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ABSTRACT 
Fruit color and aroma volatile compounds are important factors that determine fruit quality. The effects of jasmonates (jasmonic acid and 
methyl jasmonate) on fruit color development differed between climacteric and nonclimacteric fruit. Jasmonates, and jasmonates 
combined with an ethylene action inhibitor stimulated greater anthocyanin accumulation in apples regardless of fruit growth stages. The 
expression of UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGluT) anthocyanin biosynthetic gene was increased in the skin of 
fruits treated with jasmonates and these fruits also had much higher anthocyanin content than untreated controls. In contrast, jasmonates 
did not influence anthocyanin accumulation in sweet cherries. The impact of jasmonate application on volatile compound production was 
dependent on fruit ripening stage; jasmonates increased the volatiles in preclimacteric fruit, but decreased the volatiles in climacteric fruit. 
In addition, jasmonates influenced 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase (ACO) gene 
transcription. In pears (Pyrus communis L.), jasmonate application at the preclimacteric stage stimulated ethylene production and the 
expression of the ACS and the ACO messenger RNA (mRNA) levels. In contrast, the accumulation of ACS mRNA levels in fruit treated 
with jasmonate at the climacteric stage was low and ethylene production also decreased. Some types of physiologically active substances 
may play a protective role against chilling injury. For example, endogenous polyamines were linked to the degree of chilling injury in 
mangosteens. Additionally, EC50 values of superoxide (O2

-) and 1-diphenyl-2-picrylhydrazyl (DPPH)-radical scavenging activity were 
also associated with the degree of chilling injury. 
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INTRODUCTION 
 
The production of anthocyanins, carotenoids, and aroma 
volatiles reflects the developmental change that occurs to 
allow commercial harvest. The fruits show dramatic physio-
logical changes at the ripening stage and physiologically 
active substances such as plant hormones play a role in 
these changes. 

In general, jasmonates, ABA, and ethylene have been 
shown to promote leaf abscission, stomatal closure, leaf 
yellowing, and to inhibit plant growth. In addition, the pre-
sence of ABA, ethylene, and jasmonates stimulates antho-
cyanin biosynthesis (Franceschi and Grimes 1991; Abeles 
et al. 1992; Gaynor and Cowan 1995; Kondo et al. 2001b). 

Physiologically active substances may also play a role 
in the protection against stress. For instance, jasmonate ap-
plication reduced chilling injury in tomatoes (Lycopersicon 
esculentum L.) and papayas (Carica papaya L.) (Ding et al. 
2001; Gonzalez-Aguilar et al. 2003). In general, freezing 

injury is caused by membrane lesions based on cellular 
dehydration (Thomashow 1999). The production of reactive 
oxygen species, which is induced by freezing, contributes to 
membrane damage (Mckersie and Bowley 1998) and is 
promoted by environmental factors such as ultraviolet light, 
salt and low temperature (Matsui and Li 2003). This review 
summarizes the effect of physiologically active substances 
on the regulation of fruit quality. A portion of the manu-
script was arranged from previous reports written by the 
author. 
 
Jasmonates and anthocyanin formation in apple 
fruit 
 
Jasmonate application promoted anthocyanin formation in 
apple fruit on the tree (Fig. 1, Kondo 2007) and has also 
been reported to promote chlorophyll degradation in tomato 
peel (Saniewski et al. 1987). Thus, jasmonates play a role 
not only in the reduction of chlorophyll content but also in 
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anthocyanin accumulation. Plant growth regulators have 
been used to improve fruit coloration (Kondo and Hayata 
1995), and jasmonates may be involved via their stimula-
tion of anthocyanin formation. In general, ethylene is closely 
related to anthocyanin formation in apple fruit; the inhibi-
tion of endogenous ethylene production in the fruit retards 
anthocyanin formation (Kondo and Hayata 1995). The com-
bination of jasmonates and AVG, an inhibitor of ACS acti-
vity, decreased anthocyanin accumulation compared to jas-
monate treatment alone (Kondo et al. 2001b), but did not 
greatly inhibit it, suggesting that jasmonates may have an 
effect on anthocyanin formation independent of ethylene. 

In contrast to the formation of anthocyanin in apples 
through the use of jasmonate treatment, the same treatment 
failed to promote anthocyanin accumulation in sweet cher-
ries (Kondo et al. 2002c). However, ABA did stimulate 
anthocyanin production in sweet cherries. Moreover, antho-
cyanin formation by jasmonates has been reported in the 
stems and leaves of tulip bulbs (Saniewski et al. 1998). The 
promotion of anthocyanin accumulation in apple fruit by 
jasmonates can be attributed to the fact that endogenous jas-
monates increase during the maturation period, but the in-
crease of jasmonates during the maturation period was not 
observed in sweet cherry fruit or in grape berries (Vitis spp.) 
(Kondo and Fukuda 2001). In sweet cherry, a non-climac-
teric fruit, ethylene does not rise at harvest, but ABA does. 
However, the addition of fluridone, an inhibitor of ABA 
biosynthesis with jasmonates, decreased anthocyanin ac-
cumulation (Kondo et al. 2002c). These results suggest that 
jasmonates may not have a role in anthocyanin formation in 
sweet cherry fruit. 

