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ABSTRACT 
Molecular tools have facilitated the discovery and study of genes associated with natural defense pathways in a number of model systems. 
In our laboratories, citrus homologues of key genes have been identified (for instance, NPR1 and PR1) using comparative analysis and 
their expression characterized. In addition, differential gene expression during infection with citrus canker has been examined. Both 
approaches have facilitated the study of defense responses in citrus. The improved understanding of these natural defense pathways in 
model species has allowed plant-derived genes to be used to induce disease resistance. These recent discoveries as well as strategies for 
their practical application in citrus breeding are discussed in this review. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
Developing disease resistance is an important component of 
any plant breeding program. Citrus is no exception. It is af-
fected by a variety of pathogens: viroids, viruses, bacteria, 
fungi and nematodes. Some of these diseases are very des-
tructive and have had great economic impact in diverse re-
gions of the world; examples include tristeza decline 
(caused by Citrus tristeza virus, CTV), canker (caused by 
Xanthomonas axonopodis pv. citri), and Huanglongbing or 
greening (caused by Candidatus Liberibacter spp.) (Timmer 
et al. 2000). Genetic resistance is an ideal approach to con-

trolling diseases because it is cost effective and can be long-
lasting. However, with citrus this is not always possible 
using traditional breeding techniques due to long reproduc-
tive periods, incompatibility, apomixis and/or the absence 
of resistance genes to many of these important diseases. A 
viable alternative to conventional breeding in citrus is the 
use of genetic engineering. However, consumers and produ-
cers have shown some reluctance to embrace this techno-
logy in food products due to real or perceived fears. One 
strategy that can help ease those fears is to enhance the na-
tural mechanisms of defense already present in the plant by 
using genes or other components derived from the same or 
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other plant species. But, whether we use traditional breed-
ing or biotechnology we need to have an understanding of 
the natural defense mechanisms in citrus. Ideally we could 
modify these defenses to achieve wide-spectrum disease re-
sistance. In other words, with the manipulation of one or a 
few genes we could generate plants that exhibit resistance 
to several of the important diseases that citrus production 
faces. 

Over the past few years the understanding of plant de-
fense mechanisms has advanced, mostly in model systems 
such as Arabidopsis thaliana, rice and tobacco. Sequencing 
of the complete genomes of some of these and other plant 
species has also facilitated this work. In addition, there have 
been several efforts in our labs and others around the world 
to generate Citrus ESTs (expressed sequence tags) that are 
publicly available in GenBank and other databases (Talon 
and Gmitter 2008). Using these tools we have identified 
specific genes associated with the response of citrus to can-
ker and also other genes associated with the general defense 
response. In this review we will describe these advances 
and how they can be used to better control some of the most 
important diseases of citrus. 
 
PLANT DEFENSE PATHWAYS 
 
Plants possess several levels of defense against potential pa-
thogens. One level consists of preformed barriers such as 
wax, cell walls, secondary metabolites and antimicrobial 
enzymes. Another level corresponds to an active response 
following the recognition of the pathogen (Thordal-Chris-
tensen 2003; Jones and Takemoto 2004). Two kinds of ac-
tive responses have been identified in plants. The first one 
is often referred to as basal defense and it is activated by 
broadly conserved and slowly evolving structural molecules 

from the pathogen, such as cell wall components, chitin frag-
ments, flagellins, and lipopolysacharides that are referred to 
as “general elicitors” or “pathogen-associated molecular 
patterns” (PAMPs) (Thordal-Christensen 2003; Nurnberger 
and Lipka 2005; Jones and Dangl 2006; Ryan et al. 2007). 
Some pathogens have evolved mechanisms to derail basal 
defense and deploy “effectors” that are used to promote 
virulence. To counteract this attack, resistant plants have 
evolved more specific detection systems to recognize patho-
gen effectors using a complex array of constitutively ex-
pressed R (for resistance) genes (Martin et al. 2003; Rathjen 
and Moffett 2003; Jones and Dangl 2006). The effectors or 
virulence genes expressed by the pathogen are referred to as 
avirulence (Avr) genes when specifically recognized by a 
corresponding R gene and this mechanism of defense is also 
known as gene-for-gene resistance. 

