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ABSTRACT 
Two field experiments were conducted during two successive seasons, 2006-2007 and 2007-2008, to investigate the effectiveness of 
biofertilizer treatment i.e., plant growth-promoting rhizobacteria species (Azospirillum brasilense, Azotobacter chrococcum, and 
Klebsiella pneumoniae), chemical fertilizer and their combination on four barley (Hordeum vulgare) cultivars. These cultivars showed a 
characteristic response under different fertilizer treatments. In general, ‘Sahrawy’ and ‘KSU 101’ produced the highest grain yield. ‘KSU 
101’ gave the highest harvest index (43.3%) in the second season. Also, ‘KSU 102’ and ‘KSU 101’ had more grains per spike. The 
application of nitrogen alone (at 200 kg N ha-1) and biofertilizer treatment (a mixture of three growth-promoting nitrogen-fixing 
rhizobacteria) significantly increased grain yield and grains per spike of all four barley cultivars. SSR markers for the amplification of 
dehydrin genes revealed the presence of two dehydrin genes (HVDHN7 and HVDHN9). ‘Sahrawy’ had homologous dehydrin genes and 
produced higher grain yield. 
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INTRODUCTION 
 
Barley ranks second after wheat among the most important 
crops in Saudi Arabia (Motawei and Abdalla 2003). In 
order to increase crop production, the system is relying 
exclusively on the use of chemical fertilizers. The use of 
chemical fertilizers and other pesticides has caused tremen-
dous harm to the environment by pollution and water and 
soil contamination (Al-Redhaiman et al. 2005). There is 
thus a need to search for alternative methods of increasing 
plant production in an eco-friendly manner, with adequate 
management of natural, renewable resources and to reduce 
chemical inputs (Al-Otayk et al. 2008). Without doubt, all 
chemical fertilizers support plant growth and development, 
resulting in higher production, and are thus beneficial if 
used judiciously, such as bio-fertilizers that are considered 
to be totally safe and  now used in most countries because 
of their environmentally-friendly fertilizer property. Bio-
fertilizers are 100% natural and organic fertilizers that en-
rich the nutrient quality of soil and are organisms that help 
to provide and keep in the soil all the nutrients and micro-
organisms required for the benefits of plants (http://www. 
biofertilizer.com/biofertilizer.html). Bacteria, fungi and 
blue-green algae (Cynobacteria) are the main sources of 
bio-fertilizers. Symbiosis of these organisms with plants is 
the most striking relationship, in which the partners derive 
benefits from each other, without any damage/hazards. The 
disease-causing organisms (pathogenic bacteria, fungi, etc.) 
are totally different to the non-pathogenic strains used in 
bio-fertilizers. 

Secretion of vitamins and amino acids, auxins, and 
fixing atmospheric nitrogen by Azotobacter and Azospiril-
lum are among the direct mechanisms of increasing root 
development and plant growth (Radwan 2002; Khavazi et 
al. 2005; Akbari et al. 2007). Secretion of siderophores and 
hydrogen cyanides and antibiotics that control some plant 
diseases are additional effects of improving the growth rate 
and yields of crops such as wheat and barley (Khavazi et al. 
2005). Recent studies detected the synergistic effects of 

plant growth-promoting rhizobacteria (PGPR) (such as Azo-
spirillum and Azotobacter) and Rhizobium on nodulation 
and nitrogen fixation of legumes (Tilak et al. 2006). Also, 
Canbolat et al. (2006) showed that PGPR strains as bio-
fertilizer stimulated barley growth and could be used as an 
alternative to chemical fertilizer. Kaci et al. (2005) reported 
that these microorganisms deliver a number of benefits, 
including plant nutrition and tolerance to adverse soil con-
ditions. 

Moreover, barley production is limited by the availa-
bility of water resources. Plants have developed different 
strategies to face water deficit and over the past few years 
much attention has been focused on the identification of 
genes induced in response to environment stress (Zhu 2002). 
Inheritance studies, QTL analysis, in several crop plants 
have revealed apparent co-segregation of dehydrin genes 
(HVA) with phenotypes associated with dehydrative stress, 
such as drought (Sivamani et al. 2000). Among genes in-
duced by drought and low-temperature stress, dehydrin pro-
teins are produced in response to drought, low temperature, 
and salinity. Dehydrins are intracellular stabilizers, acting 
upon targets in both the nucleus and cytoplasm (Svensson et 
al. 2002; Koag et al. 2003). Dehydrin loci are multigenic 
and present in clusters on different chromosomes in barley 
(Tommasini et al. 2008). 

