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ABSTRACT 
In the age of information technology, process-oriented data analysis is the focus of emerging science and is predicted to form the basis for 
economic growth. The general consensus is that, especially in agronomy, new innovative approaches are needed for a future process 
management. Because citrus is economically a very important fruit crop worldwide, two case studies of in-situ analysis of plant and fruit 
with prominent importance in the citrus production are reviewed targeting site-specific production measures. In the first approach, the 
review provides a background of the measurable plant response to oxygen shortage in the root zone by means of non-destructive methods 
and gives an outlook of the applications in citrus. In a second case study the quality analysis of citrus fruit at the tree level is discussed. 
The feasibility of the spatio-temporally resolved data recording in the harvest management is pointed out. 
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INTRODUCTION 
 
In comparison to other industry sectors, technological ad-
vances in agricultural and horticultural production appear 
very gradually. A reasonable concept has been introduced 
in the framework of precision agriculture. Here, the plant 
itself is monitored in-situ to adapt the production measures 
to the needs of the plant. Biological variability and envi-
ronmental impacts are taken into account for the first time 
by means of data collected spatially and temporally resolved, 
leading to more sustainable production processes (Stafford 
2000; Grenzdörffer and Gebbers 2001; Zhang et al. 2002; 
Ewert et al. 2005; Rounsevell et al. 2006). 

Such change in the point of view would be necessary 
also in the horticultural production. Approaches are pre-
sently developed taking into account a slightly increasing 
number of publications (Cook and Bramley 1998; Hall et al. 
2002; Hense et al. 2002; Lamb et al. 2004; Herold et al. 
2005; Bramley and Hamilton 2007; Reynolds et al. 2007; 
Gebbers and Zude 2008; Qing et al. 2008; Zude et al. 
2008a). In horticulture, high investment costs, high produc-
tivity of the land area and highly perishable, valuable, and 

heterogenous produce provide even better reasons for high-
technology production methods. The high heterogeneity of 
the horticultural produce often requires even batch-wise 
handling (Tijskens and van Kooten 2006; Schouten et al. 
2007). The product quality during production is determined 
by plant genome, environmental conditions, and production 
system leading to high variability at harvest time (Fig. 1). 
Plant analyses in the laboratory are already important com-
ponents of the process management in, e.g., plant nutrition 
and postharvest handling of produce. However, this kind of 
random spots measuring does not comprise an up-to-date 
solution for sufficient controls with temporal high-resolu-
tion analysis. 

Nowadays, the discipline of non-destructive plant and 
product monitoring under various conditions is developing 
rapidly. Depending on the observation level, spectral-opti-
cal methods have been applied in remote sensing (e.g. 
Omasa et al. 2007; Verstraeten et al. 2008) for canopy 
screening as well as in molecular analysis of a diagnostic 
plant parameter under question (e.g. Krause and Weis 1991; 
Lichtenthaler and Schweiger 1998; Abbott 1999; Saito 
2006; Lenk et al. 2007; Zude 2009). 
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Machine vision systems have been established for sor-
ting as well as monitoring during crop production and pro-
cessing. Research groups in cooperation with industry have 
recently developed new sorting lines using spectroscopic 
methods, e.g., for grading according to fruit soluble solids 
(Birth and Hecht 1987; Ozaki et al. 2006; Nicolai et al. 
2007) and pigment contents (Cubeddu et al. 1999; Merz-
lyak et al. 1999; Eccher Zerbini et al. 2002; Zude 2003; 
Zude et al. 2007; c.f. Torricelli 2009). Desktop modules and 
portable instruments for individual product testing became 
available in the past five years based on the same techno-
logy. As a result, internal quality parameters of fruits can be 
assessed directly in the production process and subsequently 
checked in the entire supply chain. It is precisely this re-
peated analysis along the supply chain that is essential to 
assess the impact of process conditions in production and 
postharvest on the product quality. Furthermore, new in-
novative optical compounds (Sumpf 2009), recent generic 
modeling attempts regarding the interactance of light and 
matter (Fukhanski et al. 1993; Qin and Lu 2007a, 2007b; c.f. 
Torricelli 2009), and logistic data processing methods for 
spatio-temporal resolved analyses (e.g. Piepho et al. 2003; 
Minasny et al. 2005; Trauth et al. 2007) provide the means 
to reach the next level of fruit production. 

With increasing demands regarding the land use and 
water resources as well as high crop quality requests, the 
production methods are changing. Traditional citrus farming 
with trees planted in square with, e.g., 25 m × 25 m space 
has been replaced by systems with higher tree density sup-
ported by water-efficient drip irrigation. Intensive produc-
tion systems using adapted cultivars and pruning techniques 
show densities up to 1,300 trees per acre, which is in the 
range that we find in apple production with small spindle 
tree forms. The advantage of intensive production system is 
to grow fruit in a more economic way as well as to be able 
to manipulate the growing conditions for optimizing the 
fruit quality and yield. The drawback is the increasing sus-
ceptibility of the system against unfavorable conditions, 

since the soil capacity to work as a buffer is diminishing. 
Taking into account the enhanced investment costs, the 
introduction of sensors for in situ analysis appears more and 
more reasonable. 

The following sections will point out two applications 
for in-situ analyses of plant responses, approaching the non-
destructive diagnosis of the physiological stage of plant and 
produce. 
 
PRECISION HORTICULTURE FOR CITRUS: 
COPING WITH OXYGEN LIMITATIONS IN THE 
ROOT ZONE 
 
Water logging in irrigated horticulture 
 
Water supply is one of the major impacts on plant growth 
under field conditions. Drought stress was recently reviewed 
(Davies et al. 2005; Mahajan and Tuteja 2005; Parry et al. 
2005; Salekdeh and Komatsu 2007; Neumann 2008). On 
the other hand, a serious horticultural problem is that of 
temporary flooding. The lack of oxygen (anoxia) in the root 
zone linked to submerged soil can lead to considerable yield 
losses. Citrus, in particular, is susceptible to oxygen defici-
ency in the root environment. Symptoms of different stress 
factors are often similar. To distinguish between an excess 
and deficit of water is difficult, but naturally is even more 
difficult by means of soil, instead of plant data. 

Drip irrigation in hydroponic systems and intensive 
field production, flooding events and high ground water 
level in the rainy season, lead to limited soil gases exchange 
rates. Under these conditions, equilibrium of oxygen partial 
pressure from atmosphere to rhizosphere is rather a result of 
O2 diffusion in soil solution than convection, because oxy-
gen transport through air filled pores is impeded. Oxygen 
diffusion in solution is 11,300 times reduced in comparison 
to movement in air. As a result, flooding causes a reduced 
soil oxygen partial pressure due to the activity of plant roots, 
microbes, and fungi, which use oxygen as the terminal elec-
tron acceptor (electronegativity of oxygen = 3.5) in respira-
tory processes. 

In submerged soil, within days or even hours, depen-
ding on the organism density, temperature, and fresh water 
supply, the oxygen partial pressure may fall to the limit of 
its detection. The lack of the electron acceptor oxygen 
causes a reduced redox potential in the soil solution, alter-
ing the mineral availablility for the plants (Ponnamperuma 
1972; Li et al. 2006). 
 
