

Volatile Constituents of the Brown Algae Padina pavonia (L.) Gaill. and Hydroclathrus clathratus (C. Agardh) Howe and their Antimicrobial Activity

Nagwa E. Awad1* • Hemaia M. Motawe1 • Mohamed A. Selim2 • Azza A. Matloub1

Pharmacognosy Department, National Research Centre, Dokki, Cairo, Egypt
 Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
 Corresponding author: * NagwaEA@hotmail.com

ABSTRACT

GC/MS analysis of the volatile oils of *Padina pavonia* (L.) Gaill. and *Hydroclathrus clathratus* (C. Agardh) Howe led to identify 54 volatile constituents in the former, or 75.64% of total constituents and 39 in the latter, or 92.67% of total constituents. The volatile constituents of both brown algae consisted mainly of esters (25.06 and 42.25%), hydrocarbons (20.38 and 12.63%) and fatty acids (6.59 and 11.68%). The antimicrobial activity of the volatile fractions of these algae was tested on 12 microorganisms (6 bacteria, 2 yeasts and 3 fungi). The volatile fraction of *P. pavonia* exhibited obvious antimicrobial activity against *Bacillus cereus* compared with amoxycillin as the reference drug while the volatile fraction of *H. clathratus* showed pronounced antimicrobial activity against *Saccharomyces cerevisiae* compared with canestin.

Keywords: hydrodistillation, marine algae, micro-organism, odoriferous hydrocarbons

INTRODUCTION

Brown algae release volatile compounds which belong to different groups (aliphatic and aromatic hydrocarbons, acids, esters, phenols, alcohols, aldehydes, ketones, terpenes, etc). These biomarkers, which are responsible for the behavior of organisms, act as allelochemicals, defensive compounds, attractants and alarming pheromones, etc. (Kamenarska *et al.* 2002). Odoriferous C_{11} hydrocarbons are emitted by all species of brown algae (El Hattab *et al.* 2007) which are affected by algal growing conditions, e.g. nutrients, mineral composition, and temperature of sea water (Kajiwara *et al.* 1989).

GC/MS analysis of the volatile fraction of *Padina pavonia*, collected from the Adriatic Sea, revealed the presence of free fatty acids, aromatic esters, phenols, benzyl alcohol, terpenes, sulfur containing compounds, aromatic hydrocarbons and benzaldehyde (Kamenarska *et al.* 2002). On the other hand, GC/MS analysis of the volatile constituents of *Hydroclathrus clathratus* showed the presence of phytol, free fatty acids and esters of fatty acids (Sagami *et al.* 1990).

P. pavonia possesses moderate antimicrobial activity against *Staphylococcus aureus* and *Candida albicans* (Kamenarska *et al.* 2002), antifungal against *Macrophomina phaseolina, Rhizocotonia solani* and *Fusarium solani* (Sultana *et al.* 2005), cytotoxicity against KB cells (Ktari and Guyot 1999) and antitumour activity against lung (H460) and liver (HepG2) human carcinoma cell lines (Awad *et al.* 2008). The methanol extract of *P. pavonia* has high antibacterial activity against *Staphylococcus aureus* (Chiheb *et al.* 2009). On the other hand, the hot water extract of *H. clathratus* showed potential anti-viral activity against *Herpes simplex virus* types 1 and 2 and moderate antirespiratory syncytial virus activity (Wang *et al.* 2008).

The aim of this study was to identify the volatile constituents and their antimicrobial activity of *Padina pavonia* (L.) Gaill. and *Hydroclathrus clathratus* (C. Agardh) Howe collected from Egyptian Sea shore, as nothing has been published about this subject.

MATERIALS AND METHODS

Algal material

The two brown algae *P. pavonia* (L.) Gaill. (Family Dictyotaceae) and *H. clathratus* (C. Agardh) Howe (Family Scytosiphonaceae) were collected from the Red Sea coasts at Hurghada, Egypt during May, 2002 and authenticated by Prof. Dr. S. Shaalan, Professor of Phycology, Faculty of Science, Alexandria University.

