Contributions of Biotechnology to Asparagus Breeding in Argentina

Olga Marcellán1* • Elsa Camadro1,2,3 • Ana Clara Pontaroli1,3

1 Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, C.C. 276, 7620 Balcarce, Buenos Aires, Argentina
2 Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), C.C. 276, 7620 Balcarce, Buenos Aires, Argentina
3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917 - CP C1033AAJ Buenos Aires, Argentina

Corresponding author: *omarcellan@balcarce.inta.gov.ar

ABSTRACT

Garden asparagus (Asparagus officinalis L.) is an economically important horticultural crop, susceptible to pathogenic soil fungi of the genus Fusarium. These fungi cause stem, crown and root rot, a major disease all over the world that is difficult to control by the use of chemicals and cultural practices. The development of resistant/tolerant cultivars appears to be the best alternative for control; however, the asparagus-Fusarium pathosystem is complex and advances in this regard have not been very successful. The species is perennial and dioecious, which hinders the breeding process, but it can be asexually and sexually reproduced and in vitro manipulated. In Argentina, imported open-pollinated cultivars and F1 and F2 clonal hybrids are grown, which are susceptible to Fusarium and not necessarily adapted to local conditions. In 1992, an asparagus breeding program was started in Balcarce, in collaboration with another national research group, to (a) generate adapted and good yielding cultivars and (b) explore potential sources of Fusarium resistance. Various biotechnologies were used in an attempt to generate and/or introduce genetic variability for the trait (gametophyte selection, in vitro selection of plants and calluses, interspecific hybridization followed by in vitro ovule culture) and to clone elite genotypes (micropropagation and somatic embryogenesis) to produce clonal hybrids. The principal results of the application of these biotechnologies are summarized in this review.

Keywords: in vitro cloning, in vitro evaluation, in vitro interspecific embryo rescue, Fusarium resistance, gametophyte selection, somaclonal variation

Abbreviations: AFLP, amplified fragment length polymorphism; CF, fungal toxic culture filtrate; cpDNA, chloroplast DNA; 2,4-D, 2,4-dichlorophenoxy-acetic acid; FCA, Facultad de Ciencias Agrarias; INTA, Instituto Nacional de Tecnología Agropecuaria; ITS, internal transcribed spacer region; HSF, half-sib family; mye, Asparagus densiflorus cv. Myersii; off, Asparagus officinalis; PCR, polymerase chain reaction; RAPD, random amplified polymorphic DNA; RFLP, restriction fragment length polymorphism; spr, Asparagus densiflorus cv. ‘Sprengeri’; UNMdP, Universidad Nacional de Mar del Plata; UNR, Universidad Nacional de Rosario

CONTENTS

INTRODUCTION ... 23
ADJUSTMENT AND DEVELOPMENT OF IN VITRO CLONING PROTOCOLS ... 24
Micropropagation .. 24
Somatic embryogenesis .. 24
GENETIC SIMILARITY BETWEEN DONOR AND SOMATIC EMBRYO-DERIVED PLANTS ... 25
IN VITRO EVALUATION OF LANDRACES FOR RESISTANCE TO FUSARIUM PROLIFERATUM 26
GAMETOPHYTE SELECTION FOR RESISTANCE TO FUSARIUM OXYSPORUM F. SP ASPARagi .. 26
INTERSPECIFIC HYBRIDIZATION BARRIERS BETWEEN GARDEN ASPARAGUS AND THE ORNAMENTAL
A. DENSIFLORUS CV. ‘SPRENGeri’ ... 27
Breeding barriers ... 27
In vitro embryo rescue to circumvent post-zygotic barriers 27
INDUCTION OF SOMA CLONAL VARIATION AND IN VITRO SELECTION FOR RESISTANCE TO
FUSARIUM PROLIFERATUM TOXINS .. 28
CONCLUDING REMARKS ... 29
ACKNOWLEDGEMENTS ... 29
REFERENCES ... 29