The R-mediated defense is similar to basal defense and 
depends on some of the same genes, but it occurs more 
quickly and with larger effects (Jones and Dangl 2006; 
Tsuda et al. 2008). It is often associated with a hypersensi-
tive response (HR), an area of cell necrosis at the site of in-
vasion that normally stops pathogen invasion and is linked 
to systemic acquired resistance (SAR) (Fig. 1). Cell death, 
however is not necessary to activate SAR (Glocova et al. 
2005; Mishina and Zeier 2007). Seven distinct classes of R 
proteins that mediate resistance against different pathogen 
taxa have been identified (Lahaye 2002; Tameling and Tak-
ken 2008). The majority of the known R genes encode puta-
tively cytoplasmic proteins with a nucleotide binding site 
(NBS) and a carboxy-terminal leucine-rich repeat (LRR) 
domain (Lahaye 2002). NBS-LRR proteins are further divi-
ded into two subclasses depending on whether the N-termi-
nal domain is a Toll/interleukin-1-receptor (TIR) or a coiled 
coil (CC) motif. Based on the genomic sequences available, 

Fig. 1 Overview of the systemic signaling in R-mediated disease resistance that leads to systemic acquired resistance (SAR). Some of the genes that 
are known to be required for pathogen-induced SA accumulation and full resistance are shown. Solid arrows indicate positive effect, dashed arrows 
indicate partial requirement and lines with a bar indicate inhibitory effect. Some genes (within the bracket) are also implicated in basal defense, the 
hypersensitive response (HR) and production of reactive oxygen species (ROS). Small RNA-mediated regulatory pathways are shown in blue. A question 
mark indicates that the exact target of the regulatory pathway is not known (RAP and PPRL proteins), that other genes may also be implicated in the same 
regulatory pathway (RAP) or that the effect may sometimes be positive instead of negative (NPR3, NPR4). See text for details. 
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the number of NBS-LRR encoded in the genome of plants 
is relatively large and varies widely between species: 50 in 
papaya, 150 in Arabidopsis, 350 in grape, 400 in poplar and 
600 in rice (Meyers et al. 2003; Zhou et al. 2004; Tuskan et 
al. 2006; Velasco et al. 2007; Ming et al. 2008). 

After pathogen recognition by the R proteins, several 
metabolic changes occur that ultimately lead to the activa-
tion of the defense response and resistance: ion fluxes 
across the plasma membrane, a burst of oxygen metabolism 
that produces reactive oxygen intermediates (ROIs), protein 
kinase activation, transcriptional reprogramming with the 
activation of defense gene expression and in some cases HR 
(McDowell and Dangl 2000; Bent and Mackey 2007). How 
exactly R proteins relay the pathogen signal and activate de-
fense is not known. However, a picture is emerging in which 
R proteins, once activated, interact in the nucleus with 
transcriptional regulators, such as WRKY proteins to start 
reprogramming (Bent and Mackey 2007; Tameling and Tak-
ken 2008). Subsequently, plants show elevated accumula-
tion of salicylic acid (SA) and induced expression of patho-
genesis-related (PR) genes (Fig. 1). One or more molecular 
signals are then transported through the plant from the point 
of attack and confer SAR, which renders distant parts of the 
plant more resistant to the invader and to infection by a 
broad range of other pathogens. It has been proposed re-
cently that methyl salicylate (MeSA) acts as the mobile sys-
temic signal but needs to be converted into SA in the target 
systemic tissue to become biologically active and trigger 
SAR (Park et al. 2007). In addition, plants possess SA-inde-
pendent defense pathways. Jasmonic acid and ethylene func-
tion as signaling molecules in what is believed to be a sig-
nal transduction network that acts independently but coor-
dinately with the SA defense pathway (Pieterse and van 
Loon 1999). 

Several genes required for proper R gene function and 
induction of the SA pathway have been identified (Fig. 1). 
EDS1, PAD4 and SAG101 encode lipase-like proteins that 
interact with each other and mediate the downstream sig-
naling of TIR- but not CC-type R protein receptors (Wier-
mer et al. 2005). In contrast, NDR1, a membrane-associated 
protein, is required to trigger resistance by many CC R pro-
teins, but not by TIR proteins (Aarts et al. 1998). The cha-
peron protein HSP90 and its interacting cochaperons, 
RAR1 and SGT1, are also required for the accumulation, 
stabilization and function in modulating disease resistance 
of many R proteins (Takahashi et al. 2003; Liu et al. 2004; 
Boter et al. 2007). On the other hand, EDR1, a MAPK ki-
nase kinase, functions as a negative regulator of the SA de-
fense pathway (Frye et al. 2001). These proteins are highly 
conserved in sequence and function between different 
species (Kim et al. 2003; Zhang et al. 2004; Pajerowska et 
al. 2005; Tuskan et al. 2006; Bhaskar et al. 2008; Wang et 
al. 2008), indicating that this defense pathway is conserved 
among plants. In addition, these proteins are also part of the 
basal defense pathway (Wiermer et al. 2005; Ham et al. 
2007; Zhou et al. 2008). 

