lished on the impact of olive oil intake. For example, in-
creasing concentrations of catecholic biophenols when 
administered to healthy male human volunteers resulted in 
decreased excretion of 8-iso-PGF2� (Visioli et al. 2000). 
Interestingly, the urinary levels of 8-iso-PGF2 inversely 
correlated with those of homovanillic alcohol (4-hydroxy-3-
methoxyphenylethanol), a catechol-O-methyltransferase 
(COMT)-derived metabolite of hydroxytyrosol. The authors 
noted that the metabolised fraction of hydroxytyrosol may 
reflect the proportion of hydroxytyrosol entering into cel-
lular compartments whereas the non-metabolized hydroxy-
tyrosol excreted in urine may represent a less biologically 
relevant fraction. These data present the first direct experi-
mental evidence of healthful effects of olive biophenols on 
humans. In a later study involving mildly dyslipidemic sub-
jects, olive oil consumption (with high and low biophenol 
content) was not associated with increased urinary excretion 
of isoprostanes although there were favourable changes in 
levels of circulating plasma concentrations of markers of 
cardiovascular condition (Visioli et al. 2005). In another 
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study that involved healthy male subjects, dose-dependent 
urinary excretion of biophenols occurred after single bolus 
ingestion of olive oils containing variable levels of the 
biophenols (Weinbrenner et al. 2004). However, amounts of 
plasma oxidative markers did not change at postprandial 
state after administration of olive oil. In a study that com-
pared the effect of regional diet on cancer incidence in Nor-
thern and Southern Europeans, olive oil consumption was 
negatively correlated with urinary levels of markers of 
DNA oxidation (Machowetz et al. 2007). However, the ef-
fect was not related to the biophenol content of the oil. Thus, 
the data are conflicting and recent work has suggested that 
current methods for measurement of biomarkers of oxi-
dative status may be inappropriate (Rabovsky et al. 2006). 
Further development of suitable biomarkers and methods 
for their measurement coupled with availability of labelled 
biophenols of high purity will facilitate future investigations. 
 
ABSORPTION, METABOLISM AND EXCRETION 
 
In contrast with the number of studies devoted to examining 
the bioactivity and health benefits of olive products and bio-
phenols there have been fewer studies of their absorption. 
The latter, critically, determines a compound’s bioavaila-
bility which is the first requirement for in vivo bioactivity. 

The absorption, digestion, metabolism and elimination 
of biophenols may follow a number of pathways. The simp-
lest pathway involves direct excretion of the unchanged 
biophenols in the faeces. Some biophenols may undergo 
hydrolysis in the stomach or intestine and be eliminated 
without further metabolism. In either case, absorption does 
not occur. Alternatively, absorption of the biophenols or a 
metabolite may occur across the small intestine, with up-
take by the liver, entering systemic circulation. It is in the 
liver that any phase I metabolism will occur involving 
reduction, hydrolysis or, more commonly, an oxidation 
process. Phase II metabolism involving conjugation is also 
likely with the Phase I/II metabolites excreted in the urine 
via the kidneys. Additionally, the biophenols may be 
excreted via the kidney by way of enterohepatic circulation. 
This involves absorption of the biophenols across the large 
intestine due to action of microflora, and subsequent uptake 
by the liver. The various pathways are summarised in Fig. 1. 