Root responses to oxygen deprivation 
 
In roots, the lack of oxygen limits oxidative phosphoryla-
tion that cause a lack of ATP and resulting decrease in root 
growth rate (Drew 1997). Within several hours of anoxic 
conditions less efficient anaerobic respiration pathways are 
initiated that yield significantly less energy in the form of 
ATP (Perata and Alpi 1993; Drew 1997; Amedeo Alpi pers. 
comm. 2001) and produce ethanol and lactic acid as end 
products (Kennedy et al. 1992; Wigge et al. 1993; Pfister-
Sieber and Brändle 1994; Kwast and Hand 1996). The root 
partly releases the high energy end products from anaerobic 
respiration since they are either toxic or reduce the pH of 
the symplast in the root tissue to unfavourable ranges. 
When measuring apparent root-zone respiration rate by 
means of O2 or CO2 exchange, rhizomicrobial respiration is 
always included. However, mere root respiration should be 
used for comparing the respiratory activity of plant roots 
under various soil conditions. During flooding, the apparent 
respiration rate decreases, but due to an enhanced percen-
tage of microbial respiration, the decrease in mere root res-
piration rate is even more pronounced. The microbes bene-
fit from the lack of oxygen since defense mechanisms of the 
roots are hindered, and the high energy compounds released 
by the roots support the microbe growth. 

Limited ATP synthesis in plant roots under oxygen shor-
tage has frequently been studied (Dry and Wiskich 1982; 
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Pradet and Raymond 1983; Crawford 1993), while few 
studies are available on the changes in the redox charge of 
co-enzymes (Morimoto and Yamasue 2007), which drives 
the redox reactions in cell metabolism. Co-encymes are oxi-
dised in the aerobic respiratory pathway. In anaerobic respi-
ration the oxidation takes place to a limited amount and dif-
ferent extent regarding the phosphorylated and non-phos-
phorylated forms (Perata and Alpi 1993; Pfister-Sieber and 
Brändle 1994; Liao and Lin 1995; Pezeshki et al. 1996). In 
many plant species, an alternative respiration path is present 
additionally to the cytochrome path. It is assumed that the 
alternative path acts as an overflow for accumulating re-
duced co-enzymes (Day and Lambers 1983). The residual 
oxygen uptake in the alternative pathway is supposed to be 
due to oxidation in the peroxisomes (Lambers et al. 1991). 
In the latter process, co-enzymes are oxidised, mostly the 
nicotinamide-adenine-dinucleotides, NAD(P). 

Under anoxic conditions, a decrease in the oxidation 
rate of NAD(P) was found in isolated mitochondria (Wigge 
et al. 1993; Kwast and Hand 1996; Paul and Schnecken-
burger 1996) and in vivo (Hoffmann et al. 1993; Zude-Sasse 
et al. 2001; Morimoto and Yamasue 2007). The complex in-
fluence of the decreased NAD(P) oxidation on the plant due 
to oxygen deficiency is hardly investigated. 
 
Citrus root stocks under oxygen deprivation 
 
Greenhouse experiments were carried out on citrus root 
stocks to study short-term (max 5 h) and medium-term (max 
54 h) plant responses. Side effects were largely excluded by 
rapidly inducing anoxia (within 30 s) by streaming the root 
cuvettes with gaseous nitrogen. CO2 gas exchange of roots 
and leaves was measured with an infrared gas analyser in an 
open system. Total photosynthetic electron transport rate 
(ETR) was analysed by means of chlorophyll fluorescence 
kinetic analysis applying light saturation curve readings on 
dark-adapted leaves (Krause and Weis 1991). Discrimina-
ting analyses of oxidised NAD(P)+ and reduced NAD(P)H 
were carried out after extraction of fresh plant tissue by en-
zymatic means recorded photometrically (Hoffmann et al. 
1993; Zude-Sasse 2000). Anaerobic reduction charge (ARC) 
was calculated by ARC=NADPH/(NADPH+NADP+), while 
catabolic reduction charge (CRC) address CRC=NADH/ 
(NADH+NAD+). 

Root respiration apparently decreased immediately after 
starting the stress treatment. A reduced net photosynthesis 
rate (PN) appeared within a period of a few hours that is 
consistent with former work on many plant species (Phung 
and Knipling 1976; Andersen et al. 1984; Peine et al. 1985; 
Smith and Ager 1988; Larson and Schaffer 1991; Vu and 
Yelenosky 1991; Beckman et al. 1992; Liao and Lin 1995; 
Pezeshki et al. 1996; Fernandez 2006; Li et al. 2007). The 
reduction in PN is asssumed to be largely the result of sto-
matal closure due to enhanced ethylene or abscisic acid pro-
duction and dissociation, resulting in reduced CO2 uptake. 
However, the rate of ATP and NAD(P)H formation in the 
leaves constitute the driving force of photosynthesis 
(Giersch et al. 1980; Siebke et al. 1990; Gerst et al. 1994). 
A number of studies suggest a major influence of the degree 
of ADP phosphorylation regulated via the carbohydrate 
concentration of plants (Rao et al. 1990) and concluded that 
the rate of NADP+ reduction regulates photosynthesis 
(Giersch et al. 1980; Siebke et al. 1990; Hanning and Heldt 
1993; Wigge et al. 1993; Krömer 1995). In their model, the 
ARC and CRC determine the ETR in the two photosystems 
(PSI and PSII) in the chloroplasts. Subsequently, the in-
creased redox potential of NADPH and corresponding defi-
ciency of NADP+ could limit the photosynthesis rate under 
anoxia (PS II � PS I � Ferredoxin � NADP+). 

The hypothesis of a non-stomatal influence was sup-
ported by empirical studies in citrus (Zude-Sasse and Lüd-
ders 2000), mango (Zude-Sasse et al. 2001), and other plants 
(Peine et al. 1985; Kwast and Hand 1996; Morimoto and 
Yamasue 2007), i.e. oxygen deficiency leads to an increase 
of pyridine nucleotide charges. It was shown in citrus that 

total contents of NAD (1.2 nmol g-1 fw) and NADP (1.0 
nmol g-1 fw) were unaffected by anoxia treatment in short-
term. However, enhanced values of ARC and CRC were 
found. The ARC increased from 0.28 to 0.31, and the CRC 
from 0.12 to 0.31 resulting in free reaction enthalphy en-
hancement from -442.4 to -444.0 kJ mol-1. Similarly en-
hanced values were found in the leaves. The higher values 
point to the decreased availablility of the oxidised mole-
cules and diminished readiness for reduction in photosyn-
thesis. Variations in ETR and efficiency of the photosys-
tems (yield, y) (Krause and Weis 1991) indicated that the 
increased CRC and ARC appeared in parallel with a re-
duced y and light saturation of ETR at lower photon density 
(Zude-Sasse et al. 2001). Such finding might actually be a 
result of endproduct inhibition at the ferredoxin to NADP+ 
electron transfer step. Within a few hours, both CRC and 
ARC in the leaves returned to the level determined prior to 
the treatment. Solely, in the roots the CRC remained high. 
In the medium term, net photosynthesis rate seemed to be 
limited by stomatal closure as indicated by the reduced ratio 
of internal/external CO2 concentrations (Fig. 2). 