Analysis of the volatile constituents

Pure, fresh homogenized algae (1 kg) were hydrodistilled in a modified Likens-Nickerson apparatus (Macleod and Cave 1975) using *n*-pentane (AR grade). The *n*-pentane layer was evaporated under pressure to yield faint-yellow oil. GC/MS analysis was done using a Finnigan SSQ 7000 (USA) GC/MS spectrophotometer equipped with library software Wiley 138 and NBS 75 under the following conditions: DB-5 fused silica capillary column, 30 m in length, 0.32 mm i.d. and 0.25 μ m film thickness, carrier gas, helium at a flow rate of 10 ml/min, temperature programmed 50-260°C at a rate of 5°C/min, ion source temperature 180°C, ionization voltage 70 eV, detector, flame ionization detector (FID).

The identification of the constituents was performed depending on the fragmentation of the obtained spectra and comparing with those of available authentic material or published data (Mass Spectrometry Data Center 1974; Jennings and Shibamoto 1980; Adams 1989, 1995) and a library database [Wiley (Wiley Institute, USA) and NIST (National Institute of Technology, USA)]. Quantitative determination was carried out based on peak area measurements of the gas chromatogram.

Microbiological activity

The antimicrobial activity of the volatile constituents was tested against several microbes. Pure strains of bacteria, yeasts and fungi were kindly provided by the Microbial Genetics Department, National Research Center, Egypt. The bacterial strains used were *Bacillus cereus* (Gram positive, G^+), *Bacillus subtillis* (G^+), *Staphylo*-

coccus aureus (G^+), Escherichia coli (Gram negative, G^-), Pseudomonas fluorescens (G^-) and Pseudomonas aeruginosa (G^-). The yeast strains were Saccharomyces cerevisiae and S. carles, while the fungi were Aspergillus niger, A. flavus and Diplodia oryzea.

The antimicrobial activity of the volatile fraction was determined by the antibiotic assay method (Gnanamanickam and Mansfield 1981). The bacteria were cultured on Lauria-Bertani Medium (LB medium) (Moniatis *et al.* 1980), while the yeasts were cultivated on Yeast Extract Peptone Medium (YEPD medium) (Dillon *et al.* 1985). The fungi were cultured on Potato-Dextrose Agar (PDA) growth medium (Subba 1977). The oils were sterilized by filtration through bacterial membrane filter (0.45 μ m, 2.5 mm diameter, Millipore, USA). The concentration of the volatile fraction was used at 100 μ g/disc. The discs, after being air dried, were firmly applied to the surface of inoculated agar plates. The diameters of inhibition zones were measured per applied disc after incubation at 37°C for 24 h with the bacteria strains, while those containing yeast and fungi were incubated at 30°C for 48-72 h. Amoxycillin (Medical Union Pharmaceuticals Co., Egypt) as antibacterial (100 μ g/disc) and canestin (Alexandria Co., Egypt) as antifungal (100 μ g/disc) were used as reference drugs.

Statistical analysis

All values were expressed as the mean of inhibition zone (mm) with three replicates for each treatment. Data were subjected to paired-samples *t*-test using SPSS (ver. 9.0). P < 0.05 was regarded as significant.

Table 1 Result of GC/MS analysis of the volatile constituents of the brown alga Padina pavonia (L.) Gaill.