The phenolic acids and flavonoids such as quercetin 
glucosides and rhamnoglucosides (e.g. rutin) that are com-
mon to many fruits including olive have been studied exten-
sively (Rechner et al. 2002; Scalbert et al. 2002; Manach et 
al. 2004; Scalbert et al. 2004; Ito et al. 2005; Manach et al. 
2005; Williamson et al. 2005; Silberberg et al. 2006). These 
compounds are found in olive oil and olive leaves (Morton 
et al. 2000) and there is evidence for each of the above pro-
cesses. The chemical structure of the phenolic acid or flavo-
noid determines the rate and extent of absorption (Scalbert 
et al. 2000). For instance, the position of glycosylation 
plays a significant role (Day et al. 1998). Regardless of the 
process by which they are initially absorbed, flavonoids 
undergo extensive metabolism prior to entry into systemic 
circulation. This commences in the oral cavity where hydro-
lysis of glycosides may occur although with significant 
inter-individual variation (Walle et al. 2005). Those biophe-
nols that reach systemic circulation are subjected to action 
by the liver, including Phase I and II metabolism (Rechner 
et al. 2002). Biophenol structure affects the level of Phase II 
conjugation with methyl, sulfate and glucuronide groups. 
Those biophenols that are not absorbed over the small 
intestine are taken to the large bowel. Colonic microflora 
may degrade more complex biophenols to simpler com-
pounds such as phenolic acids, which may then be absorbed 
and hence, become part of the cyclic enterohepatic circula-
tion (Scalbert et al. 2000). This degradation of biophenols 
by the colonic microflora (Rechner et al. 2002) may be 
more important for bioavailability than initially believed. 
After administration of both oral and iv-doses of 14C-
labelled quercetin to healthy human adults, a substantial 
proportion of the dose was metabolized into 14C–carbon 

dioxide presumably by microflora in the large intestine 
(Walle et al. 2001). Very large inter-individual differences 
are observed in the plasma concentrations and amounts of 
the biophenol metabolites excreted in urine mirroring signi-
ficant individual variation in absorption and metabolism 
(Rechner et al. 2002). This variability has an important con-
sequence for studies of the health impact of dietary phenol 
intake since this level of variability requires a very large 
population to demonstrate efficacy (Hu 2007). 

Fewer data exist for the absorption and metabolism in 
humans of the more characteristic olive biophenols (Table 
1) such as tyrosol, hydroxytyrosol and oleuropein (Fernán-
dez-Bolanos et al. 2008) and there are little data for their 
stability in the stomach or their biotransformation in the 
colon (Corona et al. 2006). It is well established that in 
vitro transformation of oleuropein into glucose and oleuro-
pein aglycone is readily achieved by �-glycosidases (Ra-
nalli et al. 2006) and various acidic and alkaline treatments 
(Ryan et al. 2001; Miró-Casas et al. 2003a). Esterolysis of 
the oleuropein aglycone produces hydroxytyrosol. The 
assumption that endogenous or exogenous enzymes can 
produce the same outcome in vivo (Ranalli et al. 2006) is 
common. Furthermore, acidic hydrolysis is incorporated in 
a number of procedures to mimic gastrointestinal conditions 
during ingestion of olive oil (Miró-Casas et al. 2003a). 
“High molecular weight” olive biophenols were hydrolysed 
under conditions that simulated the gastric environment 
(Corona et al. 2006) although the structure of these com-
ponents was not investigated. In contrast, Vissers et al. 
(Vissers et al. 2002) demonstrated that hydroxytyrosol and 
oleuropein were stable ex vivo in gastric juices and duo-
denal fluid for up to two hours. Our work and that of others 
(Romero et al. 2007) suggests that this is the case. Other 
studies showed that oleuropein degradation was pH depen-
dent with degradation occurring at pH �7 but not at pH 5.2 
(Edgecombe et al. 2000). 

The process of initial absorption or transport of olive-
specific biophenols has been reported but much work re-
mains to be done. The molecular mechanism for transport 
of 14C-hydroxytyrosol, using differentiated model Caco-2 
cell monolayers seemed to occur via a passive diffusion 
with an intestinal transport system that was not saturable 
(Manna et al. 2000). The apparent permeability coefficients 
(Papp) for apical�basolateral transport of hydroxytyrosol 
were similar indicating that the intestinal transport of 
hydroxytyrosol was bidirectional. Tuck and Hayball (Tuck 
et al. 2002) concluded from the magnitude of the calculated 
Papp that absorption of hydroxytyrosol in humans should 
be 100%. The only labelled metabolite arising from 
hydroxytyrosol was homovanillic alcohol which is a pro-
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duct of intestinal COMT activity (Manna et al. 2000). For 
glycosylated biophenols, conflicting evidence exists for 
their absorption across the brush border of the small intes-
tine. It could be that these compounds are degraded to agly-
cones by the �-glucosidase enzymes to allow for passive 
diffusion of these substances (Scalbert et al. 2000). Other-
wise, evidence also exists for the ability of glucose trans-

porters to absorb these compounds, sugar moiety intact, 
over the brush border (Hollman et al. 1995). 