Although the causal interactions of the redox charge of 
NAD(P) in roots and leaves remain unknown, such finding 
point to sensitive parameters in the plant response and, con-
sequently, to possible advanced methods for monitoring the 
plants in the production: Drought or osmotic stress (Neu-
mann 2008; Storey and Walker 1999) and oxygen shortage 
often result in similar plant symptoms becoming visible 
when plants are already severely damaged. While sensors 
for environmental conditions as well as the plant response 
to drought stress exist, the influence of oxygen deficiency 
on the plant is hardly approached. Particularly, short-term 
response to anoxia might be detected by means of the ETR, 
y, and NAD(P) charges. 

Long-term (several days) response of plants to anoxia is 
even less investigated. Here, two cases must be distin-
guished: (1) Plants adapt to anoxia and survive, and (2) 
plants are not able to adapt and die. Adaptation to anoxia is, 
however, often accompanied by significant growth and 
yield reductions and therefore detection in due time by non 
invasive measures would be of large advantage. In the sec-
ond case, plants are irreversibly damaged very quickly and 
here an extremely rapid plant response measurable by 
means of feasible method is requested. 
 
Detecting anoxia in the root zone 
 
Soil (or substrate) parameters can be measured and exa-
mined in relation to anoxia. Recently optical sensors were 
developed for the measurement of gaseous (Cao and Duan 
2006) and dissolved oxygen. Such sensors have several ad-
vantages compared to the conventional Clark-type ampero-
metric oxygen electrodes which consume oxygen and there-
fore need a specific flow rate of the soil water or nutrient 
solution. Paramagnetic devices provide accurate readings, 
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but are expensive. Oxygen sensors could be applied to de-
tect unfavourable conditions in the root zone. The critical 
oxygen partial pressure is determined by the oxygen con-
sumption of the roots, mainly by the respiratory activity, tis-
sue resistance, and radial distance from the rhizodermis to 
the mitochondria. However, it is difficult to estimate the 
effect of the oxygen concentration on the plant due to non-
uniform distribution of the oxygen concentration in the root 
environment and in the tissue as well as the apparent 
adaptations of the roots. Moreover, the oxygen demand of 
the roots and thus the critical oxygen partial pressure in the 
root environment depend also on the photosynthesis affec-
ting the root respiration by providing the assimilates. 

The same difficulties appear when considering the soil 
water content. Suitable sensors for the measurement of the 
soil water potential, such as tensiometers, provide data on 
the available water, but in submerged soil the saturation of 
the soil is more interesting. The soil water content can be 
measured by various methods, mostly calibrated on the gra-
vimetrically measured water, such as lysimeter, Bowen ratio, 
scintillometer, eddy correlation, and time domain reflecto-
metry. Methods applied for spatially resolved sensing, such 
as geo-electrical and electromagnetic induction sensing, or 
spectroscopic approaches in the near infrared wavelength 
range are available and provide spatio-temporal data on the 
soil conditions. Enhancing the observation level by means 
of remote sensing (microwave, radar, polarized light, spec-
troscopy in the visible, shortwave near infrared up to ther-
mal infrared wavelength range) enables landscape assess-
ment (Verstraeten et al. 2008), but apparent signals might 
be pertubated due to dense canopies. Soil- or substrate water 
content, regardless the observation scale, itself are, however, 
less suitable to characterise anoxia in the root environment 
in relation to its effect on plant growth, but provide infor-
mation to distinguish between water deficit and oxygen de-
ficiency when a reduction of growth, photosynthesis rate or 
any other crop parameter is detected. 

The most specific indication of oxygen deficiency in the 
root environment is the strong decrease of the aerobic root 
respiration (Lambers et al. 1991). Root respiration may be 
derived from the CO2 efflux from the soil or the substrate. 
Here, the possible sources of CO2 in the root environment 
need to be considered. Kuzyakov (2006) distinguished five 
main biogenic sources of CO2 efflux from soils: root respi-
ration (1), microbial decomposition of rhizodeposits (2) and 
dead plant remains (3), microbial decomposition of soil or-
ganic matter in root or plant residue affected soil (4) and in 
root-and-plant residue free soil (5). The processes feeding 
the sources (4), (5), and partly also (3) are passing off slowly 
(Kuzyakov 2006) so that their contribution to the total CO2 
efflux from the soil or substrate may be neglected when 
measuring root respiration. In contrast, sources (1), (2) and 
partly (3) contribute significantly to the CO2 efflux rates 
from soils or substrates. Presently only destructive and iso-
topic methods are available to distinguish between root (1) 
and rhizomicrobial (2) respiration (Kuzyakov and Lario-
nova 2006). In any case, a low total CO2 efflux from the 
soil or substrate provides an indicator for oxygen deficiency 
in the root environment. Most often two non-destructive 
methods are applied to measure the CO2 efflux from the soil. 
The classical chamber method, where the CO2 flux is mea-
sured by a gas analyser, yields reliable data (Davidson et al. 
2002). Despite its high purchase, installation and mainte-
nance costs, nowadays eddy covariance techniques to mea-
sure the soil CO2 efflux has been temporarily applied (Bal-
docchi 2003). Tang et al. (2003) proposed the estimation of 
CO2 fluxes based on continuous measurements of the soil 
CO2 profile. Measuring profiles is less expensive than the 
use of chambers. However, difficulties may be expected 
when the soil is waterlogged or flooded. 

In hydroponic systems or containers, the measurement 
of the root respiration is more difficult. The CO2 respired by 
the roots may diffuse out of the substrate in the gaseous 
phase, but also leave the substrate dissolved in the drainage 
solution. The substrate volume captured by the roots repre-

sents a small fraction of the ground area, making the ap-
plication of eddy covariance and substrate profile techniques 
nearly impossible. Despite the problem of the dissolved 
CO2 in the drainage solution, imbedding the substrate in a 
chamber seems to provide a suitable method to measure the 
root respiration rate. This method is non-destructive, but in-
vasive: The environment of the substrate in the chamber 
differs from the “natural” environment in terms of wind 
speed, CO2/O2 concentrations and CO2/O2 gradients at the 
substrate surface. These effects must be evaluated. 

Methane production in submerged soil (Ponnamperuma 
1972; and e.g. Megonigal and Guenther 2008) plays a major 
role in greenhouse gas assessment, but does not provide 
sensitive data for measuring the plant responses in the 
short-term. 

Measuring directly on the plant, the water transport can 
be measured using porometer, and more simple temperature 
of leaves, stem diameter, xylem sap flow, as well as D2O. 
Results would provide valuable data for detecting drought 
stress (Fernandez et al. 2008), while the response due to an-
oxia appears with a time-lag and with similar symptoms re-
sulting in non-helpful signals for adjusting production mea-
sures. 

The oxygen concentration in the plant tissue may also 
be considered as an indicator for anoxia. Recently, tech-
niques based on oxygen-sensitive phosphorescent micro-
beads have been developed to measure absolute intercel-
lular oxygen concentration in plants (Schmälzlin et al. 
2005). Such minimal-invasive techniques were preferably 
used to characterise the metabolic activity depending on in-
ternal oxygen concentration in seeds and potato tubers (van 
Dongen et al. 2004). Likewise soil or substrate oxygen con-
centration, tissue oxygen concentration cannot be expected 
to be homogensously distributed in the roots, which makes 
the establishment of critical values of the oxygen concentra-
tion complex and certainly these values also depend on 
several environmental conditions as well as on the status of 
the plant. 
 