Compounds	Molecular formula	RR _t *	Relative (%)	[M ⁺]	B.P.
2-Hexanone,3-methyl	$C_7H_{14}O$	0.068	1.56	114	43
Nonane	C ₉ H ₂₀	0.134	0.51	128	43
2,3-Octanedione	$C_8H_{14}O_2$	0.18	0.14	142	43
Decane	$C_{10}H_{22}$	0.217	0.68	142	43
2-Methyldecane	$C_{11}H_{24}$	0.227	0.12	156	43
Allyl hexanoate	$C_9H_{16}O_2$	0.28	0.66	156	41
Undecane	$C_{11}H_{24}$	0.29	0.89	156	57
Dictyopterene D	$C_{11}H_{16}$	0.33	3.22	148	91
Dictyopterene A	$C_{11}H_{18}$	0.345	0.60	150	79
Estragole	$C_{10}H_{12}O$	0.35	0.32	148	148
Dodecane	$C_{12}H_{26}$	0.36	0.52	170	57
Decanal	$C_{10}H_{20}O$	0.376	0.12	156	57
Anethole	$C_{10}H_{12}O$	0.42	1.25	148	148
Tetradecane	$C_{14}H_{30}$	0.52	0.34	198	43
β-Cubebene	C ₁₅ H ₂₄	0.54	2.14	204	161
Germacrene D	C15H24	0.543	0.33	204	91
Pentadecane	C ₁₅ H ₃₂	0.546	4.43	212	57
Tridecanol	C13H28O	0.55	0.17	200	43
8-Isopropylidene bicyclo[3.2.1] octan-2-one	$C_{12}H_{19}ON_3$	0.57	0.13	221	43
2.6-Di- <i>t</i> -butyl-4-hydroxy-benzaldehyde	$C_{15}H_{22}O_{2}$	0.57	0.38	234	219
Santalol	$C_{15}H_{24}O$	0.59	2.30	220	121
1-Hexadecene	C16H22	0 593	0.28	224	43
Hexadecane	C16H24	0.60	0.94	226	57
8-Hentadecene	$C_{17}H_{24}$	0.64	1 41	238	55
Heptadecane	C17H26	0.65	1.86	240	57
1-Octadecene	C19H26	0.66	1.00	2.52	41
Nor-Decyl bromide	$C_{10}H_{21}Br$	0.67	0.26	220	135
4 9-Di- <i>nor</i> -nronyl dodecane	C10H20	0.69	0.32	254	57
1-Formyl heptadecane	$C_{18}H_{26}O$	0.695	1.20	268	43
4-(1-Methyl 1-phenyl ethyl)phenol	$C_{18}H_{16}O$	0.70	0.30	212	197
6 10 14-Trimethyl pentadecan-2-one	$C_{19}H_{26}O$	0.719	1.53	268	43
Isobutyl phthalate	C16H22O4	0.735	1.26	278	149
Hexadecanol-1	$C_{16}H_{22}O_4$	0.74	0.40	242	43
Nor-octadecanol	$C_{10}H_{20}O$	0.74	7.60	270	55
Dibutyl nhthalate	C16H22O4	0.77	0.92	278	149
Palmitic acid	$C_{16}H_{22}O_4$	0.785	1 40	256	43
4-Nor-propyl heptadecane	C20H42	0.787	0.36	282	57
Totarene	$C_{20}H_{42}$	0.81	0.28	202	41
2.6.10.14-Tetramethyl hentadecane	$C_{20}H_{44}$	0.822	0.20	296	57
Vinyl stearate	$C_{20}H_{20}O_{2}$	0.829	0.24	310	57
Geranyl geraniol	$C_{20}H_{20}O$	0.84	1.09	288	41
Phytol	$C_{20}H_{32}O$	0.848	2 39	296	71
Methyl eicosa-5 8 11 14 17-pentaenoate	$C_{20}H_{20}O_{2}$	0.85	0.46	316	79
Methyl eicosa 5,8,11,14,17 penaenoate	$C_{21}H_{32}O_{2}$	0.87	0.92	318	41
Oleic acid	$C_{19}H_{24}O_{2}$	0.89	5.19	284	43
Nor-tricosane	Ca2H42	0.92	0.14	324	57
Dioctyl adjaste	CHO-	0.92	0.14	370	120
<i>n</i> -tetracosane	C22114204	0.95	0.49	338	57
9-Nor-octyl hentadecane	CH	0.95	0.20	352	57
<i>Ris</i> (2-ethylhexyl) nhthalate	C_{25}	1.00	19.75	390	149
Nor-bevacosane	C24113804	1.00	0.35	366	57
10-Nor-propyl-10-nor-butyl sicosana	CH	1.02	0.35	380	57
Di nor octul phthalata	C H O	1.00	0.45	300	140
7 Nor howyl dogosono	C_H	1.007	0.30	204	147 57
/- <i>ivor</i> -nexyi docosane	U28П58	1.11	0.29	374	51