INTRODUCTION

Garden asparagus, Asparagus officinalis L. (off, 2n=2x=20), is the economically most important species in the genus due to its edible shoots. The species is dioecious (that is, individual plants bear flowers with either female or male organs) and, therefore, an obligate outcrosser. As a consequence of the reproductive system, individual plants are highly heterozygous and the populations are genetically heterogeneous. Fortunately for commercial purposes, this species can also reproduce asexually (cloning) by in vivo crown division (i.e. the crown, formed by shoot and root primordia, can be cut into sections, to form new plants) and by in vitro culture of various explant types (buds, meristems, shoot sections, etc.). The crop can be established in the field by means of crowns or seedlings, and can be in production for 10-15 years or more, without important decrements in yield. Old commercial cultivars, such as Mary Washington,
Martha Washington and Argenteuil, are actually open-polli-
nated populations. Later on, several types of hybrids were
introduced in the market (see Corriols and Doré 1988): (a) double hybrids, originated from four parental heterozygous
plants chosen by their good specific combining ability, (b) clonal hybrids, originated from two heterozygous micro-
propagated parents, (c) mixed-F1, and (d) all-male F1 hyb-
rids, originated from two double haploid parents (Corriols-
Thoresen 1980; Robinson 1986; Falavigna 1990; Peng and Wolyk 1999). In (c), haploid female plants are obtained either from polyembryonic seeds or from in vitro anther culture (from gametes carrying one X chromosome). After chromosomes doubling, these female plants are backcrossed successively to a male to obtain a pure line composed of male and female plants, each iso-
genic for the initial haploid female genotype. The inter-
crossing of two such pure lines produces a homogenous F1 hybrid composed of 50% male and 50% female plants. In (d), haploid males are obtained through in vitro anther cul-
ture (from gametes carrying one Y chromosome) and then
diploidized to produce supermales (that is, plants with two Y chromosomes). Crossing one of these plants to a homo-
ygous female plant results in the production of an all-male F1 hybrid. This procedure can be modified by pollinating a heterozygous female plant with a homogenous supermale plant to produce (e) three-way hybrids.

Garden asparagus became economically important in
Argentina during the 1990s because of the excellent pros-
pectives for off-season export to Northern Hemisphere
countries with high income levels. By 1991, only open-
pollinated populations derived from a European cultivar (‘Argenteuil’) and the first and second generation of a clo-
nal hybrid from the USA (‘UC157 F1’, and ‘UC157 F2’) were grown in different ecological regions of Argentina, for
white and green spears production, respectively. Plants of
the open-pollinated populations and segregating hybrids
lack homogeneity in spear yield, caliber and quality due to
gene segregation and both the populations and hybrids are
susceptible to a fungus complex of the genus Fusarium that
causes stem, crown and root rot, the main cause of aspara-
gus decline in the world. The most important asparagus
pathogenic fungi in the Fusarium complex are F. prolifera-
ratum (syn. moniliforme), F. oxysporum f.sp. asparagi, F.
redolens f.sp. asparagi and F. roseum (Graham 1955;
Groga and Kimble 1959; Lewis and Schoemaker 1964;
Endo and Burkholder 1971; Johnston et al. 1979; Elmer
1990; Bruna 1991). Besides asparagus, F. proliferatum can
also colonize corn stalks and persist on these and other resi-
dues as a saprophyte, sporulating above ground. In our
country, this pathogen is widely present in asparagus grow-
ing areas and other areas of potential use for this purpose,
including Southeastern Buenos Aires province. The ef-
ficacy of controlling methods for the pathogen in aspara-
gus is low due to the abundance of inocula in different
growing regions, rapid colonization of young plants by the
pathogen, and the perennial nature of the plant spe-
cies. Therefore, the development of resistant cultivars ap-
ppears to be the most viable long-term strategy for disease
control. In fact, this has been, and continues to be, a central
goal in asparagus breeding programs worldwide. Some cul-
tivars characterized as tolerant to Fusarium have been deve-
loped by classical breeding approaches, although this toler-
ance is generally limited, and the breeding process is very
slow due to the complex nature of the pathosystem, as
described earlier.

The objective was to develop cultivars with Fusarium resistance and good yield and adaptation to our harvesting conditions, a breeding project was initiated at the Instituto Nacional de Tecnología Agropecuaria (INTA) in collaboration with the Universidad Nacional de Mar del Plata (UNMdP) and the Universidad Nacional de Rosario (UNR), all of them public institutions.