The current study aimed to: (1) investigate the effect of 
a mixture of three growth-promoting nitrogen-fixing rhizo-
bacteria, namely Azospirillum brasilense, Azotobacter chro-
coccum, and Klebsiella pneumoniae on barley yield and its 
components, and (2) to investigate the presence of the de-
hydrin gene as a marker of drought tolerance in barley cul-
tivars. 

 
MATERIALS AND METHODS 
 
Field trials 
 
Field experiments were conducted at the Agricultural Research 
Station, College of Agriculture and Veterinary Medicine, Al-
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Qassim University, Saudi Arabia, during 2006/2007 and 2007/ 
2008 winter seasons. Four barley cultivars (Table 1) were sown on 
the 1st and 15th of December 2006 and 2007, respectively, with a 
seeding rate of 140 kg h–1. The plot size was 4 × 3 m2 with a row-
to-row spacing of 25 cm. The four fertilizer treatments used were: 
(1) 200 kg N h–1 applied as calcium nitrate (15% N); (2) 100 kg N 
h–1 applied as calcium nitrate (15% N) and PGPR species (Azos. 
brasilense, Azot. chrococcum, and K. pneumoniae) as biofertilizer 
at the rate of 2.5 kg h–1; (3) PGPR species as biofertilizer at a rate 
of 2.5 kg h–1; and (4) control (no nitrogen application). A split-plot 
in a randomized complete block design with three replicates was 
used. The four fertilizer treatments were considered as main plots, 
and the four barley cultivars were regarded as sub-plots. A com-
puterized drip irrigation system was designed and built for this 
experimental field. 

At harvesting time, 10 plants were randomly chosen to mea-
sure plant height, spike length, the number of spikelets per spike 
and the number of grains per spike. Also, harvest index and grain 
yield per square meter were recorded. 
 
DNA extraction 
 
Leaf samples from barley cultivars were used. The sample of 
leaves was first ground into a fine powder with liquid nitrogen. 
DNA was extracted in 10 ml of CTAB buffer consisting of 50 mM 
NaCl, 10 mM Tris-HCl pH 7.5, 5 mM EDTA, and 1% CTAB. The 
homogenate was incubated for 2 hrs at 65°C with occasional 
mixing. Following incubation, 5 ml of chloroform: isoamylalcohol 
(24: 1) was added to the tubes, mixed, and centrifuged at 2600× g 
for 10 min. The aqueous phase was removed to a fresh tube and an 
equal volume of ice-cold isopropanol was added followed by 
centrifugation as above to precipitate the DNA. The pellet was 
dissolved in TE buffer (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA). 
The DNA concentration was assessed spectrophotometrically at 
260 nm, and quality was assessed by the 260/280 ratio (Sambrook 
et al. 1989). The DNA was suspended to a final concentration of 
10 ng/μL in 0.5X TE and stored at 4°C. 
 
Simple sequence repeat (SSR) marker for 
dehydrin genes 
 
SSR primers for amplification of dehydrin genes were HVDHN9 
(X152572, gene for dehydrin-9) and HVDHN7 (X71362, gene for 
dehydrin-7). These primers were designed on the basis of pub-
lished sequences (Becker and Heun 1995). Amplification was car-
ried out in 25 μL reaction volumes, containing 1X Taq polymerase 
buffer (50 mM KCl, 10 mM Tris, pH 7.5, 1.5 mM MgCl2) and 1 U 

of Taq polymerase (Pharmacia Biotech, Germany) supplemented 
with 0.01% gelatin, 0.2 mM of each dNTPs (Pharmacia Biotech, 
Germany), 25 pmol primer, and 50 ng of total genomic DNA. 
Amplification was performed in a thermal cycler (Thermolyne 
Amplitron) programmed for 1 cycle of 30 s at 94°C, 40 cycles of 
{1 min at 94°C, 1 min at 55°C, and 1 min at 72°C} followed by 5 
min at 72°C. 
 
Statistical analysis 
 
Standard analysis of variance was applied to all data, using PC 
SAS, version 6.12 (SAS Institute, Carry, NC). Comparisons of 
means were based on Duncan’s Multiple Range test at (P � 0.05) 
for the main effects of each dependent variable. 
 