* Relative retention time, calculated relative to Bis(2-ethylhexyl)phthalate (Rt= 46:25)

RESULTS AND DISCUSSION

The yields of volatile oils of fresh algae *P. pavonia* and *H. clathratus* were 0.023 and 0.037% (w/w), respectively.

Fifty four and 39 compounds were identified which represent 75.64 and 85.20% of the total volatile compounds released from *P. pavonia* and *H. clathratus*, respectively. **Tables 1** and **2** show that the volatile constituents of both algae are composed of hydrocarbons (20.38 and 12.63%), sesquiterpenes (4.77 and 2.41%), alcohols (11.65 and 2.13%), aldehydes (1.70 and 10.07%), ketones (3.23 and 1.15%), methoxy (1.57 and 0.32%), acids (6.59 and 11.68%), esters (25.06 and 42.25%), phenol derivatives (0.30 and 0.70%) and miscellaneous (0.39 and 1.86%), respectively.

Bis-2-ethylhexyl phthalate was identified as the princeple constituent in both algae (19.75 and 40.22% for *P. pavonia* and *H. clathratus*, respectively). This result was also found in the red alga *Corallina officinalis* L. (Awad *et al.* 2001, 2003). Other authors recorded that phthalate constituted a major component in *Bangia atropurpurea* (Chen 2004) and *Sargassum wightii* (Sastry and Rao 1995). Dibutyl phthalate was detected in some edible brown algae *Undaria pinnatifida* and *Laminaria japonica* as a natural product (Namikoshi *et al.* 2006).

Many fatty acid esters such as, methyl eicosa-5,8,11,14tetraenoate, methyl eicosa-5,8,11,14,17-pentaenoate which known to be useful for the treatment of atherosclerosis (Awad *et al.* 2003), allyl hexanoate and vinyl stearate have been detected in *P. pavonia*, while dioctyl adiptate has been identified in both algae. Furthermore, the fatty acid propionic acid was detected as a major free acid in *H. clathratus*, while oleic acid was found in *P. pavonia* in a moderate concentration. Meanwhile, palmitic acid was present in both algae as a minor fatty acid.

The presence of free fatty acids was cited in the oils of both algae (Sakagami *et al.* 1990; Kamenarska *et al.* 2002).

Dictyopterenes A and D, which are odoriferous C_{11} hydrocarbons and identified in the essential oils of *Dictyopteris* spp. (Moore 1976; El Hattab *et al.* 2007), have been detected here for the first time in *P. pavonia*. Characteristic aroma dictyopterenes have been identified as constituents of brown algae with male gamete-attracting activity (Kajiwara 2005).

Furthermore, sesquiterpenoid compounds: β -cubebene, germacrene D, and santalol have been detected for the first time in *P. pavonia* and *H. clathratus*. These compounds were detected in *Dictyopteris* spp. (Yamamoto *et al.* 2000; El Hattab *et al.* 2007). Also, anethole and its isomer estragole have been detected in both algae for the first time.

Kajiwara *et al.* (2006) identified cubenol (as the major component), (E,Z)-2,6-nonadienal, (E)-2-no-nenal, (Z,Z)-3,6-nonadienal, (E,Z)-2,6-nonadienol, (E)-2-nonenol, myristic acid, and ω -hexadecenoic acid in volatile oils isolated from edible kelps (*Laminaria angustata*, *L. japonica*, *Kjellmaniella crassifolia*, Costaria costata, Ecklonia cava, Alaria crassifolia, Undaria pinnatifida).