Several potential resistance/tolerance sources were con-
sidered in this project: (a) populations (land races) that
grow spontaneously along wire fences and roads in various
ecological regions of our country, (b) plants from old aspara-
gus fields no longer under cultivation, (c) related spe-
cies and (d) somaclonal variation induced by in vitro culture. For (a) and (b), genetic variability for Fusarium resistance/
tolerance was expected to be present because, as Sprague
(1967) and Leppik (1970) had stated, pathogen pressure in
natural environments is presumably high because hosts and
parasites may have been associated as reciprocal selective
factors over many years. (c) and (d) were considered in this project.

This project produced the first five Argentine registered
asparagus cultivars (clonal hybrids): ‘Lucero FCA-INTA’,
‘Mercurio FCA-INTA’, ‘Neptuno FCA-INTA’, ‘Pampeano
FCA-INTA’ and ‘Sureño INITA-CA’. Besides traditional
breeding techniques, other approaches -which made use of
various biotechnologies- were investigated and applied
during the breeding process. These were:

1. Adjustment and development of protocols for in vitro cloning (micropropagation and somatic embryogene-
sis);

2. Use of cytogenetics and molecular markers to analyse
the genetic similarity of somatic embryo-derived plants with regard to donor plants, to eventually use somatic
embryogenesis as an alternative method for micro-
propagation;

3. In vitro evaluation of landraces of Southeastern Buenos
Aires province for resistance to Fusarium proliferatum;

4. Gametophyte selection for resistance to F. oxysporum f.sp. asparagi;

5. Identification of interspecific hybridization barriers between garden asparagus and the ornamental Aspara-
agus densiflorus (Kunth) Jessop cv. ‘Sprengeri’, repor-
ted as resistant to Fusarium by Stephen and Elmer
(1988) and in vitro embryo rescue to circumvent the
post-zygotic barriers in otherwise pollen-pistil compati-
ble genotypic combinations, in an attempt to develop a
strategy to incorporate the resistance once it were de-
dected;

6. Induction of somaclonal variation and in vitro selection of variants for resistance to Fusarium proliferatum
toxins.

Here, we concisely review the achievements and limitations
derived from the application of these approaches to
asparagus breeding in Argentina over the last 15 years.

ADJUSTMENT AND DEVELOPMENT OF IN VITRO CLONING PROTOCOLS

Micropropagation

Many protocols have been developed for fast and massive
cloning of specific asparagus genetic materials (among the
first, by Murashige et al. 1973; Yang and Clore 1973; Ten-
dille and Leercr 1974; Chin 1982; Conner and Fallon 1990;
Conner et al. 1992; Falavigna et al. 1985). In contrast with
other easily micropropagated species, in which explants can
develop both shoots and roots in the same medium, aspara-
gus explants have to be cultured in an initiation medium for shoot induction and, subsequently, in shoot multiplication
and rooting media. An additional drawback is that there are
strong genotype × environment interactions in asparagus in vitro cultures. In fact, and although most protocols were
developed on some similar premises and restrictions, the
methodologies are not coincident due to these interactions.
Thus, we tried to adjust a protocol for our own breeding
materials, that was successful for the first two stages (in-
duction and multiplication) but that yielded regular results
for the third (rooting) that, in further studies, could not be
improved above 57% (Raimondi et al. 1995).

Somatic embryogenesis

As proposed by Reuther (1984), somatic embryogenesis ap-
ppeared to be a valid alternative to overcoming the limita-
tions of micropropagation protocols. In fact, asparagus was
one of the earliest plant species to be regenerated by this

technique (Wilmar and Hellerdon 1968; Steward and Mapes 1971; Reuther 1977). The influence of genotype, explant type and plant growth regulators on callus induction (first step), and growth and embryogenic differentiation (in the following steps), was reported by various authors (see Raimondi et al. 2001). In our laboratory, we failed to generate somatic embryos in two selected clones of our breeding materials when following most of the published protocols (Raimondi et al. 2001).

