Accumulation of Trace Metals in Grasses of Kazakhstan: Relevance to Phytostabilization of Mine Waste and Metal-smelting Areas

Saule Atabayeva1* • Batyrbek Sarsenbayev2 • Majeti Narashimha Vara Prasad3 • Jaime A. Teixeira da Silva4 • Shahizada Kenzhebayeva2 • Bakdaulet Usenbekov2 • Yerlan Kirshibayev2 • Saltanat Asrandina1 • Aizhan Beisenova2 • Alevtina Danilova3 • Yuryu Kotuhov5

INTRODUCTION

Technogenic and anthropogenic sources of trace metals is a subject of importance not only to human health but also in general to the field of biogeochemistry, environment and medicine. Large areas in the Eastern part of Kazakhstan are contaminated with trace metals, e.g. lead (Pb) and zinc (Zn) since metal smelters and metallurgical enterprises are located in this part of the country. Smelting and mining processes are the point sources of trace metal contamination causing environmental contamination and pollution. Consequently, these pollutants get dispersed in natural resources (soil, water and air) and ultimately enter the food chain. Very high concentrations of Pb, Zn and cadmium (Cd) have already been reported in agricultural produce cultivated in the proximity of these metallurgical enterprises in Kazakhstan (Panin 1998). For instance, the concentrations of Pb in potatoes cultivated in contaminated soils exceeded 7 times the permissible limits (Panin 1998). The permissible limits as per local government standards for phytotoxoduffts by the Kazakhstan Ministry of Health are copper (Cu) – 0.5-20; Pb – 0.1-0.5; Cd – 0.1; Zn – 5-20 (mg/kg) (Smagulov et al. 2002). Physical stabilization (covering metalliferous waste with geotextiles or geomembranes, etc. and chemical stabilization (use of chemical binding agents) to reduce wind and water erosion is not a feasible proposition for large areas. However, phytostabilization (use of a specific type of vegetation is far more desirable than physical and chemical stabilization) (Tordoff et al. 2000; Prasad 2006).

Phytostabilization is an effective process of phytoremediation technology (Fig. 1). Grasses are tolerant to trace metals and have played a convincing role in phytostabilization (Shu et al. 2002; Lai and Chen 2006; Prasad 2006; Lai and Chen 2007; Néel et al. 2007; Vernay et al. 2007; Wang et al. 2007; Li et al. 2009; Zhang et al. 2010).

Abandoned mine soils and estuarine sediments are phytostabilized against erosion by grass species (Cambrollé et al. 2008; Comino et al. 2008; Mateos-Naranjo et al. 2008). Soil amendments and biosolids accelerate phyto-stabilization (Zhou et al. 2007; Santibañez et al. 2008). Grasses possess thickets of adventitious roots, unique root morphology (Li et al. 2009), high bioproducivity (Liu et al. 2009), and therefore have an added advantage for application in phytostabilization. Further, grasses are often associated with mycorrhizal and endophytic fungi (Deram et al. 2006; Lai and Chen 2007; Chen et al. 2008; Deram et al. 2008; Kulda and Bacon 2008; Ortega-Larroceae et al. 2010; Yunamiya et al. 2010). Grasses, together with legume associations, have helped in situ stabilization of chemical waste (Hartley and Lepp 2008; Hartley et al. 2009). In climate-constrained and CO2-enriched eras, grasses have a physiological advantage (the majority being C4) of producing or increasing their biomass. Hence, grasses perform well in the phytostabilization process (Wu et al. 2009). In view of their advantageous metabolic processes, a hydroponic grass system based on plate or fabric can be considered for the treatment of aquatic cultural wastewater (Pan et al. 2007).

The aim of our research was to determine the ability of dominant grasses and their ability to accumulate trace metals. Based on preliminary phytophysiological and field work, the grass species that are widespread on contaminated soils in Eastern Kazakhstan around metallurgic enterprises have been identified and selected for experiments.