Table 2 Result of GC/MS analysis of the volatile constituents of the brown alga Hydroclathrus clathratus (C. Agardh) Howe.

Compounds	Molecular formula	RR _t *	Relative (%)	$[\mathbf{M}^{+}]$	B.P.
Propionic acid	$C_3H_6O_2$	0.07	11.13	74	59
Nor-decane	$C_{10}H_{22}$	0.22	0.07	142	43
Undecane	$C_{11}H_{24}$	0.29	0.16	156	57
Estragole	$C_{10}H_{12}O$	0.419	0.10	148	148
Anethole	$C_{10}H_{12}O$	0.42	0.22	148	148
Bicyclo[4.1.0] heptane, 7-pentyl	$C_{12}H_{22}$	0.48	0.45	166	82
6-Methyl tridecane	$C_{14}H_{30}$	0.485	0.11	198	57
2-Phenyl-3-methyl butanol-2	$C_{11}H_{16}O$	0.50	0.17	164	121
β -Ionone	$C_{13}H_{20}O$	0.53	0.39	192	177
Pentadecane	C15H32	0.546	1.87	212	57
Butylated hydroxytoluene	C15H24O	0.548	0.70	220	205
Tridecanal	C13H26O	0.55	3.63	198	57
3,5-Dibutyl-4-hydroxy benzaldehyde	$C_{15}H_{22}O_2$	0.57	0.40	234	219
Santalol	C15H24O	0.585	2.41	220	121
Hexadecene	C16H32	0.59	0.41	224	43
Hexadecane	C16H34	0.60	0.71	226	57
1-Heptadecene	C17H34	0.64	0.23	238	43
Heptadecane	C17H36	0.65	3.44	240	57
1-Formyl heptadecane	C ₁₈ H ₃₆ O	0.66	3.97	268	82
5-Octadecene	C18H36	0.70	0.44	252	55
Octadecane	C18H38	0.70	1.45	254	57
1-Nonadecene	C19H38	0.71	0.80	266	97
6,10,14-Trimethyl 2- pentadecanone	C ₁₈ H ₃₆ O	0.72	0.76	268	43
Octadecanal	C ₁₈ H ₃₄ O	0.74	9.54	266	55
Dibutyl phthalate	$C_{16}H_{22}O_4$	0.77	0.34	278	149
Palmitic acid	$C_{16}H_{32}O_2$	0.784	0.55	256	43
Eicosane	$C_{20}H_{42}$	0.787	0.52	282	57
1,2,3,4,4a,5,8,9,12,12a Decahydro-1,4-methanobenzo- cyclodecene	C15H22	0.81	1.86	202	79
2,6,10,15-Tetra methyl heptadecane	$C_{21}H_{44}$	0.83	0.44	296	57
Geranylgeraniol	$C_{20}H_{32}O$	0.84	0.77	288	41
Phytol	$C_{20}H_{40}O$	0.85	1.19	296	71
Docosane	$C_{22}H_{46}$	0.87	0.40	310	57
Tricosane	$C_{23}H_{48}$	0.91	0.52	324	57
Dioctyl adipate	$C_{22}H_{42}O_4$	0.94	0.53	370	129
Nor-tetracosane	C24H50	0.943	0.24	338	57
Nor-pentacosane	C25H52	0.98	0.25	352	57
Bis(2-ethyl hexyl) phthalate	$C_{24}H_{38}O_4$	1.00	40.22	390	149
Nor-hexacosane	C ₂₆ H ₅₄	1.02	0.12	366	57
Diisononyl phthalate	$C_{26}H_{42}O_4$	1.06	1.16	418	149

* Relative retention time, calculated relative to Bis(2-ethylhexyl)phthalate (Rt= 46:18)