The proteins described above lead to the induction of 
SA production. There are two pathways associated with the 
biosynthesis of SA in plants. One is the phenylpropanoid 
pathway that involves phenylalanine ammonia lyase (PAL) 
as the first enzyme (Lee et al. 1995). The second uses cho-
rismate to synthesize SA. Evidence suggests that the second 
pathway is the most important source of SA during SAR 
(Fig. 1). In Arabidopsis, expression of SID2, which encodes 
an isochorismate synthase (ICS, the first enzyme in the cho-
rismate pathway) is localized to the chloroplast and is acti-
vated by pathogen infection (Wildermuth et al. 2001). 
Plants with a mutant sid2 fail to accumulate SA after patho-
gen inoculation and are more susceptible to both virulent 
and avirulent pathogens (Nawrath and Metraux 1999). A 
second gene associated with the SA pathway is EDS5, 
which encodes a protein with sequence similarity to the 
multidrug and toxin extrusion (MATE) family of transporter 
proteins (Nawrath et al. 2002). This protein may be in-
volved in moving phenolic compounds that are precursors 

of SA biosynthesis into and out of the chloroplast. EDS5 
expression increases early after pathogen infection or SA 
application, suggesting its involvement in a positive feed-
back loop. Furthermore, eds5 mutant Arabidopsis plants fail 
to accumulate SA, establish SAR and are more susceptible 
to pathogens (Nawrath et al. 2002). 

Downstream of SA the NPR1 gene is central in trans-
mitting the SA signal and activation of SAR (Cao et al. 
1997) (Fig. 1). In uninduced, healthy cells, NPR1 exists as 
an oligomer formed by intermolecular disulfide bonds. 
After the initial oxidative burst following R-mediated pa-
thogen recognition and the subsequent accumulation of 
antioxidants, the cell becomes a more reductive environ-
ment and NPR1 is converted to a monomeric state (Mou et 
al. 2003). In this reduced state NPR1 is translocated to the 
nucleus where it interacts with members of the basic leucine 
zipper (bZIP) family of transcription factors (TGA factors) 
to induce the activity of PR genes (Kinkema et al. 2000; 
Chern et al. 2001; Fan and Dong 2002; Johnson et al. 2003). 
Certain WRKY transcription factors are also induced by 
NPR1/TGA and further activate transcription of defense 
genes and the resistance response (Wang et al. 2006a). SA 
increases the expression of the NPR1 gene via other SA-in-
duced WRKY factors (Yu et al. 2001). In addition, some 
SA- and NPR1-induced WRKY factors are negative regula-
tors of basal plant defense (Kim et al 2008). NPR1 homo-
logs have been identified in a variety of economically im-
portant plants, including rice, soybean, maize, apple and cit-
rus. 

In addition to TGA factors, NPR1 interacts with 
NIMIM proteins in the nucleus to negatively regulate PR 
gene expression in distal parts of the plant before the full 
onset of SAR (Weigel et al. 2005; Zwicker et al. 2007). 
This mechanism of regulation contributes to systemic pri-
ming, preparing the plant for further pathogen attack, while 
reducing the energetic cost of defense. 

The Arabidopsis (At) and rice (Os) genomes contain 6 
and 5 NPR1-like genes (named NPR1 through 6), respec-
tively, based on protein sequence and structure (Liu et al. 
2005; Yuan et al. 2007). All of these proteins contain anky-
rin repeat domains, protein-protein interaction domains, 
BTB/POZ domains, and nuclear localization signals. 
AtNPR3 and 4 and OsNPR1, 2 and 3 are also associated 
with plant defense (Liu et al. 2005; Zhang et al. 2006; Yuan 
et al. 2007). AtNPR3 and 4 interact with TGA factors in the 
nucleus, but negatively regulate PR gene expression (Zhang 
et al. 2006) as another regulatory layer to prevent untimely 
activation and/or fine-tuning of defense. 
 
The role of small RNAs in defense gene regulation 
 
In recent years, evidence has accumulated indicating that 
gene expression in diverse cell pathways is regulated by 
gene silencing via interaction with small RNA molecules. 
Correspondingly, the plant defense response is regulated by 
RNA silencing in addition to transcriptional regulation by 
factors, such as WRKY and TGA. Several classes of small 
RNAs have been found in plants and other eukaryotes and 
they are classified based on their origin, biosynthetic path-
way, length and function. Here, we will discuss only those 
classes that have been implicated in pathogen defense (Fig. 
1). 

