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ABSTRACT 
Citrus is one of the most important commercial fruit crops throughout the world, including China. However, it is grown in regions that are 
frequently subjected to water deficiency, which restricts the yield and quality of the crop. Citrus has very few and short root hairs and is 
highly dependent on arbuscular mycorrhizae, since the mutualistic symbiosis replaces some of the root hairs’ functions. In this review, we 
describe arbuscular mycorrhizal symbiosis, mycorrhizal dependency of citrus, and the effect of drought stress on mycorrhizal 
development in citrus plants. We also describe advances in understanding how arbuscular mycorrhizal symbiosis improves water relations 
in citrus. These mechanisms include the direct water uptake and transport via external hyphae, the indirect effect of improved phosphorus 
nutrition, the improvement of osmotic adjustment and reactive oxygen metabolism, and the effect of glomalin produced by arbuscular 
mycorrhizae. 
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INTRODUCTION 
 
Of all the stresses that negatively affect plant growth, 
drought is among the most lethal from a global point of 
view (Zézé et al. 2007). This is because water is an integral 
component of the biochemical reactions in the plant that 
govern the numerous metabolic, physiological and bioche-
mical processes affecting plant productivity (Alam 1999). 
Citrus is a major horticultural commodity worldwide, sec-
ond only to bananas, in terms of volume of world trade. 
Most of citrus’ global production depends on irrigation for 
economic production (Shalhevet and Levy 1990). 

In citrus, drought stress strongly inhibits vegetative 
growth, reduces yield, and has a deleterious effect on fruit 
quality (Levy et al. 1978a, 1978b, 1979); it can even change 
the root-distribution pattern (Arbona et al. 2005; García-
Sánchez et al. 2007). However, although the plant is meso-
morphic, the leaves have many xeromorphic characteristics 
that help it survive drought (Levy and Syvertsen 2004). In 

some regions, citrus plants are grown without irrigation, 
such as in hot, humid tropical areas with a monsoon-type 
rainfall distribution, despite four or five months of severe 
winter drought in most years. In addition, a number of soil 
microorganisms, including arbuscular mycorrhizal (AM) 
fungi, have been shown to alleviate symptoms of drought 
stress. Research on the relations between AM and water sta-
tus of citrus began ca. 30 years ago, when Levy and Krikun 
(1980) reported the effect of AM fungi on water relations of 
citrus seedlings. Since then, a multitude of experiments 
have indicated that the AM symbiosis improves water-rela-
tions and plays an important role in citrus growth under 
conditions of drought stress (Fig. 1). The present review 
focuses on advances in our understanding of the mecha-
nisms underlying AM’s improvement of water relations in 
citrus. 
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AM SYMBIOSIS 
 
In 1885, A.B. Frank, a German scientist, coined the name 
“mycorrhiza” to describe the specific mutualistic 
association existing between higher plants and mycorrhizal 
soil fungi. The association is based on bidirectional move-
ment of nutrients, in which carbon flows to the fungus and 
inorganic nutrients move into the plant (Sylvia 2004). There 
are seven types of mycorrhizae: arbuscular mycorrhizae, 
ectomycorrhizae, ectendomycorrhizae, arbutoid mycorrhi-
zae, monotropoid mycorrhizae, ericoid mycorrhizae and 
orchid mycorrhizae. Citrus typically belongs to AM plants. 
AM symbiosis is the most widespread plant-root symbiosis, 
found in approximately 90% of the Earth’s land plant spe-
cies (Gadkar et al. 2001; Gianinazzi et al. 2005). AM fungi 
have a broad host range, as evidenced by the fact that ap-
proximately 150 species of AM fungi colonize an estimated 
225,000 species of plant hosts. Schüssler et al. (2001) clas-
sified AM fungi based on the morphological and molecular 
characteristics of their asexual spores into eight genera: 
Glomus, Paraglomus, Sclerocystis, Scutellospora, Giga-
spora, Acaulospora, Archaeospora and Entrophospora. 
Most arbuscular mycorrhizae are characterized by the pre-
sence of intraradical hyphae (intercellular or intracellular in 
location), arbuscules (finely branched hyphae involved in 
nutrient exchange), extraradical mycelium (hyphae that 
connect the root to the soil), and spores formed in the 
extraradical mycelium (Peterson et al. 2004). With the ex-
ception of species in the genera Gigaspora and Scutello-
spora that produce auxiliary vesicles (sometimes called 
auxiliary bodies or cells) in the extraradical mycelium, all 

other species form intraradical structures referred to as vesi-
cles. 