RESULTS AND DISCUSSION 
 
Grain yield and its components 
 
The results presented in Tables 2 and 3 indicate that barley 
cultivars showed different characteristic responses under 
different fertilizer treatments. In general, ‘Sahrawy’ and 
‘KSU 101’ produced the highest grain yield (386.5 and 
392.7 g/m2) in the first and second seasons, respectively. 
‘KSU 101’ gave the highest harvest index (43.3%) in the 
second season. ‘Sahrawy’ and ‘Gustoe’ were the tallest 
plants (83 and 81 cm) and (69.25 and 69.5 cm) in both sea-
sons, respectively while the shortest plants were ‘KSU 101’ 
(67.4 cm) in the first season, and ‘KSU 102’ (59.12 cm) in 
the second season. ‘KSU 102’ and ‘KSU 101’ had more 
grains per spike (40.16 and 38.41, respectively) in the first 
season (Table 3). In the second season, ‘Sahrawy’, ‘KSU 
101’, and ‘KSU 102’ had more grains per spike (45.1, 43.4, 
and 42.7, respectively). Also, the latter three cultivars had 
the highest spike length and number of spikelets per spike 
in the second season (Table 3). 

There were differences in plant height among fertilizer 
treatments (Table 2). 200 kg N h–1 resulted in the tallest 
plants (81.75 and 72 cm) in both seasons, respectively. Plots 
that received no nitrogen had the shortest plants (67 and 
63.5 cm in season 1 and 2, respectively). 

Application of nitrogen alone (at 200 kg N h–1) and 
biofertilizer treatment (mixture of three PGPR) significantly 
increased grain yield. This response was 71.4 and 70.4% in 
the first season and 82.9 and 30.9% in the second season, 
respectively as compared with the control. The incorpora-
tion of chemical fertilizer and biofertilizer increased grain 
yield by 41.8 and 19.5% in season 1 and 2, respectively. A 
possible explanation for these results may be due to en-
hanced root development in the early growth stages under 
biofertilizer treatment, which may be one of the factors res-
ponsible for the increases in yield (El-Hawary et al. 2002). 

The number of spikelets per spike and grains per spike 
of the barley cultivars were affected by microbial treatment 
(a mixture of three PGPR) and application of N at a rate of 
50 and 100% and their interactions (Table 3). Application 
of N alone (at 200 kg N h–1) gave the highest number of 

Table 1 Four barley cultivars studied for response to biofertilizer and 
chemical fertilizer applications. 
Barley cultivars Source 
KSU. BL. 101 
KSU. BL.  102 
Gustoe 
Sahrawy 

King Saud Univ., Saudi Arabia 
King Saud Univ., Saudi Arabia 
American 
ACR- Egypt 

 

Table 2 The main effects of fertilizer treatments and barley cultivars on plant height, grain yield and harvest index during 2006/2007 and 2007/2008 
seasons. 

Plant height (cm) Grain Yield g/m2 Harvest index (%) Treatments 
2006/2007 2007/2008 2006/2007 2007/2008 2006/2007 2007/2008 

Barley cultivars 
KSU. BL. 101 
KSU. BL. 102 
Gustoe 
Sahrawy 

Fertilizer treatments 
Control 
Calcium nitrate 
biofertilized + calcium nitrate 
Biofertilizer treatment 

 
67.4 b 
77.5 a 
83.0 a 
81.0 a 
 
67.0 b 
81.8 a 
80.8 a 
80.0 a 

 
59.25 b 
59.12 b 
69.25 a 
69.50 a 
 
63.5 b 
72.0 a 
58.9 b 
62.7 b 

 
332.5 b 
374.4 a 
386.5 a 
386.0 a 
 
253.5 c 
434.5 a 
359.5 b 
432.0 a 

 
392.7 a 
352.4 b 
359.1 ab 
342.1 b 
 
271.2 c 
496.0 a 
324.0 bc 
355.0 b 

 
34.0 a 
33.6 a 
35.0 a 
32.0 a 
 
33.3 a 
33.3 a 
33.3 a 
35.0 a 

 
43.3 a 
39.5 ab 
35.6 b 
35.3 b 
 
39.7 a 
36.0 b 
40.1 a 
38.0 b 

Data are expressed as mean 
Means within the same column and followed by the same coefficient are not significant different from each other (p � 0.05). 
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spikelets spike–1 (14.86 and 19.1) and number of grains 
spike–1 (41.89 and 49.6) in season 1 and 2, respectively. It 
was followed by biofertilizer treatment without a significant 
difference. These results might be due to that PGPR species 
stimulate barley growth and could be used as an alternative 
to chemical fertilizer (Canbolat et al. 2006). Also, the 
results of Ozturk et al. (2003) suggest that the application of 
A. brasilense Sp246 may be potentially used as a biofertili-
zer for spring wheat and barley cultivation in organic and 
low-N input agriculture. 
 