One class of small RNAs present in plants, small inter-
fering RNAs (siRNA), are produced by the Dicer cleaving 
machinery and function postranscriptionally to suppress 
target genes. SiRNAs are produced from endogenous and 
exogenous (for instance, transgenes, transposons and viral 
RNA) long double stranded RNA (dsRNA) (Hamilton and 
Baulcombe 1999; Meins et al. 2005). Such dsRNA precur-
sors typically yield many 21-22 nt siRNAs derived from 
both strands (Hamilton et al. 2002). SiRNAs target for deg-
radation the same sequences that generated them. Inducible 
endogenous plant RNA-dependent RNA polymerases 
(RdRps) are involved in the production of siRNAs by con-
verting single stranded RNA (ssRNA) into dsRNA, the 
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substrate for Dicer-like (DCL) ribonucleases (Dalmay et al. 
2000; Xie et al. 2001). DCLs are RNase III enzymes that 
cleave the precursor dsRNA into siRNAs (Xie et al. 2004). 
SiRNAs are part of an important plant defense mechanism 
against viruses (Vaucheret et al. 2001). Further, siRNAs can 
be translocated systemically through the phloem facilitated 
by a small RNA-binding protein (PSRP1) (Yoo et al. 2004), 
suggesting that they are also part of the systemic regulatory 
pathway. 

A cluster of R genes, RPP5, that recognize the fungal 
pathogen Peronospora parasitica) in Arabidopsis, are co-
ordinately up-regulated upon pathogen infection by trans-
criptional activators through SA accumulation. These same 
R genes are negatively regulated in a feedback mechanism 
by siRNAs and silencing once the levels of mRNA reach a 
certain threshold (Yi and Richards 2007). Also, the steady 
state levels of these R genes are maintained by silencing. 
Thus, RNA silencing possibly functions to optimize the ex-
pression levels of these R genes and their SA-mediated 
defense response and to also sense any disruptions induced 
by the pathogen to the silencing pathway of the host (Yi and 
Richards 2007). 

Natural cis-antisense transcript-associated siRNAs (nat-
siRNAs) are derived from partially overlapping genes that 
lie on opposite strands (and in opposite orientation) of the 
genomic DNA. In the cases studied, one of the genes is 
constitutively transcribed while the other is induced by pa-
thogens or abiotic stress. Once the induced gene is ex-
pressed, the antisense transcripts form a dsRNA precursor 
in the overlapping regions and RNA silencing of the consti-
tutive gene is triggered with the production of 22-24 nt nat-
siRNAs (Xie and Qi 2008). A protein that functions in Ara-
bidopsis as a negative regulator of R-mediated defense, 
PPRL, is repressed via this pathway by a pathogen-induced 
nat-siRNA derived from the overlapping genes PPRL and 
ATGB2. The induction of the nat-siRNA ATGB2 is depen-
dent on NDR1 and the R protein (RPS2) that detects the 
bacterial pathogen, Pseudomonas syringae, carrying the 
effector avrRpt2 (Katiyar-Agarwal et al. 2006). 

A third class of siRNAs are the long-siRNAS (30-40 nt), 
also derived from protein-coding genes by a DCL (Katiyar-
Agarwal et al. 2007). Long-siRNAs are induced by bacte-
rial infection. At least one, AtlsiRNA-1, targets and repres-
ses the expression of another negative regulator of defense, 
AtRAP (Katiyar-Agarwal et al. 2007), thus facilitating the 

activation of defense genes. Given the number of still un-
studied small RNAs of all classes present in plants, it is 
likely that knowledge of their role as regulators of plant de-
fense will only increase. 
 
CITRUS GENES HOMOLOGOUS TO THE 
ARABIDOPSIS DEFENSE GENES 
 
We have used the BLAST utility at NCBI (http://blast.ncbi. 
nlm.nih.gov/Blast.cgi) as a first step to identify citrus ESTs 
with homology to some of the potential genes in the defense 
pathway (Table 1). Subsequently, we have cloned and fur-
ther analyzed these sequences for the presence of conserved 
motifs, regions and amino acids known to be important for 
the activity of these proteins in plant defense. For instance, 
the pummelo [C. grandis (L.) Osbeck] NPR1 homologous 
gene that we cloned has the BTB/POZ and ankyrin repeat 
domains, the nuclear localization signal and the conserved 
Cys82 and Cys216 amino acids critical for the activity of 
NPR1 (Fig. 2). 