In the field, AM fungi can form structures in citrus roots, 
such as vesicles, arbuscules, entry points, extraradical my-
celium, and intraradical hyphae (Fig. 2A). There are few 
vesicles in the AM roots of citrus, whereas the arbuscules 
are observed everywhere (Q.S. Wu, unpublished results). 
AM structures are found mainly in the root’s elongation and 
maturation zones. In addition, the root cap and meristematic 
zone are infected by native AM fungi (Fig. 2B). So far, the 
rhizosphere of citrus trees has found Glomus, Sclerocystis, 
Gigaspora, and Acaulospora species (Nemec et al. 1981; 
Vinayak and Bagyaraj 1990), and is fairly dependent on 
Glomus species (Davies and Albrigo 1994). 
 
MYCORRHIZAL DEPENDENCY OF CITRUS 
 
Gerdemann (1975) defined mycorrhizal dependency (MD) 
as the degree to which a plant is dependent on the mycor-
rhizal condition for maximum growth or yield at a given 
level of soil fertility. As a rule, MD is expressed as the ratio 
between the dry weights of AM and non-AM plants. Dif-
ferent citrus rootstocks show large differences in MD under 
controlled conditions. Rootstocks with long and abundant 
root hairs are less dependent than those with short or few 
root hairs. The order of MD of five rootstocks grown in a 
low-P sandy soil with Glomus intraradices was found to be: 
sour orange (SO) = Cleopatra mandarin (CLEO) > Swingle 
citrumelo (CTRM) > Carrizo citrange (CARZ) > trifoliate 
orange (TRIF), when compared with non-inoculated root-
stocks supplemented with P fertilization (Graham and 
Syvertsen 1985). Under well-watered conditions, rootstocks 
with lower MD, such as TRIF and its hybrid CARZ, gene-
rally exhibit greater hydraulic conductivity in their roots, as 
well as higher transpiration and CO2 assimilation rates, im-
plying that MD may be related to improved water relations 
of citrus rootstocks. 

Drought stress also affects citrus MD. When red tange-
rine (REDT) was colonized separately by five different 
Glomus species - G. mosseae, G. geosporum, G. versiforme, 
G. etunicatum and G. diaphanum, drought stress notably re-
duced the MD of the plants (Wu et al. 2007b). However, the 
MD of TRIF seedlings was increased by drought stress 
when inoculated with G. mosseae, G. geosporum or G. etu-
nicatum (Wu et al. 2006a). Therefore, the effect of drought 
stress on MD depends on the citrus rootstock, and within 
the same rootstock. MD differs with different fungal species. 
Under well-watered and drought-stress conditions, the MD 
ranking of five Glomus species was as follows: G. mosseae 
� G. geosporum > G. versiforme > G. etunicatum > G. dia-
phanum (Wu et al. 2007b). It was concluded that the res-
ponse of MD in citrus is affected by rootstock, drought 
stress and Glomus species, and that these effects are inter-
dependent. In addition, the magnitude of MD of citrus may 
be accurately predicted by equations using soil P, Mn, Zn, 
and also Cu and pH as independent variables, because the 
MD of Troyer citrange (TROY) on G. fasciculatus in 26 
California citrus soils was positively correlated with soil pH 

and inversely correlated with extractable soil P, Zn, Mn, Cu, 
percent organic matter, and cation-exchange capacity 
(Menge et al. 1982). In other words, citrus rootstocks ex-
hibited the greatest MD with the least fertilization (Menge 
et al. 1978). 
 
DROUGHT STRESS AFFECTS AM FUNGAL 
DEVELOPMENT OF CITRUS 
 
The effects of drought stress on AM fungal development are 
summarized in Table 1. In all of these experiments, except 
those of Eissenstat et al. (1999) and Johnson and Hummel 
(1985), drought-stress decreased root colonization. The dif-
ferent results may be ascribed to both used species of AM 
fungi and citrus materials provided. Soil drying decreased 
the number of entry points in six experiments, whereas in 
one of them, entry points increased. When citrus plants 

  A   B C D 

Fig. 1 Growth status of mycorrhizal and non-mycorrhizal TRIF seed-
lings grown in well-watered and drought stress conditions. (A) G. 
versiforme-inoculated TRIF seedlings grown in well-watered condition; 
(B) uninoculated TRIF seedlings grown in well-watered condition; (C)G. 
versiforme-inoculated TRIF seedlings grown in drought stress condition; 
(D) uninoculated TRIF seedlings grown in drought stress condition; 
(Figure by Q.S. Wu, unpublished results). 