Keywords: cadmium, copper, grasses, lead, phytostabilization, zinc

ABSTRACT

The dominant grass species growing around metallurgic plants of Eastern Kazakhstan i.e. Agropyron repens, Agrostis alba, Bromus inermis, Dactylis glomerata, Phleum pratense, and Setaria viridis have shown to accumulate large amounts of trace metals both in field-grown and hydroponic conditions. A. repens and S. viridis were more tolerant to Pb and Zn as was observed from hydroponic experiments treated with extremely high concentrations of Pb and Zn, whereas P. pratense was more sensitive. The shoot/root Pb ratio was < 1 for all species, but the shoot/root ratio for Zn was > 1 for all species, except for A. repens and A. alba. In pot experiments these grass species accumulated trace metals mainly in the roots. From these investigations it is concluded that all these grass species can be used for phytostabilization of Pb and Zn in the soil.

Received: 14 June, 2009. Accepted: 10 May, 2010.
Grasses accelerate the phytostabilization of soils contaminated with trace metals. Their unique adventitious root system coupled with plant growth microbes are implicated in this process.

MATERIALS AND METHODS

Trace metals budgets in grasses grown on soils spiked with trace metals

Grass species (Agropyron repens, Dactylis glomerata, Phleum pratense and Setaria viridis) widely spread around metallurgical plants in Eastern Kazakhstan were identified by local floras. The seeds of Agrostis alba were sown, but they did not germinate on these soils.

Seeds were collected in August from 25-30 plants. Seeds were sown in test pots 1 m × 1 m in size spiked with the following salts: ZnSO₄·7H₂O, Pb(NO₃)₂, (CuSO₄)₂·5H₂O, CdSO₄ in May. The final concentrations of the spiked soils were (in mg/kg): Zn – 1000, Pb – 1000, Cu – 100, Cd – 100.

These levels of heavy metals concentrations were selected as approximately middle concentrations which could be present in contaminated soils since, in previous research the range of concentrations of heavy metals from the middle of contaminated soil sites around metallurgical plants were determined to be, in mg/kg: Zn – 355.7-2898.3; Pb – 932.8-1645.3; Cu – 43.0-373.0; Cd – 35.8-120.0 (Atabayeva 2006).

There were three replicates for each treatment. The seeds were placed at a depth of 2-3 cm, with an inter-row distance of 5-7 cm. Grass seedlings were collected in August with roots. Soil from roots was removed gently and mechanically without washing. Washing roots may result in uneven loss of certain trace metals (Dunn 1992). All samples were air dried for 4 days and divided into roots and shoots. Then they were then dried at 105°C for 3 h, ground and analysed.

Evaluation of selected grasses for trace metal accumulation using hydroponics

Seeds of Agropyron repens (A. repens), Agrostis alba (A. alba), Bromus inermis (B. inermis), Setaria viridis (S. viridis) and Phleum pratense (P. pratense) were collected in August from fields of the Altay Botanic Garden. The seeds of Dactylis glomerata (D. glomerata) were not viable and they were not used in hydroponic experiments. Seeds were stored in a dark room at 22-24°C before sowing the seeds were stored for 20 days at 4-6°C (Ovcharov 1979). The seeds were sterilized with 16% H₂O₂ followed by 3 rinses in distilled water, 5 min for each rinse. Seeds were germinated on water-moistened filter paper at 25°C in a dark room for 7 days. Afterwards the seedlings were placed in plastic containers (20 × 30 cm) filled with Hoagland’s 1/4 strength (macro- and microelements) medium: (Hoagland and Broyer 1940). After 7 days 30 seedlings were transferred to medium containing various concentrations of Pb (450, 900 mg/L) and Zn (350, 700 mg/L) in the forms of Pb (NO₃)₂ and ZnSO₄. Control plants were grown on 1/4-strength Hoagland’s without metals. The experiment was carried out in a controlled environment room under the following conditions: 14-h photoperiod with a light intensity of 400 μmol photons m⁻² s⁻¹; 22°C: 18°C day; night temperature; relative humidity, 60%. There were three replicates for each treatment. Plants were harvested 6 days after treatments. Shoots and roots were separated, oven dried at 80°C for 48 h and dry weights were recorded. The contents of trace metals in shoots and roots were determined as described next.