In the case of proteins with low or no homology to avai-
lable citrus ESTs, we have designed degenerate primers 
based on conserved motifs or regions from protein sequence 
alignments to amplify the homologous sequences from cit-
rus. Two free programs available online are useful for the 
design of degenerate primers: 1) CodeHop (http://blocks. 
fhcrc.org/blocks/codehop.html) and 2) GeneFisher (http:// 
bibiserv.techfak.uni-bielefeld.de/genefisher2/welcome.html). 
We cloned the grapefruit (C. paradisi Macf.) PR1 gene, 
considered a marker for SAR, in this manner (Fig. 3). 

Using these strategies we have obtained full-length 
sequences for EDR1, EDS1, EDS5, NDR1, NPR1, NPR3, 
PR1, RAR1, SGT1 and SID2. We cloned these genes from 
cDNA extracted from SA-treated plants (1 mM solution 
applied to the soil) to guarantee their expression. Because 
ESTs and degenerate primers from conserved regions pro-
vide only partial sequences of the gene, we used RACE 
(Rapid amplification of cDNA ends) RT-PCR to clone the 
full length sequences. Once the genes were cloned we ana-
lyzed their expression to confirm their role in defense. For 
example, CgNPR1 was constitutively expressed and only 
slightly induced by SA application. On the other hand, 
CpPR1 and CpEDS5 were only expressed after SA applica-
tion. These results are similar to what is observed in Arabi-
dopsis and other model systems. 

Table 1 Citrus ESTs with the highest similarity to Arabidopsis (At) defense genes using tblastn (search of translated nucleotide database using a protein 
query). 
At gene At locus At protein accession #a Citrus EST b E value c Citrus UniGene d ESTs representing Unigene e

EDR1 AT1G08720 NP_563824 EY716340.1 8e-148 N/A f N/A 
   CX545910.1 3e-107 N/A N/A 
EDS1 AT3G48090 NP_190392 DY258747.1 4e-57 N/A N/A 
EDS5 AT4G39030 NP_195614 DY283467.1 1e-122 N/A N/A 
NDR1 AT3G20600 NP_188696 EY699625.1 1e-52 N/A N/A 
NPR1 AT1G64280 NP_176610 DY293454.1 2e-110 Ccl.13135 DY273835.1, DY293454.1 

DY297212.1, DY300900.1 
NPR3 AT5G45110 NP_199324 EY706882.1 2e-93 N/A N/A 
NPR4 AT4G19660 NP_193701 EY706882.1 7e-97 N/A N/A 
PAD4 AT3G52430 NP_190811 EY738335.1 2e-59 N/A N/A 
RAR1 (PBS2) AT5G51700 NP_568762 CF831306.1 1e-70 N/A N/A 
SGT1b AT4G11260 NP_192865 DY294557.1 2e-99 N/A N/A 
   CK935726.1 9e-92 Csi.6935 CK739844.1, CK935726.1 

CK937258.1, CF504851.1 
CF504865.1, CF509856.1 
CF509932.1, CF510149.1 
CF510154.1, CF835052.1 
CX676280.1, CX676281.1 
DY305896.1 

SID2 (ISC1) AT1G74710 NP_974143 EY798239.1 7e-69 N/A N/A 
1 GenBank protein accession number used for the tblastn search 
b GenBank accession number for the most homologous citrus ESTs 
c E value for amino acid similarity. The closer the E-value is to zero, the more significant the match is. 
d GenBank UniGene accession number. Each UniGene entry is a set of transcribed sequences that appear to come from the same locus. 
e GenBank accession number of all ESTs in the database forming one citrus UniGene. 
f N/A, no citrus UniGenes available in GenBank 
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DEFENSE RESPONSE TO CITRUS CANKER IN 
KUMQUAT 
 
Citrus canker is a destructive disease caused by the bacte-
rium Xanthomonas axonopodis pv citri (Xac). It infects all 
Citrus species and many citrus relatives. The disease is 
highly contagious and can spread widely if the environment 
is favorable for bacterial proliferation (high temperatures, 
humidity and rain) as the pathogen enters the plant through 
wounds and natural openings, promoted by water splashing. 

Infection causes lesions on the green parts of the plant in-
cluding leaves and stems as well as fruits. Citrus canker dis-
ease has caused serious losses in citrus trees as well as in 
citrus fresh fruit production all over the world. 