 

A B 

Fig. 2 Citrus (Citrus unshiu Marc. cv. ‘Guoqing No. 4’/Poncirus trifoli-
ata) roots colonized by native AM fungi. (A) Extending extraradical 
mycelium. (B) Root cap and meristematic zone infected by native AM 
fungi. (Figure by Q.S. Wu, unpublished results). 
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were subjected to drought-stress, arbuscules and vesicles 
were clearly reduced in AM roots, whereas in an experi-
ment performed by Wu et al. (2008), hyphal density in the 
soil increased. Based on an analysis of over 150 reports 
(Augé 2001), a relatively short drought duration was found 
to have no effect on AM colonization of potted plants, 
whereas longer drought decreased AM colonization. Levy 
et al. (1983a) observed an increase in AM infection of SO 
with decreasing soil moisture in the 0- to 60-cm soil layer in 
the field, but a very long interval between irrigations (40 
days) reduced available water in the 0- to 30-cm layer and 
decreased AM colonization. Soil O2 concentration decreases 
with depth, and frequent irrigation decreased O2 concentra-
tion in the upper soil layers, thereby reducing AM infection. 
In a field experiment, AM colonization of adult pomelo 
(POML) cv. ‘Shatianyou’ trees increased with increasing of 
soil water content (Xue 2004) to an optimum of ~9 to 11%; 
further increases in water content had a negative effect on 
AM colonization. 
 
ARBUSCULAR MYCORRHIZAE IMPROVE WATER 
RELATIONS IN CITRUS 
 
Since Levy and Krikun (1980) first reported on the effect of 
AM fungi on water relations in rough lemon (RL) seedlings, 
studied citrus plants have included TRIF, REDT, SO, grape-
fruit/sour orange, ‘Cara Cara’ (C. sinensis L. cv. ‘Cara 
Cara’)/trifoliate orange, citrange, CLEO, CTRM, CARZ, 
Alemow (MACR), POML, ‘Bessie’ Sweet orange (SwO), 
Troyer citrange (TROY) and Volkamer lemon (VOLK),. 
The involved AM fungal species have included G. mosseae, 
G. diaphanum, G. versiforme, G. intraradices, G. etunica-
tum, G. geosporum, G. sp. FL904, G. sp. 25A, and Giga-
spora margarita. Parameters studied have included osmotic 
adjustment, reactive oxygen metabolism, nutrition physio-
logy, water physiology and AM fungal specificity. The re-
search was conducted mainly in affiliation with the fol-
lowing academic organizations: (1) Citrus Research and 
Education Center, University of Florida; (2) Department of 
Plant Biology, Arizona State University; (3) Department of 
Ornamental Horticulture, University of Florida; (4) Depart-
ment of Horticulture, College of Agricultural Sciences, 
Penn State University; (5) Lab of Pomology, Graduate 
School of Agriculture, Kyoto Prefectural University; (6) 

Gilat Research Center, D.N. Negev; (7) College of Horti-
culture and Forestry, Huazhong Agricultural University; (8) 
College of Horticulture and Gardening, Yangtze University; 
(9) College of Horticulture and Landscape Architecture, 
Southwest University. 

A large number of experiments have confirmed that AM 
citrus plants, both well-watered and drought-stressed, gene-
rally show higher stomatal conductance, transpiration and 
photosynthesis than their experimental non-AM counter-
parts (Fidelibus et al. 2001; Levy and Krikun 1980; Levy et 
al. 1983b; Wu and Xia 2006a; Wu et al. 2007b), implying 
that AM symbiosis allows leaves to maintain a more normal 
water balance and to fix more carbon during drought stress 
(Augé 2004). In addition, leaf water potential (�) is usually 
increased by AM symbiosis, regardless of water limitations 
(Wu and Xia 2006a; Wu et al. 2007a). Leaves of AM and 
non-AM citrus plants might be expected to develop dissimi-
lar symplastic solute pools, resulting in improved osmotic 
adjustment (Wu and Xia 2006a; Wu et al. 2007a). Leaf 
water content or relative water content are compared much 
less frequently in AM vs. non-AM citrus plants than leaf �. 
AM symbiosis usually increases host growth during drought 
by affecting nutrient acquisition and possibly hydration. 
The contents of P, K, and Ca were found to be higher in AM 
citrus seedlings than in non-AM seedlings under both well-
watered and drought-stress conditions, and the mycorrhizal 
contribution to seedlings was higher under drought stress 
than under well-watered conditions (Wu and Zou 2007). As 
a result, the effect of AM symbiosis on citrus nutrition is 
more pronounced in plants grown under drought stress than 
in those grown under well-watered conditions (Sánchez-
Díaz and Honrubia 1994). Espeleta et al. (1999) in com-
paring different studies using citrus seedlings, concluded 
that, in general, AM effects on root responses to localized 
drought may be noticeably affected by tree developmental 
stage. 