Plant samples (0.5 g) were digested in a mixture of 5 ml of 50% HNO₃ and 0.5 ml HCl at 95 ± 5°C according to standards for operation procedures (LMN/SOP-06 2001). Samples were transferred to a digestion block (section) at ± 5°C, closed within glass and heated without bringing to the boil for 10-15 min. Then they were cooled and 5 ml of concentrated HNO₃ was added, placed into a digestion block at 95 ± 5°C, closed within glass and heated without bringing to the boil for 30 min until brown fumes disappeared. Then the samples were cooled and 2 ml of water and 3 ml of H₂O₂ were added; heating was continued until the volume was reduced to about 5 ml, removed from digestion blocks, allowed to cool, then filtered; the filter was washed and deionized water was added up to final volume to 50 ml. Samples were analyzed using the appropriate SOP.

The concentration of metals in plants and soils were measured by atomic absorption spectrophotometry using an installed Winlab AAnalyst 300 (Perkin Elmer, Germany) (LMN/SOP-08 (FLAA) 2001) with an installed and aligned HCL/EDL lamp. HCL lamps were stabilized/aligned for 25-min, EDL lamps for 45 minutes; operating pressure ~ 0.7 kgf/cm² for acetylene and 2.8-3.0 kgf/cm² for compressed air. Following calibration, samples were analysed.

Statistical analysis of data

In field experiments the samples for measurement of trace metal contents were taken from three test pots for each treatment. The data of pot experiments were analysed statistically using two-way ANOVA with species and treatments as main effects for shoot and root biomass and concentration of metals in plant parts. LSD was calculated using the following equation: LSD = t₀.₀５ √(2 MSE/nu) was used to differentiate the means. All values were expressed as the mean of three measurements for each treatment. Values represent means ± standard error (SE).

In hydroponic experiments the samples for measurement of trace metal contents were taken separately from three plastic containers (3 replicates) for each treatment. All values are expressed as the mean of three measurements for each treatment. The data were analysed statistically using two-way ANOVA with species and treatments as main effects for shoot root biomass and concentration of metals in plant parts. LSD was calculated as above to differentiate the means. Values represent means ±SE.
RESULTS AND DISCUSSION

Trace metal budgeting in field-grown plant parts. Effects of heavy metals on plant biomass

A Zn hyperaccumulator is defined as a plant that contains > 10,000 mg/kg Zn dry wt, whereas a Pb hyperaccumulator contains > 1000 mg/kg Pb dry wt. The mean of Zn and Pb concentrations in non-accumulating plants growing on contaminated soils are expected to be < 1000 for Zn and < 100 for Pb (McGrath 1998).

Our previous studies showed that all collected and identified grass species growing around Zn and Pb manufacturing plants in Eastern Kazakhstan (A. repens, A. alba, B. inermis, D. glomerata, P. pratense) accumulated trace metals (Zn, Pb) in great amounts, mainly in the roots (Atabayeva 2006; Sarsenbayev 2006). Our data showed that the content of Pb and Zn in these species was much higher than the means defined for non-accumulators growing on contaminated soils. These plant species which were growing on highly contaminated soils (total soil Pb - 12672.4 mg/kg) of Pb and Zn in these species was much higher than the metals are not significant – *P* > 0.05 (Table 1).

The mean Pb concentration in plant parts of D. glomerata – up to 3760.0 mg/kg in shoots and 6715.9 mg/kg in roots, B. inermis – up to 709.1 mg/kg in shoots and 6387.8 mg/kg in roots, A. alba – up to 2743.9 mg/kg in shoots and 3982.8 mg/kg in roots, A. repens – up to 2870.3 mg/kg in shoots and 3982.8 mg/kg in roots, A. repens – up to 3397.7 mg/kg in shoots and 2496.0 mg/kg in roots, P. pratense – up to 419.6 mg/kg in shoots and 4789.4 mg/kg in roots.