SSR marker for dehydrin gene 
 
Dehydrins (DHNs) are one of the typical families of pro-
teins that occur in plants as a consequence of dehydration 
and osmotic stress (Sivamani et al. 2000). The dehydrin 
genes were amplified from barley cultivars using HVDHN7 
and HVDHN9 primers (Fig. 1). It should be noted that 
‘Sahrawy’ had one band, while the other cultivars had two 
bands when HVDHN7 primers were used (Fig. 1). There-
fore, ‘Sahrawy’ was homologues for the dehydrin-7 gene. 
Provan et al. (1999) concluded that codominant SSR poly-
morphism can be detected without time-consuming and 
laborious processes usually associated with SSR develop-
ment and characterisation. Moreover, polymorphism existed 
among barley cultivars at the dehydrin-9 gene locus (Fig. 1). 
HVDHN7 and HVDHN9 microsatellite markers were previ-
ously mapped to the chromosome 7(5H) region (Liu et al. 
1996). Brini et al. (2007) concluded that the observed dif-
ferential phosphorylation pattern of HVDHN-5 in resistant 
and sensitive wheat varieties could be used as a basis for 
molecular screening of tolerance/sensitivity to drought and 
salt stresses in wheat germplasm. In addition, transgenic 
rice plants over-expressing the barley dehydrin gene HVA1 
show enhanced tolerance to water and salt stress (Xu et al. 
1996). The co-localization of QTLs controlling water-status 
and/or turgor with sequences corresponding to DHN genes 
on the same portion of chromosome 6H, was a great indi-
cation of the possible role of these genes in the variation of 
plant water-status under drought conditions (Teulat et al. 
2002). DHNs are water-soluble lipid-associated proteins 
that accumulate in response to dehydration, low tempera-
ture, osmotic stress, or during seed maturation (Close et al. 
1989). Several QTLs controlling tolerance traits, and parti-
cularly freezing tolerance, have already been identified 
close to DHN genes (Campbell and Close 1997). The first 
example was a QTL for winter-hardiness overlapping with a 
cluster of DHN genes, including HVDHN1 on barley chro-
mosome 5H associated with a cold-specific induction of a 
member of this DHN family (Pan et al. 1994; van Zee et al. 
1995). Borovkova et al. (1998) detected a linkage between 
leaf rust resistance gene Rph9 and the microsatellite marker 
dehydrin-9 (HVDHN9) at a distance of 10.2 cM in the Bow-
man x Hor 2596 cross. All of the DHN genes have been 
shown to be upregulated in barley under stress with no ex-
pression observed in well watered plants (Choi et al. 1999). 

The genes dhn2 and dhn6 showed large increases in expres-
sion under polyethylene glycol stress in sorghum. The ex-
pression was greatest after 3 hrs of stress and declined after 
27 hrs although the levels were still much higher than the 
control (Buchanan et al. 2005). In Suprunova et al. (2004) 
high correlations between the rates of expression level of 
these genes and the level of tolerance of tested barley vari-
eties were detected. Evaluation of Dhn1 gene expression 
could be used for preliminary prediction of sensitivity of 
barley genotypes to drought stress at a genetic level (Mikul-
ková et al. 2007). Tommasini et al. (2008) concluded that 
the expression of 13 barley Dhn genes mirrored the global 
clustering of all transcripts, with specific combinations of 
Dhn genes providing an excellent indicator of each stress 
response. 

In this study, ‘Sahrawy’ had homologous DHN genes 
and produced high grain yield. Therefore, SSR markers for 
amplifying the DHN gene could be valuable for barley 
breeding programs for selection of desirable DHN alleles 
under drought stress. In addition, the PGPR N-fixing rhizo-
bacteria, namely Azos. barasilense, Azot. chrococcum, and 
K. pneumoneaeon may have the potential to be used as a 
biofertilizer for barley cultivation in organic agriculture. 
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