A field technique was designed to compare the AM 
roots of adult red grapefruit trees to VOLK exposed to dry 
surface soil (Espeleta et al. 1999). One wooden chamber 
(45×45×50 cm) was buried about 1 m from the bole of the 
tree and was covered with an insulated lid to exclude rain-
water and sunlight. Each split-pot system consisted of two 
vertically arranged plastic pots with a transparent plastic 
window for root mapping. One split-pot contained AM 

Table 1 Effect of drought stress on AM fungal development of citrus. Colonization was quantified as percent of roots colonized (col%). 
Fungal species Host species Parameter Length of drought (days) Reference 
Glomus diaphanum Citrus tangerine 

 
Poncirus trifoliata 

<col%, <entry points, <vesicles, 
<arbuscules 
<col% 
<col%, >hyphal density 

80 
 
80 
80 

Wu et al. 2007b 
 
Wu et al. 2006b 
Wu et al. 2008 

G. etunicatum Citrus tangerine 
 
Poncirus trifoliata 

<col%, <entry points, <vesicles, 
<arbuscules 
<col% 

80 
 
80 

Wu et al. 2007b 
 
Wu et al. 2006a 

G. geosporum Citrus tangerine 
 
Poncirus trifoliata 

<col%, <entry points, <vesicles, 
<arbuscules 
<col% 

80 
 
80 

Wu et al. 2007b 
 
Wu et al. 2006a 

G. intraradices Poncirus trifoliata × Citrus sinensis >col% ~135 Johnson and Hummel 1985
G. mosseae mainly Citrus aurantium <col% >40 Levy et al. 1983a 
G. mosseae Poncirus trifoliata 

 
 
Citrus tangerine 

<col% 
 
>hyphal density 
<col%, <entry points, <vesicles, 
<arbuscules 

120, 113, 80 
 
80 
80 

Wu et al. 2004, 2006a, 
2008; Wu and Xia 2006a 
Wu et al. 2008 
Wu et al. 2007b 
 

G. sp. FL904 Citrus aurantium =col% 42 Eissenstat et al. 1999 
G. versiforme Citrus tangerine 

 
 
 
Poncirus trifoliata 

<col%, >entry points, <vesicles, 
<arbuscules 
<col%, <entry points, <vesicles, 
<arbuscules 
<col% 
<col%, <entry points, <vesicles, 
<arbuscules 
>hyphal density 

80 
 
97 
 
80 
97 
 
80 

Wu et al. 2007b 
 
Wu and Xia 2006a 
 
Wu et al. 2006a 
Wu et al. 2007a 
 
Wu et al. 2008 

Symbols <, >, = indicate that drought stress decreased, increased, or did not affect the parameter, respectively. 
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roots from an adult tree and the other non-AM roots from 
the same tree. This simple technique enabled the manipula-
tion of AM fungal colonization on the trees. Unfortunately, 
this technique has not been taken advantage of by other 
mycorrhizal researchers. 

Although AM fungal infection has been found to im-
prove water relations in citrus plants, the mechanisms 
underlying the increase in drought resistance or improve-
ment in water flow are uncertain. Potential mechanisms are 
described here. 
 
Direct water uptake and transport via external 
hyphae 
 
Increasing evidence has confirmed that external hyphae can 
directly take up water from soils. The external mycelium 
has several functions, the most important of which is the 
uptake and translocation of water and mineral nutrients, 
such as, P from the soil solution to the roots. The highly 
branched nature of the absorbing hyphae increases the sur-
face area for water uptake. Hyphal growth away from the 
depletion zone at the root surface extends the region from 
which water can be absorbed (Peterson et al. 2004). Hyphae 
are able to extend into soil pores that are too small for roots 
to enter (Morgan et al. 2005). Hyphal water transport is 
involved in changes in transpiration and hydraulic conduc-
tivity. Under well-watered conditions, AM RL usually ex-
hibits higher transpiration than non-mycorrhizal plants 
(Levy and Krikun 1980). Under non-limited soil moisture 
conditions, AM CARZ and SO seedlings exhibit better root 
hydraulic conductivity and higher transpiration (Graham 
and Syvertsen 1984). Wu and Xia (2006b) reported greater 
active and total absorption areas of root systems in AM vs. 
non-AM TRIF seedlings, especially with soil water contents 
of 20% and 16%. Root length of VOLK was stimulated by 
inoculation with geographic isolates of Glomus (G. sp. 25A, 
G. mosseae 51C, G. mosseae 114C, and G. intraradices 
FL208) from arid, semi-arid and mesic areas (Fidelibus et 
al. 2001). Abundant water in mycorrhizal citrus roots, due 
to direct water uptake, ensures normal physiological meta-
bolism. Therefore, the maintenance of AM activity through 
direct water translocation could potentially improve the 
drought resistance of plants during periods of dry soils. 
Even after prolonged drought (70-80 days), AM hyphae 
persisted in soil with a water potential as low as -20 MPa 
(Querejeta et al. 2003). Therefore, adequate management of 
the AM symbiosis is vital to enhancing plants’ drought re-
sistance. Moreover, enhanced symplastic water transport via 
expression of the plasma membrane aquaporin gene 
(NtAQP1) is important for the efficiency of AM symbiosis, 
at least under drought conditions (Porcel et al. 2005b). 