These species accumulated Zn in great amounts too: D. glomerata – up to 1498.2 mg/kg in shoots and 2300.0 mg/kg in roots, B. inermis – up to 1498.2 mg/kg in shoots and 2300.0 mg/kg in roots, A. alba – up to 2743.9 mg/kg in shoots and 29934.1 mg/kg in roots, A. alba – up to 4900.0 mg/kg in shoots and 14,820.3 mg/kg in roots, P. pratense – up to 997.6 mg/kg in shoots and 10383.3 mg/kg in roots (Atabayeva 2006; Sarsenbayev 2006).

The mean Pb concentration in plant parts of A. alba, B. inermis, and D. glomerata was much higher than 100 mg/kg and the mean Zn concentration for all species on highly contaminated soils was > 1000 mg/kg. Therefore, these species were chosen for further studies, including the screening of these species for their ability to accumulate heavy metals in hydronomic conditions and their applicability for removal of trace metals from soils spiked with metals. The ability of wild grass species to accumulate trace metals in field conditions was studied by sowing their seed on artificially contaminated soils. The shoot and root biomass of these wild grass species was compared to assess the abundance of trace metals in the soils. The root biomass of plant species from 1 m² of each heavy metal treatment increased in the following order (Table 1): Zn > A. repens > S. viridis > D. glomerata > P. pratense (P < 0.05); Pb > A. repens > S. viridis > P. pratense > D. glomerata (P < 0.01); Cu > A. repens > P. pratense > D. glomerata > S. viridis (P < 0.05); Cd > A. repens > S. viridis > D. glomerata > P. pratense; in this treatment the differences between species were significant (P < 0.01), with the exception of D. glomerata vs. S. viridis (P > 0.05).

Shoot biomass of plant species from 1 m² for each treatment increased in the following order: Zn > D. glomerata > A. repens > S. viridis > P. pratense; the differences between species were significant (P < 0.01) with the exception of D. glomerata vs. A. repens (P > 0.05). Pb > P. pratense > A. repens > D. glomerata > S. viridis (P < 0.05); the difference between A. repens and D. glomerata was not significant (P > 0.05).

Cu > P. pratense > A. repens > D. glomerata > S. viridis; P < 0.01 between all species with the exception of A. repens vs. D. glomerata (P > 0.05).

Cd > P. pratense > A. repens > D. glomerata > S. viridis (P < 0.05 between all species).

The mean shoot biomass of P. pratense was highest among all species in the presence of Cu, Cd and Pb, and the shoot and root biomass of S. viridis was the lowest among all grasses. In the absence of Zn D. glomerata had the highest biomass, P. pratense the lowest. A. repens accumulated the highest root biomass in all treatments compared with other species.

Thus, D. glomerata and A. repens were tolerant to all four metals. The shoot biomass of these species was relatively high (Table 1). S. viridis was tolerant to Pb and sensitive to Zn, Cu and Cd. P. pratense was relatively sensitive to all metals.

Assessment on a species-by-species basis (Table 1)

<table>
<thead>
<tr>
<th>Species</th>
<th>Agropyron repens</th>
<th>Dactylis glomerata</th>
<th>Phleum pratense</th>
<th>Setaria viridis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoots*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>305.0 ± 13.1</td>
<td>345.0 ± 15.8</td>
<td>0</td>
<td>150.0 ± 5.5</td>
</tr>
<tr>
<td>Pb</td>
<td>395.0 ± 15.5</td>
<td>350.0 ± 13.1</td>
<td>800.0 ± 41.2</td>
<td>280.0 ± 1.0</td>
</tr>
<tr>
<td>Cu</td>
<td>425.0 ± 17.2</td>
<td>340.0 ± 16.0</td>
<td>655.0 ± 30.2</td>
<td>115.0 ± 4.0</td>
</tr>
<tr>
<td>Cd</td>
<td>440.0 ± 20.2</td>
<td>320.0 ± 11.0</td>
<td>570.0 ± 21.1</td>
<td>245.0 ± 9.8</td>
</tr>
<tr>
<td>Roots**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>605.0 ± 19.2</td>
<td>16.0 ± 0.55</td>
<td>0</td>
<td>40.0 ± 1.2</td>
</tr>
<tr>
<td>Pb</td>
<td>1060.0 ± 4.2</td>
<td>39.0 ± 1.3</td>
<td>50.0 ± 2.2</td>
<td>90.0 ± 3.0</td>
</tr>
<tr>
<td>Cu</td>
<td>840.0 ± 4.3</td>
<td>40.0 ± 1.9</td>
<td>45.0 ± 1.9</td>
<td>25.0 ± 0.7</td>
</tr>
<tr>
<td>Cd</td>
<td>1050.0 ± 38.0</td>
<td>30.0 ± 1.4</td>
<td>27.0 ± 0.8</td>
<td>45.0 ± 1.8</td>
</tr>
</tbody>
</table>