Detecting anoxia from the plant responses 
 
Beside or in addition to soil or substrate attributes the 
plant’s response to anoxia should be evaluated. Anoxia in 
the root environment results in a strong decrease of shoot 
and root growth. Relative stem elongation is probably the 
easiest to measure plant parameter related to growth. Stem 
elongation can be measured simply by using a ruler or more 
sophisticated on-line using linear displacement position 
sensors (Oki and Lieth 2004). Measured stem elongation 
can be related to a standard elongation described for many 
crops as a function of environmental conditions – most 
often of air temperature by means of Arrhenius approach 
(Tijskens and van Kooten 2006). Stem growth decreases 
under oxygen shortage, but such effect can be caused by 
other stress factors including drought and high salinity and 
is therefore not suitable for a specific diagnosis of anoxia in 
submerged soil. Moreover, in some plants, such as rice, in-
creased stem elongation is a mechanism of anoxia tolerance 
under flooding and submergence (Gibbs and Greenway 
2003). 

The same problems appear when leaf area is considered. 
Leaf area can be derived from simple linear non-destructive 
measurements of leaf length or width (Schwarz and Kläring 
2001), or using remote sensing (e.g. Elwadie et al. 2005). 
Measured leaf growth may be related to standard leaf growth 
calculated by a model (Marcelis et al. 1998; Lee and Heu-
velink 2003). Inhibition of leaf growth was often observed 
under oxygen deficiency, but leaf growth is also reduced 
under osmotic stress. The measurement uncertainty of leaf 
area of adult plants is relatively high compared to the leaf 
area increment in the short periods. Remote sensing me-
thods allow to separate leaf growth and stress response, if 
wavelength dependent data are considered. 

Shoot and root mass are affected by oxygen deficiency 
in the root environment. Several methods to measure plant 
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mass non-invasively are available. Balances can be used to 
follow the mass development of plants grown in containers, 
if the mass differences can be reasonably attributed to the 
plant growth. However, evapotranspiration and irrigation 
limit a high temporal resolution of the measurements. In the 
1950s radioisotopes were tested to measure the mass of 
sugar cane canopies by analysis of the absorption of the 
gamma-rays by the plants (Burr et al. 1956). Originally this 
gamma-scanning technique was applied to uniform cano-
pies, such as cereals, but nowadays vegetables can also be 
measured with reasonable accuracy (Gutezeit 2000a). Gute-
zeit (2000b) used this technique for irrigation control. In an 
experimental approach plants were irrigated, when its non-
invasively measured growth rate was significantly lower 
compared to the well-irrigated control. Remote sensing 
based on reflectance and transmittance measurements also 
may be used to estimate the green biomass of a canopy 
(Meron et al. 2000; Hansen and Schjoerring 2003). Ad-
ditionally, laser-scanning techniques were applied in citrus 
for measuring the canopy density (Wei and Salyani 2005; 
Zaman et al. 2006b). Some of this equipment provides very 
accurate measurements of mass increment for short periods 
of one day. However, it must be considered that they cap-
ture all variations in canopy mass due to changes in the 
water status of the plants. When using mass increment mea-
surements for irrigation control, an additional measurement 
is necessary to distinguish between an effect of water deficit 
and water logging. This may be a rough measurement of the 
soil or substrate moisture. 
 
Spectral-optical analyses of leaves 
 
Reflectance readings - Adaptation to oxygen deficiency 
always includes coping with an energy crisis due to the lack 
of the terminal electron acceptor in the respiratory chain as 
well as protecting the cell against the reducing pressure 
(Zude-Sasse et al. 2001; Gibbs and Greenway 2003). The 
latter may cause changes in the xanthophyll cycle resulting 
in variation in the carotenoid composition. Changes in the 
related carotenoids zeaxanthin, violaxanthin, and anthera-
xanthin, were reported earlier as measurable by means of 
reflectance spectra and were recorded in remote-sensing or 
in contact with the leaf under various stress conditions 

(Peñuelas et al. 1995; Gamon et al. 1997), but were hardly 
studied under anoxic conditions. Adapted indices or multi-
variate methods for processing the leaf spectra may provide, 
however, relevant data. For instance, the ratio of reflectance 
intensity at 555 nm and 450 nm changes due to anoxia in 
the root zone of citrus (Fig. 3), maybe pointing to a method 
that detects a plant response which is specific to anoxia. 

Changes in chlorophyll (Carter 1994) and flavanoids are 
detectable by means of reflectance and by fluorescence ana-
lyses and provide data on the plant stress response (Moran 
and Moran 1998; Merzlyak et al. 1999; Hagen et al. 2006). 
Former experiments indicated that these approaches are sui-
table to distinguish between adaptation and irreversible 
damage of plants. A specific response to anoxia can hardly 
be expected. Reflectance measurements based on remote 
sensing may, however, be used to estimate integrated stress 
responses of the canopies (e.g. Peñuelas et al. 1998; 
Roberto et al. 2002). 

As a result, reflectance readings in the visible and up to 
infrared wavelength range, changes in the pigment profiles 
and temperature and emission coefficients can be measured 
(Möller et al. 2007). In shifting the observation level closer 
to the leaf, imaging techniques can be used for measuring 
the stomata aperture, which provides an apparent signal for 
different plant response to environmental and endogenous 
stress (e.g. Dzikiti et al. 2007). However, again it is ques-
tionable whether this signal is specific to anoxia. 

 
Chlorophyll fluorescence - Besides the analysis of ref-

lectance intensity due to absorption and scattering charac-
teristics of the canopy, the re-emission of radiation can be 
considered. Fluorescence is a highly specific phenomenon 
appearing in molecules, which possess electrons that can be 
excited from the ground state (S0) directly or over an inter-
mediate to their excited singlet state (S1*) when absorbing 
radiation and return to the ground state again, while re-
emitting radiation. Chlorophyll shows fluorescence with 
high quantum yield in the red wavelength range. First me-
thodology development began with much more precise 
techniques by measuring time-resolved chlorophyll fluores-
cence with nano second resolution (Brody and Rabinowitch 
1957). In parallel, research was carried out leading to the 
discovery of the Kautsky effect (c.f. Krause and Weis 1991). 
During the last few decades, chlorophyll fluorescence ana-
lysis has become an accepted method in plant physiology, 
using appropriately adapted instruments. 

Chlorophyll fluorescence kinetic analysis (Kautsky and 
Hirsch 1931; Krause and Weis 1991) has been applied in 
several approaches for measuring the activity and capacity 
of photosystem II under various stress conditions (Lichten-
thaler and Rinderle 1988) and is used in applied research in 
the fields of precision agriculture (Lüdeker et al. 1997) as 
well as fruit decay monitoring (Nedbal et al. 2000). Under 
anoxia in the root zone, the ETR and y provide useful para-
meters that can be analysed non-invasively, sometimes lea-
ding to remarkable differences in control and stressed plants 
(Fig. 4). The differences between and within the leaves, 
already before the treatment are, however, also noticeable. 
Spatial distribution of the electron transport rates in leaves 
and the influence of leaf development stage need to be 
taken into account when considering a feasible application 
of the method. 