The hyphal contribution to water transport is rather 
large. When the hydraulic conductivity of an entire hypha 
was measured at 1 cm/(s MPa), with a hyphal diameter of 
10 mm, water transport under a 0.5 MPa gradient is 5.4 
nl/h; considering the hydraulic conductivity of an entire 
hypha of 10 cm/(s MPa), transport can reach 54 nl/h (Allen 
2006). Rapid channels of water transport and rapid water-
potential equilibration can occur within hyphal cells, be-
cause the cells of fungal hyphae have no membrane (Wu 
and Xia 2004). Owing to the bidirectional flow of water in 
hyphae, the reverse water flow into the soil is much smaller 
than the flow rates associated with transpiration. 
 
Indirect effect of improved P nutrition 
 
P is considered the most important plant-growth-limiting 
factor supplied by the AM association, because its restricted 
mobility in soils causes depletion zones around the roots 
(Brundrett and Abbott 2002). Hyphae of AM fungi are pri-
marily responsible for helping plants acquire P. The P-
acquisition process involves the transportation of P from the 
soil solution, across the membrane of the fungal hypha with 
the help of phosphate transporters in the external mycelium, 
movement of P along the hyphae to the arbuscule, un-

loading of the P from the fungal arbuscules at the arbuscule-
cortical cell interface with the help of phosphate trans-
porters on plant and fungal membranes, and uptake of this P 
by the plant cortical cells via transporters (Garg et al. 2006). 

The increased drought resistance of host plants due to 
AM symbiosis may be a secondary response to better host 
nutrition – particularly P (Henderson and Davies 1990). 
Nelsen and Safir (1982b) found that the ability of AM 
onions to maintain P uptake under conditions of low soil 
moisture was the basis for the observed improved drought 
tolerance. Yano-Melo et al. (1999) reported that G. clarum 
and G. etunicatum enhance growth, photosynthesis and 
transpiration of Musa, but that these effects are probably 
caused by improved host P nutrition. A potted experiment 
showed that G. versiforme colonization of TRIF seedlings 
significantly increases the P content of well-watered and 
drought-stressed leaves by 9% and 16%, respectively (Wu 
and Zou 2007). Although drought stress reduced P content 
in leaf tissues of CARZ seedlings inoculated with G. intra-
radices after transplanting into large containers, P levels of 
AM seedlings were greater than those of non-AM seedlings, 
implying that AM infection improves the establishment of 
transplanted citrus by improving P uptake (Johnson and 
Hummel 1985). In citrus plants, transpiration and hydraulic 
conductivity were not significantly influenced by AM colo-
nization under conditions of adequate P nutrition and soil 
moisture (Graham et al. 1987). However, AM plants grown 
under low soil P had higher stomatal conductivity than their 
non-AM counterparts. Addition of P fertilizer to non-AM 
plants essentially eliminated the differences in resistance to 
water transport (Nelsen and Safir 1982a, 1982b), and the 
increased water transport in AM roots was correlated with 
improved P nutrition (Hardie and Leyton 1981). It was con-
cluded that improved P status of citrus due to AM symbiosis 
strongly affects water relations in citrus – and that in and of 
itself, the flow of water through the hyphae is not the pri-
mary factor. Therefore, in dry soil, mycorrhizal enhance-
ment of P acquisition becomes much more important. How-
ever, no difference was observed in leaf P contents of AM 
vs. non-AM Citrus jambhiri seedlings (Dixon et al. 1988). 

Based on the above-described experiments, P insuffici-
ency and small shoots of non-AM plants are usually con-
founding factors, and thus controlling for AM effects on 
host P nutrition is a challenge (Augé 2001). Young AM and 
non-AM C. volkameriana had similar shoot sizes following 
the addition of P fertilizer to non-AM citrus plants (Fide-
libus et al. 2001). Even with different allotments of P ferti-
lizer, treatment with four geographic isolates of Glomus sti-
mulated root growth compared with non-AM citrus plants 
after the recovery period following a soil-drying episode. 
Leaf P was lowest in non-AM plants. There was a positive 
correlation between leaf P content and root dry weight and 
length (r = 0.71 and 0.83, respectively). Thus the improved 
P nutrition of plants due to AM association may be an in-
direct mechanism, a consequence of the improved root sys-
tem. However, an opposite view was brought forward by 
Graham et al. (1987). These authors reported that when 5-
month-old AM (G. intraradices) and non-AM (fertilized 
with soluble P) CARZ and SO seedlings were comparable 
in size and P sufficiency, AM symbiosis did not signifi-
cantly enhance water relations of citrus under two drought-
stress cycles of short duration. Under such conditions, the 
stress affected primarily the roots, rather than hyphal nutri-
ent uptake (Hartmond et al. 1987). Therefore, further stu-
dies on the relationship between P nutrition and AM citrus 
water relations are needed. 
 