Since reports in the literature on statistical analyses in asparagus of interactions between genotype, explant type and plant growth regulators (PGR) were lacking, possibly due to the difficulties encountered in carrying out an experiment that would include all these variables, we decided to analyze the interaction effects of several factors on callus induction, growth and embryogenic differentiation in the previously mentioned selected genotypes, in order to develop our own protocol (Raimondi et al. 2001). The interactions among genotypes, explant types, PGRs and culture batches were conspicuous at the initial culture stage, with their significance (and the significance of the main factors) decreasing in the following stages. This meant that other factors not considered in our study increasingly accounted for the observed variability after culture initiation. Our results differed from others in the literature (e.g. Levi and Sink 1991) possibly due to the levels of endogenous hormones and/or sensitivity to the same types and concentrations of exogenous PGRs of the genetic materials used in each study. The best combinations of PGRs revealed significant differences between explants obtained from in vivo and in vitro donors, with the first having the highest callus growth rates as did spear sections over lateral buds. Histological analyses of developing callus revealed that it originated from the upper third of the spear, in a subepidermic parenchymatous zone with high mitotic activity that surrounded the vascular tissue. The average frequency of embryogenic differentiation was low (< 2%), but with the best factor combination this value increased to 11%, which is similar to the reported for explants taken from microcrowns of seed-derived plantlets (10%, Saito et al. 1991), various explant types and genotypes (0-19%, Delbreil et al. 1994) and bud clusters (Kohmura et al. 1994). The differentiation took place in similar periods of time (70-90 days) for bud clusters; these periods were remarkably shorter than the required when the initial explants were lateral buds and spear sections (above 200 days). As it was also observed by Levi and Sink (1991), lateral buds and in vitro crowns formed embryogenic callus more rapidly than did spear sections in a basic medium with low auxin levels.

The regenerants analyzed were obtained from three distinct embryogenic lines, two of them derived from the same genotype. Morphologically, two plants of the second genotype exhibited a dwarf phenotype similar to the reported by Kunitake et al. (1998), whereas the rest of the plants exhibited a true-to-type phenotype. For the molecular analyses, and as a first step, 45 arbitrary 10-mer primers were screened using two independent DNA samples of each donor genotype. Of these primers, only 17 (37.8%) gave consistently reproducible banding patterns. Polymorphisms between the two donor genotypes were detected with 16 of the 17 primers, revealing that they were highly polymorphic as expected from the dioecious nature of the species, and that RAPD markers had high discriminatory power in this species. By combining a total of 77 DNA samples from the regenerants and two from the donors and the 17 selected markers, 1343 RAPD profiles were obtained and scored. Despite this large number of samples and markers, no intraclonal variation was observed regardless of whether the phenotypes of the somatic embryodervied plants were variants or true-to-type.

Cytogenetic analyses were performed in 33 of the 77 regenerants that had been molecularly analyzed to examine if the phenotypic variants were the result of genomic changes (variations in ploidy level) that were undetectable by the conventional RAPD analysis) or large chromosomal changes (also not detected with those markers).

Chromosome counts revealed that the two dwarf plants were mixoploid, with diploid and tetraploid cells in both buds and roots. Reuther and Becker (1987) had reported variations in mixoploidy in non-organogenic calluses, but had not detected mosaicism among the regenerants. In other studies, mixoploidy was detected in regenerants derived from haploid donors (Kunitake et al. 1998) and in anther and microspore tissue cultures (Feng and Wolyin 1993a, 1993b). Two phenotypically normal plants derived from one of the donor genotypes that were regenerated after a long period of subculture (200 days) were aneuploid (2n=2x+12=32 and 2n=2x+14=34), that exhibited meiotic irregularities such as multivalent configurations, lagging chromatomes in anaphase II, dicentric bridges in anaphase II, and micronuclei and restitution nuclei in telophase II. Kunitake et al. (1998) indicated that chromosome variations in embryogenic-derived plants increased with the duration of the subcultures, particularly when the donor plants had low chromosome levels (haploid and diploid). In contrast, the regenerants from the other two lines were chromosomically uniform at all ploidy levels analyzed.