*The differences across species and metals are not significant: P > 0.05 (P = 0.22, P = 0.14 for shoots and roots, respectively);

**The differences across species are significant P < 0.05 (P = 1.46E-06), across metals are not significant – P > 0.05 (P = 0.26). Two-way ANOVA was used. LSD for roots – 108.3, for shoots – 178.3 at P = 0.05.

A. repens

A comparison of shoot biomass in all treatments showed that among metals Zn was distinguishable by a stronger negative effect on biomass (305 g/m²). In the presence of other metals (Pb, Cu, Cd) this species produced an approximately equal biomass (395, 425, 440 g/m², respectively, P > 0.05). The greatest root biomass was observed in the treatments with Pb and Cd and the lowest in the treatment with Zn.

P. pratense

Zn fully inhibited the growth of P. pratense. In the presence of Pb the mean shoot biomass was highest, and in the presence of Cu and Cd the biomass was almost equal. The mean shoot biomass in different treatments decreased in the following order (g/m²): Pb (800.0) > Cu (655.0) > Cd (570.0) (P > 0.05); root biomass decreased in the following order (g/m²): Pb (50.0) > Cu (45.0) > Cd (27.0) (P < 0.01) with the exception of Pb vs. Cu (P > 0.05).

D. glomerata

In all treatments the shoot biomass was approximately equal (g/m²): Pb (350.0) ≥ Zn (345.0) ≥ Cu (340.0) ≥ Cd (320.0) (P > 0.05). The root biomass had the highest means in the presence of Pb and Cu. The mean root biomass decreased in the following order (g/m²): Cu (40.0) ≥ Pb (39.0) > Cd (30.0) > Zn (16.0) (P < 0.01), with the exception of Cu vs. Pb (P > 0.05).

S. viridis

The shoot biomass decreased in the following order (g/m²): Pb (280.0) > Cd (245.0) > Zn (150.0) > Cu (115.0) (P < 0.01); root biomass (g/m²): Pb (90.0) > Cd (45.0) ≥ Zn...
The content of heavy metals in plant parts was determined. Different plant parts accumulated high concentrations of metals. The shoot/root ratio was < 1 for all species (Table 2).

S. viridis accumulated the highest amount of Zn in shoots and roots, and Pb in shoots (Fig. 2). Cu was most accumulated in the roots. Cd was least accumulated by this species than by other species (Fig. 3). The shoot/root ratio was < 1 for all metals. The lowest shoot/root ratio was for Pb. The concentration of metals in the shoots decreased in the following order (mg/kg): Zn (118.4) > Pb (79.3) > Cu (13.0) > Cd (8.7); in the roots: Pb (971.2) > Zn (627.4) > Cu (119.1) > Cd (17.3).

P. pratense was the most sensitive grass to the presence of Zn in the soil. This plant did not germinate in Zn-contaminated soil. P. pratense accumulated Pb in the roots > 1000 ppm, i.e. 1330 mg/kg. Cd accumulated by the roots of P. pratense was the highest among all the grass species assessed (59.4 mg/kg) (Fig. 2). The shoots of P. pratense accumulated the least Cu compared with the other heavy metals (Fig. 3). The shoot/root ratio for all metals was < 1 and was the lowest among all species. The concentration of metals in the shoots decreased in the following order (mg/kg): Pb (45.3) > Cu (7.5) > Cd (4.2); in the roots: Pb (1330.0) > Cd (59.4) > Cu (44.9).