Improvement of osmotic adjustment 
 
Osmotic adjustment is an important adaptive response to 
drought stress in higher plants. The term refers to the low-
ering of osmotic potential due to a net accumulation of 
solutes in response to water deficit, and is distinct from the 
change in osmotic potential due to increased solute concen-
tration associated with reductions in cell water content 
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under drought (Chimenti et al. 2006). In the earliest work 
on the subject, Augé et al. (1986) concluded that AM fungi 
decrease the osmotic potential of leaves at full turgor and at 
the turgor loss points, with a corresponding increase in pres-
sure potential at full turgor. AM association enabled plants 
to maintain leaf turgor and conductance under greater tissue 
water deficits, and at lower leaf and soil water potentials. 
Similarly, drought stress notably decreased leaf � in TRIF 
seedlings, but the decrease was larger in non-AM seedlings 
(-0.53 MPa) than in their AM counterparts (-0.44 MPa) (Wu 
et al. 2007a). AM symbiosis significantly increased seed-
lings’ leaf � and relative water content, regardless of soil-
water status. 

The solutes participating in the osmotic adjustment are 
inorganic ions (K+, Ca2+, Mg2+) or uncharged organic com-
pounds (proline, sucrose). AM symbiosis alters these solute 
levels in citrus plants regardless of soil water status. For 
example, AM citrus plants grown under drought-stress con-
ditions exhibited higher soluble sugar content in their leaves, 
higher soluble starch and total non-structural carbohydrate 
(NSC) contents in leaves and roots, and higher glucose con-
tent in roots, sucrose content in leaves and roots, and K+ 
and Ca2+ levels in leaves and roots, relative to drought-
stressed non-AM plants (Table 2; Wu et al. 2007a). These 
beneficial responses of solutes to AM fungal colonization 
enhance citrus plant drought tolerance by osmotic adjust-
ment, thus protecting and stabilizing macromolecules and 
structures from damage induced by drought stress (Martinez 
et al. 2004). 

The accumulation of proline is a commonly observed 
metabolic response of higher plants, including citrus, to 
water deficit (Levy 1980). In Wu and Xia (2006a) and Wu 
et al. (2007a), AM citrus plants generally showed lower 
proline levels than non-AM plants, when exposed to well-
watered and drought-stress conditions. It is well-known that 
a high proline level may help plants survive short droughts 
and recover from stress (Sanchez et al. 1998). The decrease 
of proline in AM plants may be attributed to either their 
greater drought resistance or decreased injury in these 
plants grown under drought conditions, implying that the 
plants are more successful at avoiding drought stress (Augé 
2004; Porcel and Ruiz-Lozano 2004). Further experiments 
confirmed that AM infection decreases the gene expression 
of �1-pyrroline-5-carboxylate synthetase (a key proline syn-
thetase) under drought-stress conditions (Porcel et al. 2004). 

An analysis of the net accumulation of solutes in citrus 
plants in response to drought stress indicated that better 
osmotic adjustment in AM plants originates not from pro-
line, but from K+, Ca2+, Mg2+, glucose, fructose and sucrose 
(Wu et al. 2007a). 
 
Improvement of reactive oxygen metabolism 
 
In higher plants, reactive oxygen species (ROS) are conti-
nuously produced as byproducts of various metabolic path-

ways in different cellular compartments (Apel and Hirt 
2004). Under steady-state physiological conditions, these 
molecules are scavenged by different components of the 
antioxidative-defense system. However, the equilibrium be-
tween production and scavenging of ROS may be perturbed 
by a number of adverse environmental factors, including 
drought stress. A variety of ROS, such as superoxide anion 
radical (O2

·�), hydrogen peroxide (H2O2), hydroxyl radicals 
(OH·) and singlet oxygen (1O2), are then induced (Jung 
2004). Higher plants rapidly detoxify the poisonous ROS by 
various cellular enzymatic and non-enzymatic mechanisms, 
thus protecting them from oxidative injury (Asada 1999). 
Non-enzymatic antioxidants include the major cellular 
redox buffers ascorbate (ASC) and glutathione (GSH), as 
well as tocopherol, flavonoids, alkaloids, and carotenoids. 
Enzymatic ROS-scavenging compounds in plants include 
superoxide dismutase (SOD), guaiacol peroxidase (G-POD), 
ascorbate peroxidase (APX), glutathione peroxidase (GPX), 
glutathione reductase (GR), and catalase (CAT). 