Early experiments using natural inoculation indicated 
that kumquat (Fortunella sp., a Citrus relative) and some of 
its hybrids were resistant to canker (Reddy 1997). Further 
testing using injection inoculation confirmed these observa-
tions, suggesting that a genetic component must be part of 
the resistance observed in kumquat and that resistance 

 
Fig. 2 Alignment of bona fide NPR1 homologous proteins from various species. Bars below the alignment indicate conserved domains. BTB/POZ, 
broad-complex, Tramtrack and Bric-a-brac/poxvirus and zinc finger protein domain; Ank, Ankyrin repeat domain; NLS, nuclear localization signal. 
Arrowheads indicate AtNPR1 cysteines 82 and 216, critical in oligomer formation and protein function. Two letter prefixes: At, Arabidopsis thaliana; Cg, 
Citrus grandis; Le, Lycopersicon esculentum; Nt, Nicotiana tabacum; Os, Oryza sativa. Red, 100 % amino acids conserved; Blue, 80% amino acids 
conserved; Green, 60% amino acids conserved. 
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could potentially be incorporated into certain citrus types by 
conventional breeding (Viloria et al. 2004; McCollum et al. 
2006). More recently, kumquat was shown to have an active 
response upon inoculation with canker (Khalaf et al. 2007a). 
We began investigating this phenomenon by comparing the 
bacterial population inside resistant kumquat [Fortunella 
margarita (Lour.) Swing.] leaves versus those of suscepti-
ble grapefruit after injection inoculation. ‘Duncan’ grape-
fruit supported a 2.5-fold higher bacterial population than 
kumquat, indicating the ability of kumquat to restrict the 
growth of Xac. In addition, kumquat leaves developed sud-
den necrosis, followed by leaf abscission about 5 days after 
inoculation, a response similar to HR. In contrast, grapefruit 
leaves developed typical canker lesions. 

In order to study the molecular components of kumquat 
resistance to Xac, genes differentially expressed in response 
to canker infection were isolated using the suppression sub-
tractive hybridization method (Diatchenko et al. 1996). This 
method enriched those transcripts associated with the res-
ponse by reducing or eliminating transcripts also present in 
uninoculated plants. We first confirmed that the cDNAs iso-
lated showed significant differential expression levels by 
northern (Fig. 4) or dot blot hybridization. Subsequently, 
approximately 3500 cDNAs from the library were selected 
for sequencing. The ESTs generated could be assembled 
into 738 distinct contigs (consensus sequences derived from 
overlapping ESTs). Further comparisons using blastx (search 
of the protein database with translated sequences) identified 
some contigs as homologous to genes associated with pa-
thogen defense pathways in other systems. For example, 
contig125, an Avr9/Cf-9 rapidly elicited (ACRE) protein 
284 gene homolog was induced within 30 min after kum-
quat was challenged with Xac. ACRE genes code for regu-
latory proteins with diverse functions important in Cf-9 (an 
R gene)-mediated resistance, HR and basal defense (Dur-
rant et al. 2000; Navarro et al. 2004). We are looking into 
the potential role of this and other genes in the kumquat HR 
response. In addition, we have analyzed the expression pro-
files of more than 2300 kumquat ESTs using microarrays 
(Khalaf et al. 2007b). Approximately 54% of the ESTs were 
differentially regulated in infected vs. uninfected kumquat 

starting 6 hrs after inoculation. Not surprisingly, given that 
cell death is observed during the response of kumquat to 
Xac, many of the genes induced early on were associated 
with ROS production, the HR and general defense pathways. 

Other studies of this kind have been carried out in citrus 
but with compatible interactions such as Citrus viroid III 
(CVdIII) in citron (C. medica L.) and CTV in Mexican lime 
[C. aurantifolia (Christm.) Swingle] (Gandia et al. 2007; 
Tessitori et al. 2007). CVdIII induces dwarfism when infec-

Fig. 3 Alignment of PR1 proteins from several species, including grapefruit. The arrow heads indicate conserved amino acids among all PR1 proteins 
including six cysteines that form three disulphide bonds (van Loon and van Strien 1999). Two letter prefixes: At, Arabidopsis thaliana; Bn, Brassica 
napus; Ca, Capsicum annuum; Cp, Citrus paradisi; Hv, Hordeum vulgare; Le, Lycopersicon esculentum; Nt, Nicotiana tabacum; Os, Oryza sativa. Red, 
100 % amino acids conserved; Blue, 80% amino acids conserved; Green, 60% amino acids conserved. 