Chlorophyll, flavonols and carotenoids construct the 
skin color of non-red apples (Lancaster 1992). Flavonols 
and flavonoid concentration in the skin of non-red apples 
were constant throughout fruit growth (Ju et al. 1995). CHS 
is the first enzyme in the anthocyanin biosynthetic pathway, 
and the first specific flavonoid frame precursor (Terahara et 
al. 2000). Flavanon is converted to dihydroflavonol through 
the action of F3H and then to leucoanthocyanidin by DFR 
(Fig. 2). Therefore, the expression of CHS, F3H and DFR 
may result in the appearance of flavonol and leucocyanidin 
in the skin throughout fruit growth. The enzyme ANS con-
verts leucoanthocyanidin to anthocyanidin and UFGluT 
subsequently catalyzes the transition from anthocyanidin to 
anthocyanidin glycosides. Proanthocyanidins such as cate-
chin or epicatechin are found in the skin of both red and 
non-red apples (Kondo et al. 2002a). Proanthocyanidin is 
derived from leucoanthocyanidin (Gantet et al. 1993) which 
suggests that the reddening of apple fruit may be regulated 
by an enzyme that acts subsequent to leucoanthocyanidin 
(Lancaster 1992). 

The CHS, F3H, DFR, ANS, and UFGluT gene expres-
sion was detected in the colored portion of the apple fruit 
(Kondo et al. 2002b). In contrast, in the shaded portion 
where anthocyanin was not observed, ANS was detected, 

but UFGluT was barely found. The application of jasmo-
nates on disc samples significantly increased the concentra-
tion of cyanidin 3-galactoside (Kondo 2006). The expres-
sions of F3H, DFR, and ANS were similar between the jas-
monate-treated samples and the untreated control. F3H is 
the enzyme which catalyzes the conversion of flavanones to 
dihydroflavonols. DFR catalyzes the reduction of dihydro-
flavonols to leucoanthocyanidins, then ANS catalyzes leuco-
anthocyanidins to anthocyanidins. The expressions of F3H, 
DFR, and ANS were similar between jasmonate-treated and 
untreated controls, despite higher jasmonate-induced antho-
cyanin concentrations. This indicates that these enzymes 
may not be solely responsible for anthocyanin formation. 
Changes in anthocyanidins differed from those in anthocya-
nin, although ANS transcription was affected by the actual 
light intensity (Kondo et al. 2002a). Therefore, ANS trans-
cription may not be a limiting factor in anthocyanin forma-
tion. In contrast, the expression of UFGluT had increased in 
the skin which was treated with jasmonates and also con-
tained higher anthocyanin concentrations. This result sug-
gests that the anthocyanin formation promoted by jasmo-

Untreated 
control

Jasmonate 
treatment 

Fig. 1 Effect of jasmonate application on anthocyanin formation in 
‘Tsugaru’ apples. Jasmonates were applied 20 days before harvest. 
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Fig. 2 Anthocyanin synthesis in apples. PAL: Phenylalanine ammonia-
lyase, CHS: Chalcone synthase, CHI: Chalcone isomerase, F3H: Flava-
none 3-hydroxylase, DFR: Dihydroflavonol 4-reductase, ANS: Anthocya-
nidin synthase, UFGluT: UDP glucose flavonoid 3-O-glucosyltransferase, 
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Fig. 3 Effect of jasmonate application on superoxide anion radical 
scavenging activity in apples. EC50 value shows the weight of the sample 
in a 1 ml reaction mixture. Jasmonates were applied 20 days before 
harvest.
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nate treatment might have caused the stimulation of UFGluT, 
which is a downstream enzyme in the anthocyanin synthesis 
pathway. 

EC50 values of O2
- scavenging activity in the skin of jas-

monate-treated fruit were lower than those in the skin of 
untreated control fruit (Fig. 3). This is consistent with the 
increase of anthocyanin in jasmonate-treated fruit being the 
cause of the increase of antioxidant activity (Kondo et al. 
2002d). 
 