In an experiment performed by Wu et al. (2006b), G. 
versiforme inoculation notably decreased malondialdehyde 
(MDA), H2O2 and O2

·– in roots and drought-stressed leaves 
of TRIF seedlings (Table 3), indicating a lower accumu-
lation of ROS in AM seedlings. H2O2 accumulated less in 
branched arbuscules and around hyphal tips penetrating the 
host cell (Salzer et al. 1999). Moreover, H2O2 accumulation 
was not observed in the fungal hyphal tips growing along 
the middle lamella, or in appressorium or vesicles. The 
intracellular accumulation of H2O2 was found in the cyto-
plasm of AM plants close to intact and collapsing fungal 
structures, whereas intercellular H2O2 was located on the 
surface of the fungal hyphae (Fester and Hause 2005). It 
was concluded that in the cells of AM roots, locally induced 
accumulation of H2O2 is limited, both near the intracellular 
AM hyphae and at the intercellular hyphal surface. It is now 
clear that H2O2 may also function as a molecular signal in 
plant cells, triggering tolerance against various abiotic 
stresses (Neto et al. 2005). 

In both well-watered and drought-stressed REDT roots, 
SOD activity was significantly higher in AM than in non-
AM plants (Wu et al. 2006c), indicating the induction of 
some new SOD isozyme (Palma et al. 1993) or expression 
of the Mn-SOD II gene (Ruiz-Lozano et al. 2001). AM 
infection generally increased the activities of G-POD, CAT, 
APX and GR in citrus plants exposed to well-watered 
conditions, drought stress or drought recovery (Table 3; Wu 
and Xia 2005; Wu et al. 2006a, 2006b, 2006c, 2007b; Yu et 
al. 2007). Moreover, the levels of non-enzymatic antioxi-
dants, such as GSH and ASC, were often higher in AM than 
in non-AM citrus plants (Table 3; Wu et al. 2006b, 2006c). 
Therefore, when AM plants are subjected to drought stress, 
enzymatic and non-enzymatic ROS-scavenging mechanisms 
are rapidly induced and enhanced, thus partly explaining the 
lower ROS levels in these plants. Finally, AM symbiosis 
protects the host plant against oxidative damage, in turn 

Table 2 Effects of the AM fungus, Glomus versiforme, on the levels of the solutes participating in osmotic adjustment in TRIF seedlings under well-
watered and drought-stress conditions 

Well-watered Drought stress Parameter 
Leaf Significance Root Significance Leaf Significance Root Significance 

K+ > * > NS > * > * 
Ca2+ > NS > * > * > * 
Mg2+ < NS < NS = NS < NS 
Proline < * < NS < * < NS 
Soluble sugar > * > * > * > NS 
Soluble starch > * > NS > * > * 
NSC > * > * > * > * 
Glucose < * > * > NS > * 
Fructose < * > * > NS > NS 
Sucrose < NS > * > * > * 

Symbols <, > indicate that AM symbiosis decreased or increased the parameter, respectively. Symbol = indicates that the parameter was similar in AM and non-AM plants. 
*, NS: significant or non-significant differences (p < 0.05) in the parameter, respectively. 
Source: Reconsolidation from Acta Physiologiae Plantarum (Wu et al. 2007a). 
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enhancing drought tolerance. That is to say, AM protection 
against the oxidative stress caused by drought is perhaps 
one of the most important mechanisms by which the AM 
symbiosis increases the tolerance of host plants to drought 
(Ruiz-Lozano 2003). 
 
Effect of glomalin produced by AM fungi 
 
AM hyphae have been shown to bind soil particles into 
water-stable aggregates (Tisdall and Oades 1979). This bin-
ding was found to be due to glomalin, an immunoreactive 
glycoprotein produced by the hyphae of AM fungi (Wright 
and Upadhyaya 1996). This protein is abundant in a wide 
range of soil environments at concentrations of 2 to 15 
mg/g, and even up to >60 mg/g (Wright and Upadhyaya 
1998; Wright et al. 1999). Glomalin appears to be as ubi-
quitous as the AM fungi themselves (Wright and Upad-
hyaya 1998). Large glomalin pools also result from its high 
persistence in the soil (Rillig et al. 2001). In soils, glomalin 
is quantified as glomalin-related soil protein (GRSP), an al-
kaline-soluble protein material linked to AM fungi that is 
defined by the extraction conditions (Rillig 2004; Nichols 
and Wright 2006; Vodnik et al. 2008). There are currently 
two detection methods used to quantify GRSP: the Bradford 
protein assay, yielding Bradford-reactive soil protein 
(BRSP), and an ELISA yielding immunoreactive soil pro-
tein (IRSP) (Rosier et al. 2006). 