 

Fig. 4 Northern blot analysis of selected differentially-regulated 
cDNAs from F. margarita tissue inoculated with Xanthomonas axono-
podis pv. citri. Ten micrograms of total RNA were isolated at 6, 24, and 
72 hrs after inoculation and separated on a 1.5% denaturing agarose gel, 
and transferred to nylon membranes. Subsequently, the membranes were 
hybridized with digoxigenin-labeled DNA probes prepared by PCR 
labeling amplification from the F. margarita subtractive library from the 
following clones: ET2 FII1_H2, a sequence of unknown function; LT2 
FIII3_A1, a sequence homologous to a phospholipid hydroperoxide gluta-
thione peroxidase gene; ET2 F1_E12, a 1-aminocyclopropane carboxylic 
acid oxidase homologue, LT2FII2_A5, a sequence of unknown function; 
mock, leaves inoculated using sterile water (negative control); 18S rRNA, 
ribosomal RNA used as a loading control. 
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ting certain rootstocks but does not cause detrimental ef-
fects so it is not considered a disease (Timmer et al. 2000). 
On the other hand, a comparison between a CTV-suscep-
tible type (such as Mexican lime) and CTV-resistant Ponci-
rus trifoliata (L.) Raf. could have revealed specific path-
ways that lead to resistance. 
 
HOW TO INCORPORATE THIS INFORMATION IN 
THE IMPROVEMENT OF CITRUS 
 
The defense pathways described (induced by PAMPs or pa-
thogen effectors) are deployed against a wide variety of pa-
thogens: viruses, bacteria, fungi and nematodes. They also 
seem to be conserved in most plant species since homolo-
gous genes in sequence and function have been identified in 
a variety of species. This means that what has been found 
for model systems, such as Arabidopsis, can potentially be 
applied to less studied crops like citrus. Also, manipulating 
the expression levels of one or a few genes could lead to the 
simultaneous improved resistance to various diseases. One 
has to be careful, however, because there is a reason why 
these defense pathways are not constitutively turned on and 
are regulated and fine-tuned at so many levels: there is an 
energy cost for the activation of defense. 

Constitutive expression in Arabidopsis of the EDS5 
gene led to a more rapid accumulation of SA and activation 
of PR genes as well as improved resistance against three 
different virulent viruses, however the plants were severely 
dwarfed (Ishihara et al. 2008). Similarly, overexpression of 
NDR1 in Arabidopsis led to enhanced resistance against 
bacterial pathogens but it also led to constitutive expression 
of PR1, spontaneous lesion formation and stunting (Cop-
pinger et al. 2004). On the other hand, constitutive overex-
pression of NPR1 in Arabidopsis, tomato, rice, wheat and 
apple did not result in constitutive PR gene expression in 
the absence of pathogens; however, it did lead to enhanced 
disease resistance to bacterial and fungal pathogens with no 
obvious detrimental effect on the transgenic plants (Cao et 
al. 1998; Chern et al. 2001; Friedrich et al. 2001; Makandar 
et al. 2006; Malnoy et al. 2007). Additionally, at least in 
Arabidopsis, the NPR1 plants also showed enhanced effec-
tiveness to three fungicides suggesting that combining che-
mical treatments with transgenics could result in more ef-
fective control strategies (Friedrich et al. 2001). 

Experiments in rice transformed with AtNPR1 showed 
contradictory results. Although researchers found increased 
resistance against a variety of foliar, root and seed patho-
gens (both bacterial and fungal) (Chern et al. 2001; Quilis 
et al. 2008), some observed normal growth and develop-
ment (Chern et al. 2001), while others observed spontane-
ous lesion formation, reduced growth and higher susceptibi-
lity to viral pathogens and abiotic stress (Fitzgerald et al. 
2004; Quilis et al. 2008). 

We have generated a series of transgenic ‘Duncan’ 
grapefruit and ‘Carrizo’ citrange [C. sinensis (L.) Osbeck x 
P. trifoliata (L.) Raf.] plants that express the Arabidopsis 
NPR1 gene. Carrizo is commonly used as a rootstock and it 
is easy to transform and regenerate and it also has a rela-
tively fast growth rate. ‘Duncan’ grapefruit is also relatively 
easy to transform and regenerate. Both of these citrus types 
are economically important and are susceptible to a variety 
of diseases. We are currently evaluating several of the trans-
genic lines for their resistance to CTV, canker and greening. 
These experiments are underway, however, the transgenic 
lines are phenotypically normal and we have evidence that 
some of them show an enhanced response, in terms of lev-
els of PR1 (a marker of SAR) induction compared to wild 
type plants (Fig. 5). This is a promising result since it sug-
gests that the heterologous AtNPR1 protein is working pro-
perly in citrus and is capable of overinducing SAR. 