Looking specifically at oleuropein, an internal perfusion 
technique was developed to estimate its absorption in both 
iso-osmotic and hypotonic luminal conditions (Edgecombe 
et al. 2000). The influence of hepatic and renal metabolism 
that complicate quantitative evaluation of absorption 

Table 1 Studies of the absorption, metabolism and excretion of olive biophenols in humans. 
Compound Absorption Metabolism Urinary excretion Markers Reference
Hydroxytyrosol, 1-4 mg 
ingested; tyrosol, 1.8-7.0 
mg ingested. 

Postulated that 
tyrosol and 
hydroxytyrosol dose-
dependently 
absorbed. 

Higher doses of phenols 
increased their rate of 
conjugation with 
glucuronide. 

Excreted in urine mainly as glucuronide; 20-
28% and 30-60% ingested dose of tyrosol 
and hydroxytyrosol, respectively excreted. 
homovanillic alcohol excreted. 

Urinary excretion
F2-isoprostanes 
inversely related 
to phenol 
ingestion. 

Visioli et 
al. 2000, 
2002 

Olive oil (tyrosol and 
hydroxytyrosol – 
measurement details not 
supplied). 

Post-prandial 
absorption and 
incorporation into 
lipoproteins. 

  LDL oxidizability 
and total plasma 
antioxidant 
capacity. 

Bonanome 
et al. 2000

Olive oil with different 
levels phenols. 

  Hydroxytyrosol, homovanillic acid and 
alcohol excreted; hydrolysis step in method 
limits conclusions. 

 Caruso et 
al. 2001 

Olive oil.   Hydroxytyrosol and tyrosol excreted mainly 
as conjugates. Significant basal-level 
excretion of both compounds. 

 Miró-
Casas et 
al. 2001 

Oleuropein; polar 
supplement mainly 
hydroxytyrosol, tyrosol 
and oleuropein aglycone 
derivative; non-polar 
supplement mainly 
tyrosol and ligstroside 
aglycone derivative. 

Estimated 55-66% 
ingested phenols 
absorbed in small 
intestine not colon 
(structure and 
polarity regulate 
absorption). 

Data supported 
absorption of intact 
phenols. Oleuropein 
degraded in gut and 
absorbed as 
hydroxytyrosol. 

For all treatments: 5-16% ingested phenols 
excreted as hydroxytyrosol or tyrosol. 
Oleuropein- and ligstroside aglycones or 
glycosides not measured. Method involved 
hydrolysis step, conjugates not measured. 
This limits the conclusions. 

 Vissers et 
al. 2002 

Olive oil (hydroxytyrosol 
and 3-O-
methylhydroxytyrosol 
measured; hydrolysis 
step. 

 Hydroxytyrosol present 
largely (ca. 65%) as 
glucuronide conjugate 
with less than 2% free 
compound. Phenolic 
compounds are the 
subject of an extremely 
extensive first-pass 
intestinal/hepatic 
metabolism. 

Urinary amounts of hydroxytyrosol and 3-
O-methyl-hydroxytyrosol increased in 
response to virgin olive oil ingestion. 

 Miró-
Casas et 
al. 2003a

Olive oil (hydroxytyrosol 
and tyrosol only 
measured). 

  Hydroxytyrosol and tyrosol excretion 
increased after single dose and short-term 
intake of olive oil. Levels of urinary tyrosol 
obtained after one week of sustained doses 
(25 ml=day) of virgin olive oil were lower 
than those obtained after a single 50 ml 
dose. Levels of urinary hydroxytyrosol same 
after both interventions. Method involved 
hydrolysis step, conjugates not measured. 

 Miró-
Casas et 
al. 2003b

Olive oil (single dose or 
seven daily doses). 