D. glomerata accumulated a considerable amount of Pb in the roots. In the shoots the concentrations of Zn was lowest among all species (Fig. 2). The concentration of metals in the shoots of D. glomerata decreased in the following order (mg/kg): Zn (118.4) > Pb (79.3) > Cu (13.0) > Cd (8.7); in the roots: Pb (770.4) > Zn (304.1) > Cd (39.4) > Cu (17.5) (Figs. 2, 3).

A. repens accumulated the least amount of Pb in the shoots and Cd in the roots. The shoot/root ratio was < 1. The concentration of metals in the shoots of A. repens decreased in the following order (mg/kg): Zn (159.7) > Pb (38.2) > Cu (13.7) > Cd (3.4); in the roots: Zn (184.1) > Pb (135.2) > Cu (25.8) > Cd (7.5) (Figs. 2, 3).

Thus, the highest Zn concentration was observed in the roots and shoots of S. viridis. Pb was greatly accumulated in the roots of P. pratense, S. viridis and D. glomerata. The shoot/root ratio was < 1 for all species.

The removal efficiency of trace metals by roots and shoots of plants was calculated using the means of plant part biomass and the concentration of trace metals in plant parts according to equation: g/ha = Concentrations of metals (g/kg) × yield (kg/m2) × 10,000; preliminarily the mean of 59.4 mg/kg was extrapolated to 1 hectare, g (g/ha). A. repens removed the most Zn whereas the shoots and roots of D. glomerata the least. The roots of A. repens removed the most Zn and the roots of D. glomerata the least.

Fig. 4 Content of trace metals in plant biomass in extrapolation to 1 ha. Differences between species and metals are according two-way ANOVA test significant at P < 0.05 (P = 8.63E-16; 5.14E-19 for shoots and roots, respectively). LSD for Pb – 1314 and for Zn – 1608 at P = 0.95. Values represent mean ± Standard Error (SE).
Phytostabilization of mine waste and metal smelting areas by trace metal accumulating grasses of Kazakhstan. Atabayeva et al.

As for removal rates of Cu by the shoots the species were disposed in the following order (g/ha): A. repens (58.2) > P. pratense (49.1) > D. glomerata (44.2) > S. viridis (16.5); by the roots – A. repens (216.7) > S. viridis (29.8) > P. pratense (20.2) > D. glomerata (7.0) (Fig. 4).

The shoots of A. repens had the most removal rate of Cu, and the shoots of S. viridis – the lowest one. A. repens had the highest removal rate by roots and D. glomerata – the lowest one.

The removal of Cd by the shoots extrapolated to 1 ha decreased in the following order (g/ha): D. glomerata (27.8) > P. pratense (23.9) > A. repens (15.0) > S. viridis (0.5); roots – A. repens (78.8) > P. pratense (16.0) > D. glomerata (11.8) > S. viridis (7.8) (Fig. 4).

Thus, the most removal rate of cadmium was observed in the shoots of D. glomerata and in the roots of A. repens.

In general, all analysed species were tolerant to trace metals. They accumulated varied amounts of trace metals mainly in the roots. All these species can be used for phytoremediation of contaminated soils, particularly for phytostabilisation, due their ability to accumulate trace metals in the roots.

The following species as D. glomerata, B. inermis, A. repens, A. alba and P. pratense accumulated Zn and Pb in great amounts mainly in the roots from heavily contaminated soils. Therefore, these species can be the candidates for using them in phytostabilization.

Hydroponic experiments

The metal accumulation ability of grass species in hydroponic conditions at extremely high concentrations of zinc and lead (450, 900 mg/L of Pb and 350, 700 mg/L of Zn) was studied.

The analysis of trace metals in plant parts has shown the highest level of lead concentration in the roots (Fig. 5). The highest level of lead at 900 mg/L was < 1 and decreased in the following order: A. alba (0.47) > S. viridis (0.17) > P. pratense (0.06) > B. inermis (0.04) > A. repens (0.027).

At concentration 900 mg Pb/L the content of lead in shoots decreased in the following order: A. alba > P. pratense > S. viridis > B. inermis > A. repens; in roots - P. pratense > A. repens > B. inermis > A. alba.

