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ABSTRACT 
The main objective of the present study was to identify alleles of quantitative trait loci (QTLs) for  grain protein content (GPC) in 95 
doubled haploid (DH) lines of a mapping population derived from a cross between common wheat lines Chinese Spring and SQ1 grown 
in Southeast Kazakhstan. The GPC of DH lines was significantly different between rainfed and irrigated sites (P<0.05). In total, 10 QTLs 
for GPC were found under the two treatments for moisture availability. Two QTLs for GPC under rainfed conditions were predicted to be 
novel in comparison to those reported earlier. The novel QTLs were mapped onto chromosomes 2BS and 5DL in the population grown 
under rainfed conditions. Closely-linked DNA markers were identified for the majority of mapped QTLs. The results could be 
implemented in a local breeding program for the wheat grain quality improvement by using marker-assisted selection. This study is 
further contribution towards better understanding of the genetic control of GPC in common wheat. 
_____________________________________________________________________________________________________________ 
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odds; MAS, marker-assisted selection; QTL, quantitative trait locus; RFLP, restriction fragment length polymorphism; SSR, simple 
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INTRODUCTION 
 
Grain protein content (GPC) in common wheat Triticum 
aestivum L. is one of the important grain quality traits deter-
mining its nutritional and end-use value. In wheat, grain 
proteins categorized based on their solubility in different 
solvents on albumins, globulins, gliadins, and glutenins. 
The variation in protein content as well as their composition 
can significantly modify grain quality for bread-making 
(Weegels et al. 1996; Branlard et al. 2001). Although grain 
protein composition s primarily controlled by genotype, it is 
also significantly affected by environmental factors and 
their interactions (Dholakia et al. 2001; Zhu and Khan 
2001; Triboi et al. 2003). 

Grain protein quantity is a typical quantitative trait con-
trolled by a complex genetic system. The genetic compo-
nents of GPC have been extensively studied in durum and 
bread wheat (Joppa et al. 1997; Perretant et al. 2000; 
Zanetti et al. 2001; Blanco et al. 2002; Groos et al. 2003; 
Olmos et al. 2003; Prasad et al. 2003; Blanco et al. 2006; 
Huang et al. 2006). Application of molecular markers, in-
cluding RFLPs (restriction fragment length polymorphisms), 
AFLPs (amplified fragment length polymorphisms), and 
SSRs (simple sequence repeats) has helped to facilitate the 
construction of detailed chromosomal maps and allowed to 
map large number of quantitative trait loci (QTLs) on wheat 
chromosomes. In several research publications (Joppa et al. 
1997; Perretant et al. 2000; Dholakia et al. 2001; Zanetti et 
al. 2001; Blanco et al. 2002; Borner et al. 2002; Groos et al. 
2003; Prasad et al. 2003; Blanco et al. 2006) it was shown 
that factors influencing grain protein concentration in wheat 
are located in almost all wheat chromosomes. Joppa et al. 
(1997) had detected a major QTL explaining 66% of the 
phenotypic variation for GPC located on chromosome 6B 
of durum wheat. Blanco et al. (2002) detected seven QTLs 
for GPC, located on the chromosome arms 4BS, 5AL, 6AS 