  Tyrosol excretion increased after oil 
consumption. Urinary levels and excretion 
profiles differed between men and women. 

 Covas et 
al. 2003 

Olive oil containing 2.4 
mg oleuropein aglycone 
and 0.6 mg 
hydroxytyrosol. 

Absorption 
dependent on vehicle 
of administration. 

High excretion of 
hydroxytyrosol 
suggested hydrolysis of 
oleuropein. 

44% ingested hydroxytyrosol+homovanillic 
alcohol excreted; 234% ingested free 
hydroxytyrosol excreted; hydrolysis step in 
method limits conclusions. 

 Visioli et 
al. 2003 

Olive oil with high, 
moderate and low 
phenolic content. 

 0.2-10 mg total phenols 
comprising 6.3% 
hydroxytyrosol, 5.3% 
tyrosol and 40% 
oleuropein aglycones. 

Dose-dependent excretion of tyrosol, 
hydroxytyrosol and 3-O-
methylhydroxytyrosol. 

No change in 
oxidative stress 
biomarker 
concentrations. 

Weinbrenn
er et al. 
2004 

Ex vivo (tyrosol, 
hydroxytyrosol, 
oleuropein). 

Oleuropein not 
absorbed or 
metabolised in small 
intestine; likely to 
reach large intestine 
and be degraded by 
colonic microflora. 

Extensive degradation 
of oleuropein by 
cultures of colonic 
microflora; products 
included 
hydroxytyrosol. 

  Corona et 
al. 2006 

Olive oil with different 
levels phenols. 

Not examined. Not examined. Not examined. Various markers. Covas et 
al. 2006a
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(Stretch et al. 1999) were excluded by this process. The per-
meability of oleuropein in an iso-osmotic intestinal lumen 
was similar to that of clinically used drugs such as atenolol 
and classifies oleuropein as a poorly permeable compound. 
Any absorption of oleuropein under these conditions occurs 
predominantly via transcellular passive diffusion (despite its 
polarity) or paracellularly (despite its large size). Permea-
bility was significantly greater under hypotonic conditions 
and it was postulated that this increase was due to an in-
crease in paracellular movement which was facilitated by 
opening of the paracellular junctions. It was concluded that 
oleuropein is capable of permeating the intestine but the 
amount of oleuropein that reaches the systemic circulation 
unchanged is likely to be small. However, the validity of 
this model for humans in vivo is unclear and orally ingested 
oleuropein in an oily matrix might be absorbed better. 

Studies in the rat show that biophenols such as hydroxy-
tyrosol are converted enzymatically into four oxidized 
and/or methylated derivatives (D'Angelo et al. 2001). How-
ever, it has been claimed that excretion, at least in the case 
of hydroxytyrosol, differs between humans and the rat 
(Visioli et al. 2003). Alternatively, cell culture studies have 
provided useful information. Corona et al. (2006) used a 
Caco-2 cell model, perfused rat intestinal model, simulated 
gastric juices and colonic microflora fermentations to study 
the decomposition of olive biophenols in the stomach, their 
absorption and metabolism in the small intestine and their 
biotransformation by the microflora of the large intestine. 
Using the rat intestinal model, oleuropein was not absorbed 
across either small intestinal segments (jejunum or ileum). 
In contrast, hydroxytyrosol and tyrosol were rapidly ab-
sorbed in both jejunum and ileum and significant amounts 
of both Phase I and II metabolites were identified in the 
serosal fluid. These comprised hydroxytyrosol, homovanil-
lic alcohol plus glucuronides of both compounds and tyro-
sol, tyrosol glucuronide plus another unidentified glucuro-
nide. The apparent permeability coefficients for both paren-
tal compounds indicated that they are both well absorbed 
from the intestine. In agreement with the rat small intestinal 
studies, there was no significant AP(mucosal)�BL(serosal) 
transport of oleuropein in the Caco-2 cell model. Entero-
cyte-mediated absorption and metabolism of hydroxytyro-
sol and tyrosol also occurred in the Caco-2 model. In con-
trast to the small intestinal model, the majority (90%) of the 
hydroxytyrosol appeared on the basolateral side as unmeta-
bolized hydroxytyrosol with no glucuronidation. The re-
maining 10% was present as either homovanillic alcohol or 
a glutathionyl conjugate of hydroxytyrosol. The latter may 
be formed via the action of glutathione S-transferase or via 
oxidative metabolism of hydroxytyrosol followed by its 
reaction with glutathione. Tyrosol absorption rate was 60% 
independent of concentration whereas hydroxytyrosol ab-
sorption varied from 35 to 58% with concentration. Once 
again, permeability data suggested that both tyrosol and 
hydroxytyrosol are well absorbed. As oleuropein was not 
absorbed in the small intestine it was concluded that it most 
likely reaches the large intestine. Indeed, when applied to a 
culture of colonic microflora, oleuropein was rapidly deg-
raded to three metabolites including hydroxytyrosol and 
two unknown compounds. 