Instruments for measuring the spatial distribution of the 
chlorophyll fluorescence of plant leaves are available for 
the past since few years from the companies, PSI (Czech 
Republic) and Walz (Germany). Furthermore, recent efforts 
in the field of laser development result in new light sources 
with low weight and robust design (Sumpf 2009). Promi-
sing results can be obtained with new laser light sources 
serving for exciting electrons of molecules under interest, 
e.g. for measuring the fluorescence appearing in the blue-
green in addition to the red wavelength range. 
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Fig. 3 In-situ readings carried out on citrus leaves (Citrus reticulata). 
Leaf diffuse reflectance is presented as the ratio of reflectance intensities 
at 555 nm and 450 nm. Reflectance values were recorded with a handheld 
photodiode array spectrophotometer (PA1101, CP, Germany) equipped 
with LED serving as light source and calibrated with white reference 
(spectralon, Labsphere, USA). The leaf apparent fluorescence signal was 
measured with excitation at 337 nm and emission at 460 nm at a time gate 
of 6-8 ns applying a fluorimeter equipped with glass fibre (LF401, I.O.M., 
Germany). Data are expressed as normalized values between 0 and 1. Bars 
represent SE. 

143



Tree and Forestry Science and Biotechnology 3 (Special Issue 1), 139-151 ©2009 Global Science Books 

 

Blue-green fluorescence - Fluorescent compounds fluo-
rescing in the blue-green wavelength range were rarely in-
vestigated. However, the technique of laser-induced fluo-
rescence spectroscopy (LIFS) might provide an additional 
non-invasive tool to address plant compounds. Lichtentha-
ler (Buschmann and Lichtenthaler 1998) and co-workers 
used a fluorescence imaging system equipped with laser 
light sources to obtain non-invasively images of leaves to 
detect changes in the blue-green fluorescence. The apparent 
fluorescence intensities are the combination of the fluores-
cence of a variety of native fluorescent and quenching com-
pounds in the plant. Such molecules are, e.g., chlorophyll a 
and b, and chlorophyll precursors, riboflavin, pyridine nuc-
leotides (NADH and NADPH), ferulic acid derivatives and 
others (c.f. Buschmann and Lichtenthaler 1998; Lakowicz 
2006). In extracts, it is possible to perform quantitative 
fluorimetry according to the following equation: 

 
 
 

where IF is the apparent fluorescence intensity, k is a geo-
metric instrumental factor, � is the quantum yield (photons 
emitted/photons absorbed), I0 is the intensity of the excita-
tion source, epsilon is the wavelength-dependent molar ab-
sorption coefficient, l is the path length and c is the analyte 
concentration. However, the pH-value of the extract deter-
mines the redox status of the molecule and strongly influen-
ces the energy level of the relevant electron. The interaction 
of the dipole momentum of the molecule under question 
with the dipole moment of the solvent or the tissue matrix, 
when measuring an intact plant organ, including all possible 
interactions as direct response on the solvent molecule and 
solute molecule, appearance of dipole moment changes due 
to interaction of solution and solute molecule, as well as 
static quenching and reabsorption effects, make such ap-
proach difficult. 

That such effects severely affect the fluorescence inter-
pretation in-situ is obvious, but sometimes such uncertainty 
appears partly as an advantage: This is the case for NAD(P), 
where the oxidized NAD(P)+ shows no fluorescence, while 
the reduced form NAD(P)H fluoresces due to appearing sta-
ble electron delocalization at the nicotinamide ring. For 
example, a nitrogen laser emitting at 337 nm can be applied 
(LF401, I.O.M., Germany) for exciting NAD(P)H (pH = 
8.4) resulting in fluorescence at characteristic band passes. 

The molecule conformation and charge of pyridine 
nucleotides were already measured in isolated mitochondria 
by the molecular fluorescence intensity (Brody and Rabino-
witch 1957; Siffel et al. 1991) and fluorescence relaxation 
time (Ladokhin and Brand 1995; Paul and Schneckenburger 
1996). Studies on the influence of anoxia on the redox 
charge of NAD(P) by means of fluorescence are promising, 
but still rare. 

When directly measuring on the plant tissue, a broad 
peak is visible in the blue-green range due to mainly the 
polyphenol fluorescence. The difference of the spectral pro-
files might be used for calibrating on the NAD(P)H. Resul-
ting wet-chemically methods might be partially replaced by 
non-destructive in-situ measurements. Recently, technical 
solutions became available for measuring NAD(P)H in in-
tact animal tissue (e.g. Pogue et al. 2001). The achievement 
of such application in plant organs appear more difficult 
due to phenolic compounds masking the NAD(P)H fluores-
cence. Time-resolved laser-induced fluorescence might 
solve such problems by providing additional information on 
molecules` fluorescence relaxation time. 

Fluorescence relaxation is altered due to the influence 
of different environmental conditions and is therefore in-
situ subject to changes. Such information may enable, how-
ever, the discrimination of NAD(P) fluorescence (0.4 ns in 
methanol at pH = 8.2) from chlorophyll a fluorescence (5.9 
ns in methanol) and the overall polyphenols’ fluorescence. 
Preliminary results achieved when investigating reduced 
oxygen partial pressure in the root zone of rooted citrus cut-
tings support such a suggestion (Fig. 3). 

Furthermore, protein marker genes emitting green fluo-
rescence might lead beyond the border of molecular sensing 
to gene expression analyses during the processes (Chong et 
al. 2007), such as targeted by means of real-time PCR. 
However, such approaches require the implementation of 
indicator plants set in the orchard. 
 
Advantages and bottlenecks of non-invasive 
measurements 
 
Non-invasive measurements (Table 1) carried out tempora-
rily during the entire production period may indicate in due 
time harmful oxygen concentrations in the root environment 
or plant tissue and enable the farmer to take action to avoid 
growth and yield reductions. Some of these measurements 
are easily to perform in a plant canopy, others require a la-
boratory and are therefore not suitable for practical use. 
Only few methods were evaluated to detect anoxia. In any 
sensor-based method two main questions need to be solved 
before practical application: 

1. Most stress factors such as anoxia, salinity or 
drought stress result in similar plant responses, which make 
it difficult to derive the necessary measure. Dual measure-
ments of the soil properties, which indicate the most likely 
stress factor and the plant parameter, which estimates the 
stress level, may overcome these difficulties. 

2. All available studies compare the response of an-
oxia treated plants to that of standard plants well supplied 
with oxygen. The signal of the standard, however, is speci-
fic to the genome, and depends on many factors, such as 
age and position of the leaf. Providing a threshold is the 
most difficult to obtain task for practical applications. 