Microorganisms	Mean of inhibition zones (mm) \pm SEM					
	Volatile fraction		Reference drug			
	P. pavonia	H. clathratus	Amoxycillin (100 µg/ disc)	Canestin (100 μg/ disc)		
Bacillus cereus	$14\pm0.58^*$	9 ± 0	10 ± 0			
Bacillus subtilis	$10\pm0.58^{\rm a}$	$8\pm0^{*}$	$24\pm0.58^{\rm a}$			
Staphylococcus aureus	9 ± 0^{a}	-	22 ± 0^{a}			
Escherichia coli	$8\pm0^{*}$	-	16 ± 0.58			
Pseudomonas fluorescens	$14\pm0.58^*$	$9\pm0.58^{*}$	26 ± 0.58			
Pseudomonas aeruginosa	9 ± 0.58	$8\pm0^{ m a}$	9 ± 0^{a}			
Saccharomyces cerevisiae	-	$12\pm0.58^{\rm a}$		11 ± 0.58 ^a		
Saccharomyces carles	-	-		12		
Aspergillus niger	8 ± 0.58	-		9 ± 0.58		
Aspergillus flavus	$12 \pm 1.16^{*}$	-		20± 0.58		
Diplodia oryzea	-	9 ± 0.58 ^a		$14\pm0.58~^{a}$		

Each value represents the mean of inhibition zones (mm) of three replicates ± SEM (Standard Error of Mean)

*Significantly different from the reference drug at p< 0.05 according to paired-sample *t*-test

^a The correlation and *t* cannot computed because the standard error of the difference is zero

Antimicrobial activity

The results of antimicrobial activity are summarized in **Table 3**. The volatile fraction of *P. pavonia* exhibited significant antimicrobial activity against *B. cereus* comparing with amoxycillin as reference drug. On the other hand, the volatile of *H. clathratus* showed pronounced antimicrobial activity against *S. cerevisiae* compared with canestin as reference material. In contrast, Ozdemir et al. (2006) proved that the volatile oils of *Dictyopteris membranaceae* and *Cystoseira barbata* did not remarkably inhibit the growth of microorganisms.

REFERENCES

- Adams RP (1989) Identification of Essential Oils by Ion Trap Mass Spectroscopy, Academic Press, Inc., pp 1-302
- Adams RP (1995) Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, Allured Publishing Corp., Carol Stream, IL, USA, pp 1-459
- Awad NE, Selim MA, Metawe HM, Matloub AA (2008) Cytotoxic xenicane diterpenes from the brown alga Padina pavonia (L.) Gaill. Phytotherapy Research 22, 1610-1613
- Awad NE, Selim MA, Saleh MM, Matloub AA (2001) Biological activity and volatile components of *Corallina officinalis* L. *Bulletin of the National Re*search Center of Egypt 26, 17-37
- Awad NE, Selim MA, Saleh MM, Matloub AA (2003) Seasonal variation of the lipoidal matters and hypolipidaemic activity of the red alga *Corallina* officinalis L. Phytotherapy Research 17, 19-25
- Chen CY (2004) Biosynthesis of di-(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) from red alga *Bangia atropurpurea*. Water Research 38, 1014-1018
- Chiheb I, Riadi H, Martinez-Lopez J, Dominguez SJF, Gomez VJA, Bouziane H, Kadiri M (2009) Screening of antibacterial activity in marine green and brown macroalgae from the coast of Morocco. *African Journal of Biotechnology* 8, 1258-1262
- Dillon JR, Nasim A, Nestmann ER (1985) Recombinant DNA Methodology, John Wiley Sons, Inc., New York, 127 pp
- El Hattab M, Culioli G, Piovetti L, Chitour SE, Valls R (2007) Comparison of various extraction methods for identification and determination of volatile metabolites from the brown alga *Dictyopteris membranacea*. *Journal of Chromatography A* 1143, 1-7
- Gnanamanickam SS, Mansfield JW (1981) Selective toxicity of wyerone and other phytoalexins to gram positive bacteria. *Phytochemistry* 20, 997-1000
- Jennings W, Shibamoto T (1980) Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography, Academic Press,