In a separate effort to produce canker resistant plants an 
R gene from rice, Xa21, was transformed into ‘Hamlin’ 
sweet orange (Omar et al. 2007). This gene confers resis-
tance to Xanthomonas oryzae pv. oryzae, the causal agent of 
bacterial blight of rice. The authors do not report the eva-

luation of the transgenic plants for resistance to canker. 
However, in rice, XA21 requires the interaction with an-
other protein, XB3, for proper function and mediation of re-
sistance (Wang et al. 2006b). Whether this protein or a pro-
tein equivalent in function is present in sweet orange it is 
not known, although a BLAST search revealed a number of 
citrus ESTs highly homologous to rice XB3 (V. Febres 
unpublished). In addition, the effectors in X. axonopodis pv. 
citri may not be recognized by XA21. 

Another group of authors used pathogenesis related 
protein 5 (PR5) from tomato to transform ‘Pineapple’ sweet 
orange. PR5 is induced by pathogen infection in tomato and 
has antifungal activity. At least one transgenic line showed 
enhanced resistance (90% survival rate) against Phytoph-
thora citrophthora when compared to wild type plants (50% 
survival rate) (Fagoaga et al. 2001). Other transgenic lines 
showed increased, although not statistically significant, sur-
vival rates of 70-80%. 
 
CONCLUDING REMARKS 
 
The recent and continuing discoveries in model systems, 
such as Arabidopsis and rice, have greatly improved our 
understanding of the molecular basis of plant defense and 
how defense pathways operate and interrelate. In addition, 
the advent of genomics has facilitated comparisons between 
these model systems and lesser studied crops. Research has 
shown mechanistic conservation in defense pathways be-
tween species and how some of their components are com-
patible. Databases, such as GenBank, provide a multitude of 
information as well as a nearly infinite source of genes po-
tentially useful for crop improvement. Researchers have 
already started to use these resources to improve disease re-
sistance in citrus. 

One promising gene is NPR1. The NPR1 protein is in-
volved in resistance against a wide variety of pathogens in 
several defense pathways. This protein is also only acti-
vated in the presence of an invading pathogen, minimizing 
the unnecessary activation of defense and the energy costs 
associated with it. Indeed NPR1 has been transformed in 
several species and has been shown to provide wide-spec-
trum disease resistance. Whether this holds true for citrus in 
controlling some of the economically important pathogens 

Fig. 5 Expression of transgenic NPR1 (A) and endogenous PR1 (B) in 
Carrizo plants transformed with the Arabidopsis thaliana NPR1 gene 
(AtNPR1). Semi-quantitative reverse transcription (RT) reactions were 
used to detect and compare the expression levels of the AtNPR1 and to 
correlate them with the endogenous PR1 expression levels. The amplifi-
cation of the 18S rRNA in the same RT reaction was used as a control in 
the amplification, for both integrity of the RNA and efficiency of the RT-
PCR. The intensity of the PR1 band is directly proportional to the expres-
sion levels. Transgenic line numbers are indicated above; B, blank (no 
RNA used as a negative control); MW, molecular weight marker. Lines 
854, 857 and 864 exhibited AtNPR1 expression and enhanced PR1 expres-
sion compared to the WT and a transgenic plant that did not express the 
AtNPR1 gene (884). 
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that affect this fruit crop remains to be determined. In ad-
dition, field experiments with transgenic NPR1 plants, to 
our knowledge, have not been carried out. Thus we do not 
know of the efficacy of this strategy under real growth con-
ditions. 

Important molecular studies of citrus and its response to 
pathogens have also been completed providing a better 
understanding of specific plant-pathogen interactions. These 
studies also provide new insights on potential mechanisms 
for the control of important diseases. For instance, the study 
of the kumquat-canker bacteria interaction revealed that the 
resistance was the product of an active rather than a passive 
response and that ROS, HR and general defense-associated 
genes were induced during this response. These same path-
ways may need to be induced in more susceptible citrus 
types to obtain a similar level of resistance. How we ac-
complish this is the next challenge. Further analyses may 
reveal which genes are responsible for the activation of the 
response and/or transduction of the pathogen signal and 
they could be added (if not present) or more efficiently 
activated (if present) in susceptible citrus types. Addition-
ally, a few proteins may ultimately be responsible for the 
demise of the pathogen in the plant (for instance, PR pro-
teins). Modifying the expression (earlier or to higher levels) 
of these genes in susceptible plants may provide the resis-
tance necessary to control the disease. 

In conclusion, the better understanding of plant defense 
facilitates the development of more effective ways to con-
trol important citrus diseases. The use of plant-derived 
genes and regulatory sequences (promoters) together with 
improved transformation methods that do not rely on or 
subsequently eliminate exotic genes (antibiotic or herbicide 
resistance used for selection, see for instance Ballester et al. 
2008) has the potential of producing new and more resistant 
citrus types that will be more acceptable to consumers. 
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