Besides the problems related to sensors, plants of the 
same species and cultivars, which adapt to oxygen defici-
ency in the root environment and survive, respond dif-
ferently compared to those which die. Processes, such as 
photosynthesis and chlorophyll fluorescence kinetic of the 
leaves of adapted plants, may not be negatively affected, 
although overall growth is significantly reduced. Adaptation 
to anoxia is, however, accompanied by changes in the meta-
bolism (Gibbs and Greenway 2003), resulting in different 
leaf content of chlorophyll, carotenoids or polyphenols. 
These pigment contents may be evaluated by means of 
spectral absorption coefficients, which favor this method 
with regard to the detection of an anoxia specific plant res-
ponse. 
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Fig. 4 Electron transport rate (ETR [μmol m-2 s-1]) measured with a 
pulse-modulated imaging system for analysing the chlorophyll fluo-
rescence kinetic (FluorCam FC 800-O/1010, PSI, Brno, Czech Repub-
lic). Presented in normalized false colour coding [0-100%] of four leaves 
before (A) and after 36 hours anoxia (B) in the root zone of citrus root-
stock Citrus volkameriana in a greenhouse. The maximum ETR was de-
rived at the inflection point of regression curve of light saturation curves 
measured after dark adaptation with increasing photon flux density (max. 
600 ± 30 �mol·m–2·s–1). 
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PRECISION HORTICULTURE APPROACHES FOR 
THE ASSESSMENT OF THE QUALITY OF CITRUS 
FRUIT 
 
Quality of citrus fruit 
 
If the cultivar and rootstock combination is planted, the pot-
ential fruit quality is set (Fallahi and Rodney 1992; Castle 
1995; Barry et al. 2004a, 2004b). However, in the produc-
tion, endogenous plant factors, production measures, the 
microclimate, and soil conditions have a major effect on the 
fruit quality. Young and vigorous trees often provide an un-
predictable variation of fruit quality due to unbalanced phy-
tohormone levels. In mature trees, the variation of fruit qua-
lity within the canopy becomes more predictable. The car-
bohydrate production in the photosynthetic active leaf area 
and allocation appears in relatively short-distances. Also, 
suitable pruning measures balance the vegetative and gene-
rative growths and corresponding phytohormone levels. 
Sun-exposed sectors of the canopy with high photosynthetic 
active photon flux density produce fruits with enhanced 
sugar contents in comparison with fruits grown in shaded 
inner sectors of the canopy. However, it might be interesting 
to check such distribution in certain plant development sta-
ges as well as after pruning measures, for obtaining an ob-
jective decision basis regarding the number and protocol of 
selective harvestings. 

Additionally to the endogeneous factors and the produc-
tion measures, the microclimate and soil conditions influ-
ence the fruit development and resulting fruit quality. Varia-
tion in the fruit maturity stage between the canopies is in-
fluenced by temperature and moisture, both affected by dis-
turbances of the boundary layers due to air movement trig-
gered by wind velocity and air pressure gradients, as well as 

radiation density. Soil type and texture provide the substrate 
for the supply of minerals, water, and oxygen. The site-spe-
cific monitoring of the plant response to the different fac-
tors and resulting effects on the fruit quality is presently 
taken into account on a subjective basis, if the grower 
knows his/her orchard and the variation appearing. The 
major reason for this uncertain approach is the lack of fea-
sible methods for analysing variations in crop quality in the 
orchard (Fig. 1). 

The current destructive methods to detect citrus fruit 
quality recognize the parameters: soluble solids content 
(SSC), acidity, and juiciness. In the production, the fruit 
maturity on trees is most often evaluated with respect to the 
SSC. For the measurement a fruit juice drop is subjected to 
a refractometrical analysis. The refractometer measures the 
total reflection at the boundary layer between glass, serving 
as the carrier for the juice drop, and the fruit juice. The re-
fractive index (Snellian law) obtained is calibrated on pure 
sucrose concentration. The apparent SSC [%Brix] is mainly 
influenced by carbohydrates, organic acids, carotenoids, 
and free amino acids. A better impression of the fruit taste is 
provided by the ratio of SSC to acidity (c.f. Nagy 1996). 
However, the SSC is a feasible parameter for determining 
the optimum harvest date. 

During citrus fruit development, the SSC increases until 
a steady-state is reached. At this point fruits should be har-
vested to avoid possible crop damage due to unfavourable 
weather conditions, like high precipitation rate, frost, and 
high radiation. A major disadvantage of the method results 
from the destructiveness of the measurement, since random 
spot readings are not suitable for fruit monitoring, and in 
practise only a low amount of fruits will be analysed. The 
high heterogeneity of the fruit quality within the canopy 
often demands selective harvesting. But do we know enough 

Table 1 Examples of non-invasive measurements on substrates and plants to detect and evaluate oxygen deficiency in the root environment (extract from 
the literature cited in this section). 
Plant or substrate 
characteristic 

Non-invasive measurement 
devise 

Characterised attribute 
or process 

Advantages Bottlenecks 

Oxygen in the root zone Galvanic, polarographic, optic, 
or paramagnetic 

Substrate oxygen 
concentration 

Indicates anoxia as stress 
factor 

No information on the stress level in 
the plant 

Oxygen in the plant 
tissue 

Optical detection of 
microbeads 

Tissue oxygen 
concentration 

Indicates anoxia as stress 
factor 

Large variation in the tissue, critical 
values unknown 

Soil moisture Tensiometer, time domain 
reflectometry 

Soil water content Distinguishes between water 
surplus and deficit 

No information on the stress level in 
the plant 

Substrate O2/CO2 
exchange 

Open chambers using infrared 
gas analyzer, eddy covariance 
technique 

Root respiration Indicates limitation in root 
respiration 

Does not distinguish between the 
sinks/sources of O2/CO2 -plant roots 
or microorganisms 

Stem length, leaf area, 
root length 

Ruler, linear displacement 
position sensor, remote 
sensing, rhizotrons, X-ray 
computed tomography 

Stem leaf and root growth Partly very simple methods Slow and unspecific plant response, 
root growth very difficult to obtain in 
a canopy 

Mass Balances, gamma-scanning, 
X-ray scanning, laser-scanner, 
impedance spectroscopy, 
RAdio Detection And Ranging 

Growth, water content, 
transpiration, shoot/root 
ratio 

Accurate measurement of 
above ground plant mass of a 
larger canopy possible 

Slow and unspecific plant response, 
requires very sophisticated equip-
ment, root mass very difficult to 
measure 

Leaf gas exchange Open or closed chambers 
using infrared gas analyzer or 
photochemical sensor 

Photosynthesis, 
transpiration, stomata 
conductance 

Standard method, provides 
many information related to 
anoxia 

Depends on leaf position on plant, 
leaf age and adaptation to various 
environmental conditions, unspecific 
plant response, anoxia adapted plants 
may not respond 

Chlorophyll 
fluorescence kinetic 

PAM, imaging Efficiency of 
photosystem II, light 
saturation 

Rapid standard method Difficult to find a robust indicative 
parameter, anoxia adapted plants may 
not respond 

NADP fluorescence Laser-induced, time-resolved 
fluorimeter 

Reduced NAD(P)H Rapid Unknown uncertainties due to 
variation within and between plants

Spectral remittance of 
leaves 

Spectrophotometer, photo 
diodes 

Chlorophyll, carotenoids, 
polyphenols contents 

Rapid with the potential to 
distinguish among plant 
responses to different stress 
factors 

Unknown uncertainties due to 
variation within plants and with 
environmental conditions 

Canopy reflectance Scanning spectrophotometer, 
photo diodes, thermography, 
hyperspectral cameras 

Chlorophyll, carotenoids, 
polyphenols per area, 
transpiration per area 

Potential of on-line 
measurements on a larger 
canopy 

Expensive, specific software to be 
developed, error-prone with changing 
environmental (light) conditions 
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on the different cultivars to determine the efficient number 
of harvests? Furthermore, can we expect a significant vari-
ance in fruit quality in different sites of the orchard? More 
importantly, where should the harvest manager will send the 
harvest team in the first place? It seems that we presently 
rather often guess, while loosing money either due to ex-
pensive harvests or by means of down grading of the crop 
due to high heterogeneity. With new methods such ques-
tions might be approached by means of non-destructive 
fruit monitoring based on near infrared spectroscopy 
(NIRS). 
 