ACS and ACO genes were influenced by 
physiologically active substances 
 
Ethylene production is differentially influenced by other 
phytohormones. For instance, jasmonate treatment in-
creased the ACC content, ACO activity, and ethylene pro-
duction in sunflower seedlings (Helianthus annuus L.) 
(Emery and Reid 1996), but inhibited it in grain amaranth 
seeds (Amaranthus caudatus L.) (Kepczynski et al. 1999). 
On the other hand, auxin had an effect on ACS in the ethy-
lene pathway; for example auxin application increased 
ACS2 mRNA levels in melons (Cucumis melo L.) (Ishiki et 
al. 2000) and ACS3 and ACS5 mRNA levels in tomatoes 
(Lycopersicon esculentum Mill.) (Coenen et al. 2003). The 
application of the synthetic auxin 2,4-dichlorophenoxypro-
pionic acid (2,4-DP) increased ethylene production and the 
ripening activity of the ‘La France’ pear fruit on the tree 
(Kondo and Takano 2000), and the levels of ACS4 increased 
strongly in the 2, 4-DP-treated fruit (Kondo et al. 2006) as 
measured by mRNA hybridization. Therefore, ACS4 may be 
an ACS gene which is induced by auxin in pears. The ACS 
activity, ACC concentration, ACO activity and ethylene pro-
duction increased in jasmonate-treated pear fruit at the pre-
climacteric stage (Kondo et al. 2007). The increase of the 
ACS1 and ACO1 mRNA levels were observed in jasmonate-
treated fruit. In contrast to the preclimacteric stage, the 
ACS1 mRNA levels and ethylene production were decreased 
by jasmonate treatment at the climacteric stage (Kondo et al. 
2007). ACC malonyltransferase is an enzyme which plays a 
role in the autoinhibition of the ethylene production of sys-
tem 2 (Abeles et al. 1992). The results of jasmonate treat-
ment at the preclimacteric and climacteric stages suggest 
that ACS1 may be influenced directly by jasmonates, resul-
ting in the regulation of ethylene production. 
 

Aroma volatile compounds were affected by 
physiologically active substances 
 
The volatile compound production of apples is affected by 
various other substances. For example, AVG application 
slows the production of volatiles (Fan et al. 1998) while 
jasmonates also influence the aroma volatile production, but 
the effect can vary depending on the type of volatiles (Fan 
et al. 1997). Aroma volatiles are primarily synthesized in 
the skin (Knee and Hatfield 1981). 

1-MCP, which blocks ethylene receptors and inhibits 
ethylene action, delays apple fruit ripening (Blankenship 
and Dole 2003). The levels of volatile compounds such as 
alcohols, esters, and ketones increase gradually toward 
ripening; however, their concentrations were the lowest in 
1-MCP-treated fruit (Kondo et al. 2005). Furthermore, 
volatile compounds in 1-MCP-treated fruit did not increase 
greatly, even at ripening, suggesting that 1-MCP inhibits the 
production of volatile compounds. Volatile compounds in 
apples, produced by lipid and amino acid catabolism, are 
primarily synthesized in the skin (Fan et al. 1997; Rudell et 
al. 2002). Palmitic acid, stearic acid, oleic acid, linoleic 
acid, and triacontane were the predominant lipids detected 
in apple skin at harvest, but the levels of melissic acid, 
montanic acid, and heptacosan were greater in immature 
fruit skin (Noro et al. 1985). Thus, the late-forming lipids 
may be associated with aroma volatile synthesis during fruit 
ripening. According to Ranjan and Lewak (1995) the lipid 
catabolism enzyme lipase is associated with aroma volatile 
production and it is known that 1-MCP also influences the 
enzyme activity in the lipid catabolism pathway. Through 
suppression of its enzyme activity, 1-MCP may be difficult 
to recover from due to its ethylene inhibition properties. 

Jasmonate application also increased aroma volatiles in 
mangoes (Lalel et al. 2003). However, Kondo et al. (2005) 
demonstrated that the effect of jasmonates on volatile com-
pound production was dependent on the developmental 
stage of the treated fruit. Jasmonates may decrease volatile 
compound production when applied at the climacteric stage. 
In contrast, jasmonate application at the preclimacteric 
stage may stimulate aroma volatile production, as shown by 
the correlative relationship between ethylene and aroma 
volatiles in alcohols and esters (Fig. 4). 
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Chilling injury and physiologically active 
substances 
 