Somaclonal variation is a very complex problem that requires the use of various approaches to be correctly appreciated (Fournié et al. 1997). Depending on the species under study, molecular marker analysis can be useful for genetic discrimination and to locate and isolate mutations linked to this type of markers. However, the absence of intraclonal molecular marker polymorphisms, as revealed in our study, is not a warrant of genetic stability because morphological, epigenetic, genomic and chromosomal changes may remain undetected. For this reason, it is advisable to use complementary approaches, such as morphological and somatic embryogenesis has not been widely applied for commercial purposes due to the occurrence of inherited variations in genotypes expected to be identical to the donor. This type of variation—that can be observed after a genotype has undergone tissue culture—is known as somaclonal variation (Larkin and Scowcroft 1981). Although protocols have been published for cloning different asparagus genotypes using somatic embryogenesis protocols (see Raimondi et al. 2001), somaclonal variation has been reported in only a few of them, for morphology (Kohmura et al. 1996) and chromosome number (Araki et al. 1992; Odake et al. 1993; Kunitake et al. 1998).

We tried to assess somaclonal variation with two alternative approaches: use of molecular markers to detect changes in the DNA level and cytogenetic techniques and repeated changes in chromosome structure and number. Ours (to our knowledge) was the first report in asparagus on the applicability of RAPD markers as an alternative or complementary method for assessing genetic conformity of embryogenic tissues and derived somatic seedlings to the genotypes of donor plants (Raimondi et al. 2001).

In summary, important interactions between genotype, planting type and plant growth regulators on callus induction, growth and embryogenic differentiation should be empirically established for each specific asparagus genotype. The analyses of interactions as the one carried out in our study could be of help in accomplishing this goal.

The hypothesis that somatic embryogenesis would circumspect the difficulties encountered in micropropagation cannot be accepted under the current knowledge. The applicability of published in vitro micropropagation protocols, being also dependent on the genotype, has to be ascertained in each breeding program, as has been done in France, USA, Italy, New Zealand and Argentina, among other countries (see previously cited literature).

GENETIC SIMILARITY BETWEEN DONOR AND SOMATIC EMBRYO-DERIVED PLANTS

In asparagus, somatic embryogenesis has not been widely applied for commercial purposes due to the occurrence of inherited variations in genotypes expected to be identical to the donor. This type of variation—that can be observed after a genotype has undergone tissue culture—is known as somaclonal variation (Larkin and Scowcroft 1981). Although protocols have been published for cloning different asparagus genotypes using somatic embryogenesis protocols (see Raimondi et al. 2001), somaclonal variation has been reported in only a few of them, for morphology (Kohmura et al. 1996) and chromosome number (Araki et al. 1992; Odake et al. 1993; Kunitake et al. 1998).

We tried to assess somaclonal variation with two alternative approaches: use of molecular markers to detect changes in the DNA level and cytogenetic techniques and repeated changes in chromosome structure and number. Ours (to our knowledge) was the first report in asparagus on the applicability of RAPD markers as an alternative or complementary method for assessing genetic conformity of embryogenic tissues and derived somatic seedlings to the genotypes of donor plants (Raimondi et al. 2001).

The regenerants analyzed were obtained from three distinct embryogenic lines, two of them derived from the same genotype. Morphologically, two plants of the second genotype exhibited a dwarf phenotype similar to the reported by Kunitake et al. (1998), whereas the rest of the plants exhibited a true-to-type phenotype. For the molecular analyses, and as a first step, 45 arbitrary 10-mer primers were screened using two independent DNA samples of each donor genotype. Of these primers, only 17 (37.8%) gave consistently reproducible banding patterns. Polymorphisms between the two donor genotypes were detected with 16 of the 17 primers, revealing that they were highly polymorphic as expected from the dioecious nature of the species, and that RAPD markers had high discriminatory power in this species. By combining a total of 77 DNA samples from the regenerants and two from the donors and the 17 selected markers, 1343 RAPD profiles were obtained and scored. Despite this large number of samples and markers, no intraclonal variation was observed regardless of whether the phenotypes of the somatic embryodervied plants were variants or true-to-type.

Cytogenetic analyses were performed in 33 of the 77 regenerants that had been molecularly analyzed to examine if the phenotypic variants were the result of genomic changes (variations in ploidy level) that were undetectable by the conventional RAPD analysis) or large chromosomal changes (also not detected with those markers).