The application of near infrared spectroscopy for 
crop monitoring on the tree 
 
Monitoring the crop of the trees is essential to support the 
decision-making in production and harvesting processes 
(Sanders 2005; Caixeta 2006). The prediction of the crop 
yield (Iwaya et al. 2005; Ye et al. 2008), possible damages 
(Zaman et al. 2006a) or quality of the crop have been ap-
proached by means of different techniques, such as colour 
vision systems (Annamalai et al. 2004), hyperspectral ca-
meras, laser-scanning technique (Wei and Salyani 2005) 
and ultra-sonic readings (Schuhmann and Zaman 2005; 
Zaman et al. 2006a), spectroscopic analyses in the visible 
and near infrared (NIR) wavelength range (McGlone et al. 
2003). Depending on the observation level, correlation of 
measured parameters are applied, such as canopy density 
analysed with remote spectral analyses, and can be used for 
yield estimation (Iwaya et al. 2005; Ye et al. 2006, 2007, 
2008). Shifting the observation level closer to the fruit, – 
while increasing the percentage of the signal that is directly 
altered by the molecule under question – particularly visible 
and NIR spectroscopy is suitable to obtain data on the inter-
nal fruit properties. In the visible wavelength range, caro-
tenoids (Zude et al. 2007) and nutritional valuable flava-
noids (Tripoli et al. 2007; Wulf et al. 2008) might be detec-
ted in the future. Main research in the NIR wavelength 
range for monitoring crop quality has been conducted for 
two decades, and results point to feasible applications in the 
process management of citrus. 

In agriculture NIRS has been applied to remote sensing 
for gathering information on the vegetation and soil proper-
ties (Knipling 1970). Non-destructive analysis of agro-food 
products has been studied since the sixties. Practical use 
was made since approximately 1980, when alcohols, sugars, 
proteins, fatty acids contents as well as structural changes in 
the conformation of starch, water cluster and protein were 
addressed. Presently, the NIRS is intensively used for deter-
mining the cereal quality with respect to protein, carbohyd-
rate and water content. The market price of grained cereals 
is based on this method, which is supported by an autho-
rized data bank system for calibration and secure data 
saving purpose. 

Molecular overtones can be identified as absorption 
bands in the remittance and transmittance spectrum in the 
NIR wavelength range captured by fast diode array sensors. 
In contrast to the characteristic absorption peaks of pig-
ments in visible spectroscopy caused by excitation of elec-
trons, near infrared spectra of molecules’ vibrational over-
tones show low intensity and broad bands due to overlap-
ping vibrational modes. An assignment of peaks to indivi-
dual molecule vibrations is normally not possible for calib-
rating on the soluble solids content or specific sugar con-
tents. Due to the high water content of fresh fruit the ab-
sorption by functional groups such as –OH may result from 
water as well as carbohydrates. As result, it cannot be ex-
pected that robust calibrations working on various cultivars 
will be gained in the future (Sanchez et al. 2003; Golic and 
Walsh 2006; Nicolai et al. 2007), but even data with high 
measuring uncertainty might support decisions in the horti-
cultural practise. 

Since 1970, enhanced research emphasis has been car-
ried out on developing wavelength-based or whole-spectra 
analytical methods for non-destructive determination of 

SSC, sugars and acids. The specific fingerprint of mole-
cules are figured out qualitatively by developing a mean 
spectrum with adjusted confidence interval, which repre-
sents the sample’s typical absorbance properties appearing 
in the NIR wavelength range. Most often linear methods are 
applied for quantitative analyses. A calibration data set is 
gathered that serves as the calibration matrix referenced by 
the related matrix representing the true values. The charac-
teristic matrix of weighing factors is calculated using dif-
ferent decomposition methods to achieve smaller data sets, 
while the error limits the accuracy of the calibration model. 
For instance, the sugar content of unknown fruits can be 
predicted by means of the fruit spectra. Taking into account 
an extended spectral range in the data processing, e.g. up to 
1700 nm, will normally improve the predictive capability of 
the model, since the molecules’ fingerprint can be addressed 
by more variables responding characteristically due to ad-
ditional molecules’ vibrational overtones of lower orders 
captured in this wavelength range. 

A detailed review of NIR physics for agricultural and 
food products was presented by Birth and Hecht (1987). 
Using the near infrared wavelength range up to 1700 nm, 
the SSC can be determined in intact produce (e.g. apple, ba-
nana, forages, kiwifruit, mango, melons, peach and potato) 
with r² � 0.93 and standard error of calibration (SEC) < 
0.5 %Brix. However, when using only the reduced range 
from 800 to 1100 nm sufficient results can still be expected 
(Chen and Nattuvetty 1980; Bellon et al. 1993; Slaughter 
1995). 

Product monitoring using non-destructive NIRS might 
be particularly useful in citrus, since such readings can pro-
vide objective data on the fruit quality and maturity stage, 
regarding the fruit SSC [%Brix]. Miyamoto and Kitano 
(1995), as well as Kawano (1994), published early ap-
proaches in SSC prediction of citrus fruit using NIRS and 
PLS (partial least squares) regression analysis for calibration. 
Many research groups adapted the methods to citrus and 
added aspects on the histological aspects in citrus (Fraser et 
al. 2003; McGlone et al. 2003). 

Different research groups (mainly in Japan, New Zea-
land and the United States have started to investigate the 
potential of spectral-optical methods for determining the 
maturity and quality of fruit (Olsen et al. 1969; Iwamoto et 
al. 1995). Satisfactory accuracy in practice was achieved by 
using the recently developed photodiode array spectropho-
tometers (400–1100 nm), which are fast, robust, shock- and 
dust resistant and available at a reasonable price. Since 
2000, new sorting lines are commercially available, which 
appear as an innovative milestone in marketing of produce 
additionally to the established machine vision systems for 
citrus grading (e.g. Miller and Drouillard 2001; Aleixos et 
al. 2002). Commercial sorting lines are presently manufac-
tured by companies world-wide (e.g. http://www.aweta.nl; 
http://www.greefa.nl; www.sacmi.it), working on the basis 
of spectral analysis in the visible and in the near-infrared 
wavelength range. Food preference is based on a complex 
system, involving cultural and sociological factors deter-
mining the product parameter valorized in the market. The 
weighing technique described is intended to complete the 
add-value processes by means of addressing the specific 
markets with optimum fruit quality properties. For example, 
in Japan or at citrus production sites producing for the Japa-
nese market, the return-on-invest regarding such sorting 
lines can be reached after 2 or 3 years. Approximately 6 
fruits per second can be graded on the fruit SSC with such 
technique. Further weighing parameters are under develop-
ment. For example, the detection of internal tissue brow-
ning or even fruit acidity and particular sugar contents will 
be addressed in the future. However, such precise prediction 
is only possible, when an extended wavelength range up to 
1700 nm is utilized (McGlone et al. 2003; Zude et al. 2007). 