Mangosteens (Garcinia mangostana L.) are cultivated in 
humid tropics. Low temperature may extend the postharvest 
shelf life of mangosteen during transportation, however, if 
held under 8°C they may suffer from chilling injury (Aug-
ustin and Azudin 1986). Polyamines may retard membrane 
damage in chilling injury by stabilizing membranes (Faust 
and Wang, 1993), as for example in zucchini squash where 
spermine treatments decreased chilling injury (Cucurbita 
pepo L.) (Kramer and Wang 1989). Chilling injury in ram-
butans was limited only to the skin and it was not observed 
in the aril (O’Hare 1995). The differences in polyamine 
concentrations are associated with the extent of chilling 
injury depending on the part of the fruit (Kondo et al. 2003). 
Although polyamines may inhibit chilling injury in mango-
steens, their metabolic roles are unclear. The polyamine 
(putrescine, spermidine and spermine) concentrations de-
creased during early development of the skin and aril, but 
increased later in the skin development (Kondo et al. 2003). 
The high polyamine level in young fruit indicates that they 
may be involved in the process of cell division (Faust and 
Wang 1993). The putrescine concentration was the highest 
followed by spermidine and then spermine in the skin and 
aril, whereas spermidine concentration was the highest in 
the seed (Kondo et al. 2003). The composition of poly-
amines in mangosteens was similar to other fruits such as 
rambutans and tomatoes (Dibble et al. 1988; Faust and 
Wang 1993; Kondo et al. 2001a). Polyamine concentrations 
in the aril decreased toward harvest but those in the seed 
and the skin increased during the maturation period (Kondo 
et al. 2003). Although the relationship between polyamine 
concentrations and fruit growth has been reported in some 
fruits (Faust and Wang 1993), changes of polyamine levels 
and the weights of the skin, aril and seed in mangosteens 
were different. The increase of polyamines in the skin of the 
mangosteen toward maturation also occurred in cherimoyas 
(Annona cherimola Mill.). It has been demonstrated that 
high polyamine levels in cherimoyas act in a protective 
manner by keeping cellular structures highly acidic (Escri-
bano and Merodio 1994). Thus, the role of polyamines 
during fruit development may vary depending on the part of 
fruit as the structures of the skin, aril and seed differ greatly 
(Nakasone and Paull 1998). 

The symptoms of chilling injury in mangosteen skin are 
browning and hardening (Augustin and Azudin 1986) and 
this was observed in the skin of fruit stored at 7°C but not at 
13°C (Kondo et al. 2003). Spermine treatment delayed the 
progress of chilling injury at 7°C and was attributed to its 
absorption by the skin and aril (Kondo et al. 2003). Putres-
cine and spermidine concentrations in the skin at 7°C were 
higher than those at 13°C, but their concentrations de-
creased as chilling injury progressed in storage. Putrescine 
concentrations in the undamaged aril were higher than those 
in the skin indicating that the difference in putrescine con-
centrations may be associated with the degree of chilling 
injury. Putrescine levels and chill-tolerance of rice cultivars 
were correlated when rice seedlings were chilled (Lee et al. 
1995). Therefore, the accumulation of polyamines in the 
mangosteen skin at low temperature may be a natural self-
defense mechanism against chilling injury. 

A rise of ABA or putrescine concentrations was ob-
served in chilling-tolerant rice cultivars but not in chilling-
sensitive cultivars when they were held at -5°C (Lee at al. 
1995). The chilling tolerance induced by the jasmonate 
application also coincided with a decrease in ion leakage in 
mango fruit (Mangifera indica L.) (Gonzalez-Aguilar et al. 
2000). It has been shown that calcium is an important sec-
ond messenger in a low-temperature signal transduction 
pathway; the levels of ABA increased rapidly with an influx 
of calcium from extracellular stores in Arabidopsis (Knight 
et al. 1996). The elevated cytoplasmic Ca2+ activates the 
release of an ABA precursor through environmental stress 
or imbalance from a stored form in cells (Netting 2000). An 

increase in ABA in jasmonate- or spermine-treated fruit 
suggests that these treatments may be effective as a means 
of improving chilling tolerance (Yoshikawa et al. 2007). 

Polyphenolics and ascorbic acid are the major sources 
of antioxidants in apples (Kondo et al. 2002c; Tsao et al. 
2005). The production of reactive oxygen can be promoted 
by environmental factors (Matsui and Li 2003). The EC50 
values of O2

- -scavenging activity were lower in jasmonate- 
and spermine-treated fruit, and both the polyphenolic and 
ascorbic acid concentrations were higher in both types of 
treated apple fruit (Yoshikawa et al. 2007). These results 
suggest that ABA, jasmonates and polyamines may be asso-
ciated with low-temperature stress tolerance in fruit. 
 
CONCLUSIONS 
 
Fruits are beneficial to our health as they contain vegetable 
fiber and antioxidants. In addition, the bright color and 
aroma volatiles are indicative of further healing effects. 
Thus, fruit is often in high demand and it is important to be 
able to maintain freshness for as long as possible after har-
vest. This paper outlines many ways in which physiologic-
ally active substances are essential to the regulation of fruit 
quality. In addition, these substances can contribute to the 
defense system of the fruit against environmental stress. A 
detailed outline on the function of plant hormones is cur-
rently being written. 
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