Chromosome counts revealed that the two dwarf plants were mixoploid, with diploid and tetraploid cells in both buds and roots. Reuther and Becker (1987) had reported variations in mixoploidy in non-organogenic calluses, but had not detected mosaicism among the regenerants. In other studies, mixoploidy was detected in regenerants derived from haploid donors (Kunitake et al. 1998) and in anther and microspore tissue cultures (Feng and Wolyin 1993a, 1993b). Two phenotypically normal plants derived from one of the donor genotypes that were regenerated after a long period of subculture (200 days) were aneuploid (2n=2x+12=32 and 2n=2x+14=34), that exhibited meiotic irregularities such as multivalent configurations, lagging chromatomes in anaphase II, dicentric bridges in anaphase II, and micronuclei and restitution nuclei in telophase II. Kunitake et al. (1998) indicated that chromosome variations in embryogenic-derived plants increased with the duration of the subcultures, particularly when the donor plants had low chromosome levels (haploid and diploid). In contrast, the regenerants from the other two lines were chromosomically uniform at all ploidy levels analyzed.

Somaclonal variation is a very complex problem that requires the use of various approaches to be correctly appreciated (Fournié et al. 1997). Depending on the species under study, molecular marker analysis can be useful for genetic discrimination and to locate and isolate mutations linked to this type of markers. However, the absence of intraclonal molecular marker polymorphisms, as revealed in our study, is not a warrant of genetic stability because morphological, epigenetic, genomic and chromosomal changes may remain undetected. For this reason, it is advisable to use complementary approaches, such as morphological and somaclonal variation (Larkin and Scowcroft 1981).
cytogenetic analyses, to obtain more reliable information than the generated with molecular markers alone. Even though the RAPD analysis in our study was performed rigorously and only consistent band patterns were taken into account, other molecular markers available today, such as AFLP and microsatellites, should yield consistently reproducible band patterns without the need to screen (and discard) a large set of primers.

IN VITRO EVALUATION OF LANDRACES FOR RESISTANCE TO *FUSARIUM PROLIFERATUM*

Major constraints in screening for *Fusarium* resistance are the quantitative control of the trait (Ellison 1986), the genetic variability of the pathogen (various species and specific forms as well as asexual, sexual and parasexual modes of reproduction), and the dioecy and perennial nature of the crop. In addition, field and greenhouse screening techniques for this pathogen require large spaces, have high labor costs and can give inconsistent results due to cross-contamination (Stephen and Elmer 1988). In contrast, *in vitro* assays in controlled environments allow the measurement of even slight quantitative differences in polygenically controlled resistance and the handling of large number of individuals in small spaces (Weller 1986; Boldo et al. 1986; McCoy 1988) with a reduction of costs and an increase in efficiency, provided the *in vitro* results have good correlation with the behavior of plants in the field.

As previously stated, truly resistant cultivars are not available in the market, however some of them are considered “tolerant” because, even though they exhibit various degrees of susceptibility to the pathogen, the reduction in yield is not economically relevant. To search for a source of *Fusarium* resistance/tolerance, the genetic variability of three asparagus populations of different origins (two land races of Southeastern Buenos Aires province and one commercial cultivar, ‘UC 157 F1’) were screened using an *in vitro* test, and the genetic gains expected under two recurrent selection methods were estimated (Lassaga et al. 1998).

Seedlings of 69 half-sib families (HSF) from each land race and 60 HSF from the cultivar, grown in test tubes in a controlled environment (26-28°C and 16-h photoperiod), were inoculated with a 0.5 ml suspension of 10^7 conidia/ml of *F. proliferatum* and visually scored 30 days later for percentage of affected root tissue. Due to the complexity of the breeding problem, the study was carried out with a single-clonal hybrid. Expected performances and higher than for the cultivar, as expected because the coefficients for the landrace populations were rather similar.

Estimated variance components and genetic variation coefficients for the land race populations were rather similar and higher than for the cultivar, as expected because the first two are open-pollinated populations and the cultivar is the open-pollinated progeny of a clonal hybrid. Expected gains were calculated according to two selection methods, individual in both sexes and combined within and between HSF. A greater progress in breeding was expected from the land race populations because of their estimated additive variances (221.86 ± 111.55 and 325.56 ± 128.27 versus 86.72 ± 78.38).

Although the advantages of using *in vitro* selection techniques seem to be clear, it is necessary to establish the correlation of *in vitro* and *in vivo* performances before making a recommendation on the technique(s) to be used in breeding programs. In fact, and in further studies (not published), the genotypes that, *in vitro*, had the lowest percentage of affected tissue, actually developed the disease in the field. It is important to point out in this regard that, once a selected genotype is transplanted in the field, new interactions occur since the environment can affect the plant, the pathogen and their interactions.