While sorting lines equipped with NIR sensor are com-
mercially available nowadays, devices for measuring di-
rectly on the tree are still under development. Experiments 
with grapefruit were undertaken to evaluate the method 
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using inline and hand-held NIR units with the fruit subse-
quently juiced to obtain a reference based on refractive 
index measurement of the fruit SSC. Testing prototypes of 
the devices, a linear regression showed highest coefficient 
of determination, r2 = 0.67, in grapefruit at adjusted tempe-
ratures (Miller and Zude 2004). However, the temperature 
influence (Kawano 1994; Wülfert et al. 1998; Sanchez et al. 
2003; Golic and Walsh 2006) and varying lightening condi-
tions in the outdoor readings and working on specific wave-
lengths can increase the measuring uncertainty of the non-
destructive analysis, if not taken into account in the calibra-
tion (Roger and Bellon-Maurel 2000; Sanchez et al. 2003; 
Golic and Walsh 2006; Nicolai et al. 2007; Zude et al. 
2008a). Also, further logistic attempts to calibrate on the na-
tive fruit compound under question are under development 
(Fukhansky et al. 1993; Vogelmann 1993; Tsuchikawa and 
Hamada 2004; Zude et al. 2008b; Torricelli 2009). 

Applications of non-destructive methods in the fruit 
production have been shown that the monitoring of indivi-
dual fruit during its development on tree can lead to data 
which are easier to interpret since they do not represent the 
stochastic variability of heterogeneous fruit samples (He-
rold et al. 2005). Repeated from earlier readings (Zude et al. 
2008a) non-destructive fruit monitoring was carried out 
weekly (n = 7) in season 2007/2008 with 6300 fruit rea-
dings for monitoring the development and spatial distribu-
tion of fruit SSC. On the first measuring date, the SSC 
ranged from >8 to <15 %Brix with mean 11.8 %Brix was 
found, while on the last date, the highest frequency of fruits 
with average 16.4 %Brix appeared (Fig. 5). Objective data 
on the fruit development in the orchard may help to sche-
dule measures. 

The single fruit shows three directional gradients in 
soluble solids content (Peiris et al. 1999), which diminishes 
gradually after harvest. More important for the harvest man-
agement, variation appears also between fruits within the 
canopy. Fruits from the inner sections of the canopy deve-
lop differently from fruit grown in exposed positions (Ken-
der and Hartmond 1999). Most often, the fruit SSC in-
creased from inner parts to exposed parts of the growing 
location in the canopy (Table 2). The variance within the 
canopy was reduced in trees planted in low distances (0.5 m 
× 2.0 m) with pruning measures for obtaining small trees 
compared to high density canopies planted with high plan-
ting distance (2.0 m × 4.5 m) in the field. Such data can 
help to decide on the planting system and pruning strategy, 
as well as provide objective information on the number of 
selective harvestings necessary in the production site. 

An economic assessment of new smaller tree sizes with 
appropriate pruning (Lee and Rosa 2006) would be required 
to evaluate the benefit of small tree size on the number of 

necessary selected harvestings (Sanders 2005), taking into 
account the drawbacks of high investment costs. 

The fruit SSC is influenced by the genome as well as by 
the environmental factors. In recent approaches (Hutton et 
al. 2007), the effect of temporal water supply on the fruit 
quality was studied. The spatially and temporal resolved 
variance of fruit quality can be approached again by means 
of non-destructive fruit monitoring. In viticulture, site-spe-
cific data recording already has a longer history (Johnson et 
al. 2001; Hall et al. 2003; Lamb et al. 2004; Bramley and 
Hamilton 2007; dos Santos et al. 2007; Reynolds et al. 
2007). A citrus production site with low planting distance 
and pruning measures for small and loose, spindle-like ca-
nopies compared to a traditional planting system providing 
higher plant distances and high density, bigger canopies, the 
standard deviation of fruits from inner canopy and exposed 
sections in the canopy was randomly distributed in the sites. 
The standard deviation was generally higher in the tradi-
tional system with dense canopies (Fig. 6). Such findings 
point to the potential value of monitoring fruits by means of 
in-situ analysis regarding the spatio-temporal variability in 
the fruit maturity stage in the production. By means of the 
data, the site-specific harvest measures can be optimized 
with respect to heterogeneity of the crop and efficient 
labour usage. Performing spatially-resolved, cost-effective 
production measures (Sevier and Lee 2004; Bullock and 
Lowenberg-de Boer 2007; Reidsma et al. 2007) are gaining 
more support by the development of autonomous vehicles 
(e.g. Subramanian et al. 2006). 
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Fig. 5 Histogram of the quality change of citrus fruits (Citrus reticu-
lata var. N59) grown in season 2007/2008, CA, U.S.A. Non-invasive 
spectroscopic readings started in January 2008 and were carried out until 
the fruits were harvested measuring 1 fruit visually representative per tree 
(ntotal = 6300) in a commercial orchard. 

Table 2 Mean and standard deviation (SD) of Citrus reticulata var. 'N59' 
fruit (n=600) grown in 2 locations, distinguished between the fruit 
growing position in the canopy by means of a handheld spectrophoto-
meter unit as described in Zude et al. (2008). Three fruits per tree were 
measured in a commercial citrus production site in California, USA. 
Dense canopy refers to intensive, but conventional farming practise, 
while low-density canopy refers to a production system with canopies 
pruned similar to the spindle concept applied, e.g., in apple production. 
 exposed middle inner part Total SD
Dense canopy, bushy tree form, planting distance 2.0 m • 4.5 m 1.05 
mean 11.32 11.15 10.51  
SD 0.94 0.94 1.09  
Low-density canopy, spindle-like tree form, planting distance 
0.5 m • 2.0 m 

0.93 

mean 11.14 10.86 10.35  
SD 0.93 0.83 0.87  
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Fig. 6 Spatially resolved standard deviation (grey levels representing 
the range from 0.4 to 1.4) of soluble solids content (SSC) of fruits (Cit-
rus reticulata var. N59) grown in inner, middle, and exposed sections 
of big and dense canopy (A) and small, spindle-like canopy (B). Mea-
surements (n = 600) were carried out in January 2008 within one day and 
plotted based on geodetic data (WGS84-format). 
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CONCLUDING REMARKS 
 
In-situ analyses for monitoring the physiological plant res-
ponse may become an important tool to deal with necessary 
changes in crop production in the future. Beside fine-tuning 
the processes based on the physiological plant response and 
making the processes more efficient, present research regar-
ding to the impact of climate change shows a new applica-
tion field of in-situ analyses. Data on the crop are presently 
hardly available with respect to spatial and temporal chan-
ges of the crop development. 
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