(two loci), 6BS, 7AS and 7BS, which were significant in at 
least one environment at P<0.001 or in at least two envi-
ronments at P<0.01. Groos et al. (2003) have identified 
‘stable’ QTLs (i.e. detected in at least four of six field loca-
tions) for GPC on chromosomes 2A, 3A, 4D and 7D, each 
explaining about 10% of the phenotypic variation of GPC. 
Among these four ‘stable’ QTLs for GPC detected by these 
authors, none were co-located with any of the known sto-
rage protein loci, located on chromosome groups 1 and 6, or 
with previously described QTLs for GPC (Joppa et al. 
1997; Prasad et al. 1999; Perretant et al. 2000; Zanetti et al. 
2001). Distelfeld et al. (2006) exploiting extensive wheat-
rice colinearity, developed a high-density molecular map of 
the wheat chromosome 6BS region and mapped the QTL as 
a simple Mendelian locus designated Gpc-B1. To tag this 
QTL the authors had developed a high-throughput codomi-
nant marker Xuhw89. A 4-bp deletion present in the Triti-
cum turgidum ssp. dicoccoides accession (DIC) allele was 
absent in a collection of 117 cultivated tetraploid and hexa-
ploid wheat germplasm, suggesting that this marker will be 
useful to incorporate the high GPC allele from the DIC ac-
cession studied into commercial wheat varieties (Distelfeld 
et al. 2006). Despite the progress in dissecting QTLs for 
protein content, the fact that a large number of a cultivars 
with inevitably different alleles determining GPC grow 
under various environmental conditions means that valida-
tion of detected QTLs and identification of new genes regu-
lating GPC in a particular environment is still far from com-
plete. 

The objectives of this study were (1) to identify and 
map QTLs for grain protein content in a bread wheat DH 
population grown under different water regimes in South-
east Kazakhstan, and (2) to identify DNA markers tightly 
linked to GPC QTLs and potentially suitable for marker-
assisted selection for better grain quality of wheat. 
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MATERIALS AND METHODS 
 
Plant material 
 
The genetic map was constructed earlier using a population of 95 
doubled haploid lines from the cross between two common wheat 
(T. aestivum L.) varieties Chinese Spring and SQ1 (CSDH lines; 
Quarrie et al. 2005). The map consists of 567 RFLP, AFLP, SSR, 
morphological and biochemical markers covering all 21 chromo-
somes, with a total map length of 3522 cM (Quarrie et al. 2005). 
In 1999 and 2005 CSDH lines, ‘Chinese Spring’ and ‘SQ1’ were 
tested in randomized single-row plots with 10 cm between plants 
and 30 cm between rows in two replicated field experiments car-
ried out under rainfed and irrigated conditions at two experimental 
farms of the Kazakhstan Research Institute of Agriculture, Almaty 
region, Kazakhstan. 
 
Quality analyses 
 
GPC was determined using near-infrared reflectance (NIR) spec-
troscopy on a Pacific Scientific 4250 using a 9-g ground-wheat 
grain sample from each plot (Gomez-Bessera et al. 2009). The 
method had been calibrated on a sample set of wheat genotypes 
assayed in parallel with the Kjeldahl method. GPC was calculated 

by multiplying nitrogen contents in seeds using a conversion fac-
tor of N × 5.7 expressed on a 14% moisture basis. 
 
Statistical analysis and QTL mapping 
 
Standard statistical analyses were performed using GraphPad 
InStat 3.06 (San Diego, CA) and QSTATS software (QTL CAR-
TOGRAPHER suite; Wang et al. 2006). The presence of QTLs 
was determined using composite interval mapping method with 
the computer package QTL CARTOGRAPHER v 2.5 (Wang et al. 
2006). The minimum LOD threshold was 2.0. 
 
RESULTS 
 
The GPC of DH lines was tested in 1999 and 2005 in non-
irrigated and irrigated sites. In 1999, the GPC for DH lines 
ranged from 15.6 to 24.7% in the rainfed site and from 14.6 
to 25.1% in the irrigated site (Fig. 1). Mean GPC differed 
between rainfed (20.7%) and irrigated (21.3%) sites (n=77, 
P<0.05). In 2005, the difference in mean GPC between non-
irrigated and irrigated sites was extremely significant (n=71, 
P<0.0001), with GPC in the non-irrigated site varying from 
14.2 to 25.3%, and in the irrigated site from 18.1 to 26.4% 
(Fig. 1). In rainfed sites the highest GPCs were recorded in 
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Fig. 1 The grain protein content in DH lines of Chinese Spring x SQ1 in irrigated (A, C) and non-irrigated (B, D) conditions in 1999 (A, B) and 
2005 (C, D). 
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DH line 46 (24.7%) in 1999 and in DH line 31 (25.3%) in 
2005. In irrigated sites the best GPCs were recorded in DH 

line 104 (25.1%) in 1999 and in DH line 45 (26.4%) in 
2005. 