Insight into the metabolism of biophenols can be ob-
tained from a knowledge of the amount and form in which 
they are found in plasma (Bai et al. 1998; Coni et al. 2000; 
Ruiz-Gutierrez et al. 2000; Visioli et al. 2000). Plasma con-
centrations of hydroxytyrosol and 3-O-methylhydroxytyro-
sol increased following intake of virgin olive oil in a single 
dose (Miró-Casas et al. 2003a) with both compounds pre-
sent as conjugates. Although calculations were complicated 
by methodological difficulties it appears that at least 98% of 
hydroxytyrosol was present in plasma and urine in conju-
gated forms, mainly glucuronates, suggesting extensive 
first-pass intestinal/hepatic metabolism of ingested hydroxy-
tyrosol. Hydroxytyrosol and 3-O-methylhydroxytyrosol ap-
peared rapidly in plasma, reaching maximum concentra-
tions at 30 and 50 min, respectively post-oil ingestion. The 

estimated hydroxytyrosol elimination half-life was 2.43 h 
based on the assumption of a monocompartmental model 
although the plasma concentration-versus-time curves 
showed that the pharmacokinetics may fit into a bicompart-
mental model. Previous estimations from urinary data sug-
gested a half-life of 8 h (Miró-Casas et al. 2001). The data 
(Miró-Casas et al. 2003a) confirmed 3-O-methylhydroxy-
tyrosol as one of the main metabolites of hydroxytyrosol 
(Caruso et al. 2001). 

Covas et al. (2000) showed that tyrosol binds LDL in 
vitro. Following a one month intervention involving con-
sumption of olive oil (50 mL per day) there was no indica-
tion that tyrosol or hydroxytyrosol were absorbed effici-
ently enough to be measured in plasma lipoproteins (Bona-
nome et al. 2000). However, based on an assumption of 
rapid absorption and turnover, postprandial measurements 
following administration of 100 g olive oil showed tyrosol 
and hydroxytyrosol in plasma LDL, HDL and chylomicrons, 
with concentrations peaking between 60 and 120 minutes. 
The authors proposed that the olive phenols were absorbed 
from the intestine, though not through a pathway dependent 
on chylomicron formation. Between-subject variability in 
biophenol absorption was high. Oleuropein and other conju-
gated forms were not measured but if hydrolysed following 
absorption, they would contribute to the tyrosol and 
hydroxytyrosol found in plasma. The profiles of the meta-
bolites were not measured as the methodology incorporated 
an hydrolysis step. 

In contrast, a number of metabolites of olive oil phenols 
were identified in LDL as hydroxytyrosol monoglucuronide, 
hydroxytyrosol monosulfate, tyrosol glucuronide, tyrosol 
sulfate and homovanillic acid sulfate (de la Torre-Carbot et 
al. 2006). Hydroxytyrosol monoglucuronide existed as two 
isomers differing in position of attachment of the glucuro-
nide moiety (de la Torre-Carbot et al. 2007). The fact that 
these metabolites are able to bind LDL strengthens claims 
that these compounds act as in vivo antioxidants. The LDL-
bound biophenols can exert antioxidant activity in the arte-
rial intima where most LDL oxidation occurs in micro-
domains sequestered from the richness of antioxidants pre-
sent in plasma (Witztum 1994; Reaven et al. 1995). These 
papers (de la Torre-Carbot et al. 2006, 2007) contribute sig-
nificantly to our knowledge of olive biophenol metabolism 
as the actual metabolites were characterised rather than 
hydrolysis products as measured and reported in many 
papers. 