New York, pp 1-472

- Kajiwara T (2005) Bioactive volatile compounds from marine algae; marine and green notes. Koryo, Terupen oyobi Seiyu Kagaku ni kansuru Toronkai Koen Yoshishu 49, 1-4
- Kajiwara T, Hatanaka A, Kawai T, Ishihara M, Tsuneya T (2006) Study of flavor compounds of essential oil extracts from edible Japanese kelps. *Journal of Food Science* 53, 960-962
- Kajiwara T, Hatanaka A, Tanaka Y, Kawai T, Ishihara M, Tsuneya T, Fujimura T (1989) Volatile constituents from marine brown alga of Japanese Dictyopteris. Phytochemistry 28, 636-639
- Kamenarska Z, Gasic MJ, Zlatovic M, Rasovic A, Sladic D, Kljajic Z, Stefanovic K, Seizova K, Najdenski H, Kujumgiev A, Tsvetkova I, Popov S (2002) Chemical composition of the brown alga *Padina pavonia* (L.) Gaill. from the Adriatic Sea. *Botanica Marina* 45, 339-345
- Ktari L, Guyot M (1999) A cytotoxic oxysterol from the marine Red Sea alga Padina pavonica (L.) Thivy. Journal of Applied Phycology 11, 511-513
- Macleod AJ, Cave SJ (1975) Volatile flavor components of eggs. The Journal of the Science of Food and Agriculture 26, 351-360
- **Mass Spectrometry Data Centre** (1974) *Eight Peaks Index of Mass Spectra* (2nd Edn), AWRE: Aldermaston, Reading, pp 1-1190
- Moniatis T, Fritssh EF, Sambrook J (1980) Molecular Cloning, Cold Spring Harbor Laboratory, 440 pp
- Moore RE (1976) Chemotaxis and the odor of seaweeds. Llvodia 39, 181-191
- Namikoshi M, Fujiwara T, Nishikawa T, Ukai K (2006) Natural abundance ¹⁴C content of dibutyl phthalate from three marine algae. *Marine Drugs* 4, 290-297
- Ozdemir G, Horzum Z, Sukatar A, Yavasoglu NUK (2006) Antimicrobial activities of volatile components and various extracts of *Dictyopteris membranaceae* and *Cystoseira barbata* from the coast of Izmir, Turkey. *Pharmaceutical Biology* 44, 183-188
- Sakagami H, Iseda J, Fujimari T, Hara Y, Chihara M (1990) Volatile constituents in marine brown and red algae. Nippon Suisan Gakkaishi 56, 973-983
- Sastry VMVS, Rao GRK (1995) Dioctyl phthalate, an anti-bacterial compound from the marine brown alga Sargassum wightii. Journal of Applied Phycology 7, 185
- Subba Rao NS (1977) Soil Micro-Organisms and Plant Growth, Mohan Primlani Publisher, Oxford, 252 pp
- Sultana V, Ehteshamul-Haque S, Ara J, Athar M (2005) Comparative efficacy of brown, green and red seaweeds in the control of root Infecting fungi and okra. *International Journal of Environmental Science and Technology* 2, 129-132
- Wang H, Ooi ECV, Ang PO Jr. (2008) Antiviral activities of extracts from Hong Kong seaweed. *Journal of Zhejiang University Science B* 9, 969-976
- Yamamoto Y, Akakabe Y, Matsui K, Shimidzu H, Kajiwara T (2000) Chemo-enzymatic syntheses of both enantiomers of neodictyoprolenol and neodictyoprolene; possible biosynthetic intermediates of sex pheromones in brown algae. *Zeitschrift für Naturforschung* 56c, 6-12