The highest level of Pb was detected in the shoots of A. alba (22 670.0 mg/kg) and the lowest in the shoots of A. repens (2 091.3 mg/kg).
The study of Zn content in plant parts has shown that all species except of A. repens accumulated Zn mainly in the shoots (700 mg Zn/L). Shoot/root ratio of Zn for all species except of A. alba and A. repens was > 1. A. alba accumulated approximately equal amount of Zn in both roots and shoots, whereas A. repens accumulated mainly in the roots (Fig. 6).

The shoot/root ratio decreased in the following order: B. inermis (1.8) > S. viridis (1.3) > P. pratense (1.14) > A. alba (0.92) > A. repens (0.46).

The highest level of Zn detected at 700 mg Zn/L concentration in shoots and roots of B. inermis and P. pratense, the lowest in A. repens and A. alba. Concentration of Zn in shoots was decreased in the following order: B. inermis > P. pratense > S. viridis > A. alba > A. repens; in roots: P. pratense > B. inermis > S. viridis > A. repens > A. alba.

P. pratense and B. inermis were distinguishable by high accumulation of Zn in the shoots and roots.

Thus, in hydromorphic conditions Pb at high concentrations was accumulated mainly by the roots for all species and the shoot/root ratio was < 1. At a high concentration of Zn, it was accumulated mainly by the shoots except those of A. repens, whereas A. alba accumulated Zn in approximately equal amounts in both roots and shoots. P. pratense and B. inermis were distinguishable from the other species by accumulating Zn in their shoots to a high level. These species also accumulated a large amount of Pb in the roots.

CONCLUSION

Phytoremediation is an economically effective and ecologically safe technology of decontamination of trace metals from polluted soils. Phytostabilization is a process that prevents the movement and transport of pollutants using plants to decrease the mobility of pollutants in soils. The screening of grass species widely spread around metallurgical plants of Eastern Kazakhstan in hydromorphic and field conditions has shown that all studied grass species accumulate trace metals mainly in the roots in great amounts. This work reports the ability of widely spread grass species in Eastern Kazakhstan to accumulate trace metals in great amounts mainly in the roots. The following wild grass species such as D. glomerata, B. inermis, A. repens, A. alba and P. pratense can be used for phytostabilization.

It is possible to use “induced” phytoremediation for heavy metal-contaminated soils around Zn and Pb manufacturing plants of East Kazakhstan with application of different chelators of trace metals, like EDTA, humic acids, etc., to enhance the removal efficiency of metals by plants from soils (Koopmans et al. 2008; Saifullah et al. 2009; Borggaard et al. 2009; Vamerali et al. 2010; Purakayastha and Chhonkar 2010).

REFERENCES

* In Russian

Kohnke G, Bacon C (2006) Chelate-resistant endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biological Control 46, 57-71

Lai H, Chen Z (2007) EDTA-dose applying EDTA to decrease the potential groundwater contamination using rainbow pink (Dianthus chinensis) for enhanced phytorextraction. Desalination 210, 236-247

Liu X, Shen Y, Lou L, Ding C, Cai Q (2009) Copper tolerance of the biomass crops elephant grass (Pennisetum purpureum Schumach), vetiver grass (Vetiveria zizanioides) and the upland reed (Phragmites australis) in soil culture. Biotechnology Advances 27, 633-640

LMN/SOP-06 (2001) Digestion of hard samples for heavy metal determination in the flame. 10 pp*

Ovarchov KE (1979) Fiziolohicheskie osnovy vshozhesti semian, Moskva, Moscow, Russia, 278 pp*

Shu WS, Ye ZH, Lan CY, Zhang QJ, Wonn MH (2002) Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and
Phytostabilization of mine waste and metal smelting areas by trace metal accumulating grasses of Kazakhstan. Atabayeva et al.

Cynodon dactylon. Environmental Pollution 120, 445-453
Smagulov AK, Ereshev PE, Gavrilova NB (2002) Kachestvo i bezopasnost pishevoi produktsii, Almaty, Kazakhstan, 543 pp*