In vivo human data for the absorption and urinary excre-
tion of hydroxytyrosol and tyrosol following ingestion of 
olive oil have been reported by a number of authors with 
similar results (Visioli et al. 2000; Casas et al. 2001; Miró-
Casas et al. 2001). For example, the in vivo affects of 
hydroxytyrosol were examined in humans (Visioli et al. 
2000) following ingestion of phenol-poor olive oil and the 
same oil enriched with hydroxytyrosol and tyrosol. Urinary 
levels of unconjugated tyrosol and hydroxytyrosol correlated 
with their intake except at the highest dose. However, cor-
relations were complete following treatment of urine sam-
ples with glucuronidase. The authors postulated that the two 
biophenols were dose-dependently absorbed and excreted in 
urine as glucuronide conjugates. Dose-dependent absorp-
tion of these compounds has been reported elsewhere 
(Covas et al. 2003) and appears to now be accepted (Visioli 
et al. 2000; Saija et al. 2001; Covas et al. 2003). The 
amount of hydroxytyrosol and tyrosol excreted in urine 
relative to intakes was 30-60% and 20-22%, respectively. 
However, these proportions were calculated from the glucu-
ronidase-hydrolyzed urines. Based on reports of the finding 
of homovanillic alcohol in human Caco-2 cells incubated 
with hydroxytyrosol (Manna et al. 2000), the urine samples 
analysed by Visioli et al. (Visioli et al. 2000) were re-
examined and homovanillic alcohol and homovanillic acid 
were present (Caruso et al. 2001). Once again, urine sam-
ples were subjected to enzymatic hydrolysis prior to mea-
surement of metabolites. 

Urinary excretion data are another source of informa-
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tion on absorption and metabolism. In the case of tyrosol, 
urinary excretion peaked at 0-4 h after ingestion of virgin 
olive oil by male subjects with a 0-8 h peak for females 
(Covas et al. 2003). Urinary recoveries of tyrosol and 
hydroxytyrosol were 18-20% (Covas et al. 2003) and 79-
122% (Miró-Casas et al. 2003b) of ingested dose, respec-
tively with some variation between single dose and sus-
tained dose intake. The authors concluded that there were 
differences in the metabolism of the two phenols although 
other dietary or metabolic factors may have accounted for 
the observed differences (Miró-Casas et al. 2003b). Vissers 
et al. (2004) reported the recovery of olive biophenols from 
five studies as ranging between 5 and 72%. The wide range 
was attributed to different analytical methods and to various 
approaches to calculating urinary excretion. 

Vissers et al. (2002) found that ileostomy subjects (that 
is those with a completely removed colon) excreted mini-
mal quantities of olive biophenol in ileostomy effluent. 
Subjects consumed single doses of three different sup-
plements: nonpolar supplement comprising mainly a lig-
stroside-aglycone derivative with small quantity of tyrosol; 
polar supplement comprising hydroxytyrosol with lesser 
amounts of tyrsosol and an oleuropein-aglycone derivative; 
and an oleuropein supplement. The authors surmised from 
the low excretion into ileostomy effluent that a large pro-
portion of ingested biophenols was absorbed. It was calcu-
lated that 55-73 mol% of the ingested amount was absorbed 
and that 5-16 mol% was re-excreted as tyrosol and hydroxy-
tyrosol in urine. The method incorporated an hydrolysis 
step and so did not distinguish between free and conjugated 
biophenols. 