Table 1 Quantitative trait loci for grain protein content detected in the doubled haploid Chinese Spring x SQ-1 wheat population and their characteristics 
using composite interval mapping. 
QTL Trial LOD DNA marker R2 Additive effect 
QGpc.csdh-1BL R05 2.40 m92p78.2 0.09 0.55 
QGpc.csdh-2BS R99 4.10 barc124** 0.11 -0.56 
QGpc.csdh-5AL I05 5.62 psr575.2*** 0.23 0.89 
QGpc.csdh-5BL R05 3.10 m51p65.4** 0.12 0.66 
QGpc.csdh-5DL R99 2.70 gwm292** 0.08 0.46 
QGpc.csdh-6AS R05 3.10 m87p78.7 0.18 1.03 
QGpc.csdh-6BS I99 3.00 psp3118* 0.10 -0.05 
QGpc.csdh-7AL I99 3.92 wmc273**; m51p65.7**** 0.14 0.64 
QGpc.csdh-7AL R99 7.00 wmc273**; m51p65.7**** 0.26 0.82 
QGpc.csdh-7DL R99 6.63 wmc273*** 0.20 0.72 
QGpc.csdh-7DS I05 4.20 barc 154 0.16 -0.71 

QTL: qualitative trait loci, LOD: Logarithm of odds, R: rainfed conditions, I: irrigated conditions 
*, **, ***, ****  – Significantly linked at the 0.05, 0.01, 0.001, and 0.0001 probability levels, respectively, QGpc.csdh-7AL at I99 and R99 plots is considered as the same 
QTL 

 

Threshold (LOD=2,5)

Chromosomes
1A   1B   1D   2A   2B   2D     3A    3B    3D    4A    4B    4D     5A    5B     5D      6A     6B    6D     7A     7B     7D 

Fig. 2 QTLs for grain protein content localized on the chromosomes of genetic map of hexaploid wheat (Triticum aestivum L.) Chinese Spring x 
SQ1 in irrigated conditions of 1999 (solid line) and 2005 (dotted line). 

Threshold (LOD=2,5)

Chromosomes
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Fig. 3 QTLs for grain protein content on the genetic map of hexaploid wheat (Triticum aestivum L.) Chinese Spring x SQ1 in rainfed conditions of 
1999 (solid line) and 2005 (dotted line).
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Ten QTLs for GPC with a LOD score of at least 2.0 
were identified on nine chromosomes (Table 1), with QTLs 
on 7AL chromosome were considered as the same one. 
Eight out of those 10 QTLs had a LOD score higher than 
3.0 (Figs. 2, 3). 

Three major QTLs designated as QGpc.csdh-6�S, 
QGpc.csdh-7AL-1 and QGpc.csdh-7DL explained 18, 26, 
and 20% (�<0,001), respectively, of the phenotypic vari-
ance revealed in non-irrigated conditions (Table 1). For the 
irrigated site the only major GPC locus (R2=0.23) was ob-
served on chromosome 5AL (QGpc.csdh-5AL). 

The QTLs QGpc.csdh-5AL, QGpc.csdh-6BS, and 
QGpc.csdh-7DS were expressed only in irrigated conditions 
while QGpc.csdh-1BL, QGpc.csdh-2BS, QGpc.csdh-5BL, 
QGpc.csdh-5DL, QGpc.csdh-6A, and QGpc.csdh-7DL were 
expressed only under rainfed conditions. 

The QGpc.csdh-7AL was detected both in non-irrigated 
and irrigated conditions and explained from 14 to 26% of 
the total variation (Table 1; Figs. 2, 3). The increasing allele 
effect of this QTL came from CS (additive effect 0.64-0.82, 
Table 1). In fact, the CS allele increased GPC for the majo-
rity of QTLs. The SQ1 alleles increased GPC for only two 
QTLs, located on chromosomes 2BS and 7DS (Table 1). 