The concentration of BRSP in soils of well-watered and 
drought-stressed TRIF seedlings colonized by G. versiforme, 
G. mosseae, and G. diaphanum varied from 1.64 to 1.93 
mg/g (Wu et al. 2008). Drought stress reduced the BRSP 
concentration slightly, albeit not significantly. The trend of 
BRSP in plants subjected to drought stress paralleled that of 
hyphal density, indicating a connection between the two (r 
= 0.7169, p < 0.0001). BRSP was positively correlated with 
water-stable soil aggregates (>2 mm, r = 0.6217, p < 0.01; 
1-2 mm, r = 0.6153, p < 0.01; > 0.25 mm, r = 0.6481, p < 
0.001). Thus, AM soils maintained more water-stable ag-
gregates and better soil structure, and consequently held 
more moisture (Augé et al. 2001). An indirect mechanism 
enabling water uptake by roots of AM plants consists of 
preventing the development of significant gaps between the 
root and soil, thereby maintaining liquid continuity across 
the soil-root interface (Reid 1984). Taken together, the in-
creased water-stable aggregates and higher BRSP due to 
AM colonization lead to better soil structure and alter the 
soil’s moisture-retention properties which, in turn, lead to 
better plant drought resistance. 
 
CONCLUSIONS 
 
The statement that AM symbiosis can improve water rela-
tions and drought responses in citrus invariably holds true. 
Most of the above-described studies have focused on how 

AM fungi affect citrus plants. In fact, research has often 
neglected the “mycorrhizal soil”, even though mycorrhizal 
colonization of soil can affect that soil’s moisture-retention 
properties, and thereby have marked direct and total effects 
on plant dehydration tolerance (Augé 2004). 

Plants can adapt to drought stress by the induction of 
specific genes, whose products are thought to function in 
stress tolerance and responses (Yamaguchi-Shinozaki and 
Shinozaki 2005). Recently, some molecular studies have 
been conducted on AM symbiosis with lettuce (Ruiz-Lo-
zano et al. 2001; Porcel et al. 2004, 2005a, 2006, 2007), 
soybean (Porcel et al. 2004, 2005a, 2006, 2007), tobacco 
(Porcel et al. 2005b, 2007), and maize (Porcel et al. 2007) 
under drought-stress conditions. These studis have revealed 
that AM symbiosis in combination with drought stress 
might induce a variety of specific genes (e.g. Mn-sod II 
gene, G. intraradices 14-3-3 gene, and a gene from G. 
intraradices encoding a binding protein) expression to 
enhance drought tolerance of host plants. However, there is 
little information on AM citrus plants at the molecular level. 
Despite the many advances described herein, the molecular 
basis of drought-stress tolerance in AM plants remains far 
from being understood (Porcel et al. 2004) because it is 
important to analyze functions of stress-inducible genes for 
further understanding molecular mechanisms of stress toler-
ance and response of drought-stressed plants after inocu-
lated with AM fungi. 
 
ACKNOWLEDGEMENT 
 
This research was supported by both the National Natural Science 
Foundation of China under Grant no. 30800747 and the Scientific 
Research Foundation for Doctor, Yangtze University (39210264). 

 
 
 

Table 3 Effects of the AM fungus, Glomus versiforme, on ROS and components of ROS-scavenging mechanisms in TRIF seedlings under well-watered 
and drought-stress conditions. 

Well-watered Drought stress Parameter 
Leaf Significance Root Significance Leaf Significance Root Significance 

MDA < * < * < * < * 
H2O2 < NS < * < * < * 
O2

.� < NS < * < * < * 
SOD > NS > NS > NS < * 
G-POD > * > NS > * < NS 
CAT > NS > NS > * > NS 
APX < NS > * > * > * 
GR > * > NS > * < NS 
Soluble protein > * > * > NS > * 
ASC > * > NS > * > * 
GSH > * > * > * > * 

Symbols <, > indicate that AM symbiosis decreased or increased the parameter, respectively.  
*, NS: significant or non-significant differences (p < 0.05) in the parameter, respectively.  
Source: Wu QS, Xia RX, Zou YN (2006b) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. 
Journal of Plant Physiology 163, 1101-1110, ©2006, with kind permission from Journal of Plant Physiology. 
 

Table 4 Abbreviations of Citrus and Citrus relatives’ names. 
Abbreviation Name 
CARZ Carrizo citrange (C. sinensis [L.] Osbeck � Poncirus 

trifoliata L.) 
CLEO Cleopatra mandarin (C. reshnii Hort ex Tan.) 
CTRM Swingle citrumelo (C. paradisi � P. trifoliata) 
MACR Alemow (C. macrophylla Westr.) 
POML Pomelo (C. grandis Osbeck.) 
REDT Red tangerine (C. tangerine Hort. ex Tan.) 
RL rough lemon (C. jambhiri Lush.) 
SO sour orange (C. aurantium L.) 
SwO sweet orange (C. sinensis [L.] Osbeck.) 
TRIF trifoliate orange (Poncirus trifoliata L.) 
TROY Troyer citrange (C. sinensis � P. trifoliata) 
VOLK Volkamer lemon (C. volkameriana Chapot.) 
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