Absorption rates for the biophenols were similar in ileo-
stomy subjects and those with an intact colon (Vissers et al. 
2002). This suggests that olive biophenols are absorbed 

mainly in the small intestine rather than in the colon. The 
authors hypothesized that oleuropein and oleuropein- and 
ligstroside-aglycones might be split into hydroxytyrosol or 
tyrosol and elenolic acid either in the gastrointestinal tract 
before they are absorbed or in the intestinal cells, blood or 
liver after absorption. From ex vivo stability data it was con-
cluded that the latter situation was most likely. However, 
analytical limitations limit the conclusions about the ab-
sorption of these compounds. 

When excretion data are examined closely with due al-
lowance for the contribution of more complex biophenols to 
the urinary excretion pool, it is apparent that the entire in-
take is not excreted in the urine. The quantity not absorbed 
and that accumulated in organs or erythrocytes remains to 
be established for both single dosage and prolonged intake. 
There are few data for intracellular uptake in humans but in 
bovine erythrocytes, oleuropein uptake occurred with trans-
port across the membranes giving access to intracellular 
sites (Saija et al. 2001). This is critical for certain bioactivi-
ties. 

Methodological problems limit the conclusions from 
many bioavailability studies. Many studies incorporated an 
hydrolysis step in the metabolite analysis to convert pheno-
lic glycosides and conjugates to aglycones thereby simpli-
fying chromatograms and enhancing sensitivity. However, 
this approach destroys information on metabolite profiles 
and limits our understanding of the metabolic processes. In 
comparing their results with previous data, Vissers et al. 
(2002) noted the impact of various methodological differen-
ces on analytical data. Tuck et al. (2001) concluded that 
differences between their data and previous data could be a 
result of different handling of the phenols in humans and 
rats or, alternatively, to method-imposed limitations in pre-
vious studies. Other data have established that the rat model 
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Fig. 2 Proposed pathway for the in vivo metabolism of hydroxytyrosol (analogous metabolites are derived from tyrosol, 4-hydroxyphenylethanol).
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is not reflective of human metabolism (Visioli et al. 2002). 
Interpretation of data is further complicated as hydroxy-
tyrosol, the most widely studied olive phenol, is also a well-
known metabolite of dopamine (Miró-Casas et al. 2003a). 
Despite these limitations, from the information that has 
been presented, we can postulate an enzymatic pathway for 
the in vivo metabolism of both hydroxytyrosol and tyrosol 
(Fig. 2) (Tuck et al. 2002) in agreement with those previ-
ously reported. In the case of oleuropein, it has been stated 
(Miró-Casas et al. 2003a) that “oleuropein has been shown 
to be metabolized in the body and recovered in urine, 
mainly in the form of hydroxytyrosol.” The original paper 
(Vissers et al. 2002) noted that oleuropein was the only 
component from olives that could be supplied in a food 
grade pure form. However, supplements are generally not 
pure and it is likely that this material contained other bio-
phenols as the oleuropein content was less than 3% by mass 
of the 1.9 g supplement administered. Such difficulties 
complicate interpretation of data from this paper with res-
pect to metabolism of oleuropein. However, we can present 
a tentative pathway for its metabolism in the human body 
(Fig. 3). 

We have emphasised the role of the parent biophenols 

based on a tacit assumption that parent metabolites are the 
potentially bioactive entities. However, some Phase II meta-
bolites are more pharmacologically active than the parent 
compound as in the case of morphine (Hu 2007). This has 
not been investigated in the case of olive biophenols. 
 
CONCLUSION 
 
There is convincing evidence for the absorption and intra-
cellular uptake of at least some olive biophenols in humans. 
This suggests a potential role for olive oil and olive leaf 
biophenols and, in particular, hydroxytyrosol and oleuro-
pein. Positive effects on cardiovascular, glycemic and 
osteopenic processes have been demonstrated in animal 
models and epidemiological evidence suggests a positive 
role of these biophenols in human health. Further research 
into the effects of olive biophenols is necessary to confirm 
their role. This should involve multi-disciplinary interven-
tion studies that incorporate detailed investigations of the 
fundamental chemistry and bioavailability of these com-
pounds. As with other antioxidants, establishing a clear 
effect is limited by the current lack of standardised biomar-
kers. 
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