Obtained results suggested that SSR markers gwm292 
and barc124 could be used for further genetic analyses of 
QGpc.csdh-5DL and QGpc.csdh-2BS (P<0.001), respec-
tively. Both SSR markers were nearly coincided with the 
peaks of QTLs (Fig. 4). The map position of QTLs indicate 
that psr575.2 (�<0.001, 5AL), m51p65.7 (�<0.0001, 7AL), 
and wmc273 (�<0.001, 7DL) can be selected as a tightly 
linked DNA markers for QGpc.csdh-5AL, QGpc.csdh-7AL-
1, and QGpc.csdh-7DL, respectively (Table 1). The detailed 
locations of all identified QTLs in both irrigated and rainfed 
conditions are shown in Fig. 4. 
 
DISCUSSION 
 
GPC is a very important quantitative trait that is directly 
related to the nutritional quality of wheat end products. It is 
also a very complex trait that is under the control of many 
genes spread out over the entire wheat genomes. 

Eight GPC QTLs found in this work might be similar to 
those that have been identified in previous studies. For 
example, the chromosomal location of the QTL on chromo-
some 1BL (QGpc.csdh-1BL) is very similar to that found in 
Zanetti et al. (2001). The QTL for protein content 
(QGpc.csdh-6BS) that explained 9.8% of the phenotypic 
variation found in this work is likely to be related to the 
QTL detected in chromosome 6BS by Olmos et al. (2003) 
and Prasad et al. (2003). This gene, also known as GPC-B1, 
which was cloned, providing better understanding of GPC 
genetic control and also association with variation of zinc 
and iron content (Uauy et al. 2006). The locations of 
QGpc.csdh-5BL, QGpc.csdh-7AL and QGpc.csdh-7DL 
found under non-irrigated conditions were similar to QTLs 
that were mapped in the study of Groos et al. (2003). The 
QTL localized on chromosome 7DS (QGpc.csdh-7DS) in 
this work most probably is similar to that found in Prasad et 
al. (2003). Only two QTLs appeared not to have been repor-
ted previously. They were identified under rainfed condi-
tions (QGpc.csdh-2BS and QGpc.csdh-5DL, Table 1). 

Most of the revealed QTLs were specific to either non-
irrigated or irrigated treatments, but the QTL for GPC on 
chromosome 7AL was common in both conditions. The 
identification of QGpc.csdh-7AL suggests the existence of a 
key gene that influences GPC under different water regime 
conditions. Environment greatly varied the expression of 
the gene. 

A number of DNA markers that tightly linked with 
chromosome locations for the mapped QTLs for GPC were 
identified (Table 1, Fig. 4). The significant effects of major 
QTLs on GPC in the south-east of Kazakhstan reported in 
this study suggest that some marker-assisted selection 
(MAS) for these loci would be valuable for breeding prog-
rams. 

In general, the complex genetic nature of GPC requires 
significant research efforts under a broad range of environ-
mental conditions to identify favourable alleles that may 
help to improve grain quality in different regional breeding 
programs. In this study we have used a well-developed 
mapping population under two water regime conditions to 
identify DH lines with high levels of GPC in order to intro-
duce them to local breeding program, to map new QTLs for 
GPC, and to reveal DNA markers for MAS-assisted breed-
ing programs for the improvement of wheat grain quality in 
Kazakhstan. 
 
CONCLUSIONS 
 
This study is a further contribution towards better under-
standing of genetic complexity of GPC in wheat. Obtained 
results demonstrated significant level of variation in GPC 
content among doubled haploid lines of a mapping popula-
tion under two water regime conditions. Two novel QTLs 
for GPC were identified and mapped in the population 
grown under rainfed conditions. Better understanding of the 
genetic control of GPC may provide necessary strengths to 
breeding programs related to GPC improvement. 
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