GAMETOPHYTE SELECTION FOR RESISTANCE TO *FUSARIUM OXSPORUM F. SP. ASPARAGI*

Provided that some adaptive traits are determined by genes that are expressed in both the sporophytic and the gametophytic generations (reviewed in Ottaviano and Mulcahy 1989), the utilization of a selective agent on male gametophytes is likely to be positively correlated with changes in the next sporophytic generation. Consequently, the selection process in plant breeding could be accelerated (Hormaza and Herrero 1996). Based on this hypothesis, and on the fact that *Fusarium* spp. produce toxins that are involved in pathogenesis and induce lesions *per se*, we investigated the viability of increasing resistance to *Fusarium* in asparagus with the use of a fungal toxic culture filtrate (CF) as the selective agent on gametophytes. As a preliminary study, and because no information was available in asparagus, the effects of a toxic CF obtained from a *F. oxysporum* f.sp. asparagi strain cultured *in vitro* were evaluated on four land race genotypes – two susceptible female genotypes and one tolerant and one susceptible male genotypes – both *in vitro* and *in vivo* (Pontaroli et al. 2000). *In vitro*, the CF did not affect either pollen germination or tube growth of the tolerant genotype, but decreased pollen germination of the susceptible genotype as compared with the respective control. This suggested that the percentage of pollen germination in a toxic medium might be correlated with the plant response to the pathogen. *In vivo*, pollen germination and tube growth were negatively affected by the CF in all combinations; furthermore, several abnormalities in pollen tube growth were observed in some combinations. Hence, it was observed that asparagus pollen was not insensitive to the CF *in vivo*.

Gametophyte selection was then evaluated in the asparagus/*Fusarium* pathosystem to determine whether the application of the selective agent *in vivo* could increase selection efficiency (Pontaroli and Camadro 2001). Two susceptible female plants and one tolerant and one susceptible male plant were used in controlled crosses. Before pollination, a drop of a germination vehicle with CF or without it was applied to the stigmas. Some pollinated pistils were fixed and analyzed by fluorescence microscopy; the rest were left on the plant for seed production. Fifty to 200 seeds were obtained per treatment combination (male plant × female plant × pollination vehicle). The derived plantlets were inoculated *in vitro* with a conidia suspension (Lassaga et al. 1998) and evaluated for disease symptoms.

As a result, the application of CF to stigmas prior to pollination reduced pollen germination and tube growth as compared with untreated controls, regardless of the genotypes. It also decreased the number of seeds per pollination as compared with the controls, but only when the susceptible genotype was the pollinator. Moreover, the application of CF to the stigma increased both the resistance to *Fusarium* in the progenies and the percentage of selected individuals with respect to the controls only when the tolerant genotype was the pollinator, independently of the genotype of the male parent. This indicated that the CF affected mainly the male gametophytes, and that the tolerant male genotype was segregating for polygenes conferring resistance.

Our results, in line with those obtained for other traits and species (reviewed in Ottaviano and Mulcahy 1989 and Hormaza and Herrero 1996), provided the first evidence regarding the feasibility of increasing resistance to *Fusarium* *in vivo* and root resistance in asparagus by gametophyte selection. However, important issues remain unanswered, i.e. whether the reported response is widely observed in the species, and whether the progenies derived from gametophyte selection and further selected *in vitro* are actually resistant to *Fusarium* when put in the field. Future investigations on this matter are warranted.
INTERSPECIFIC HYBRIDIZATION BARRIERS BETWEEN GARDEN ASPARAGUS AND THE
ORNAMENTAL A. DENSIFLORUS CV. 'SPRENGERI'

Breeding barriers

The genus Asparagus is composed of 150 species that vary in ploidy level, sex expression, morphology, and utility, among other traits. The only source of genetic resistance to Fusarium reported in literature is the ornamental monoeocious species Asparagus densiflorus (Kunth) Jessop cv. ‘Sprengeri’ (spr, 2n=6x=60) and cv. ‘Myersii’ (mye, 2n=4x=40) (Stephens and Elmer 1988). Both botanical cultivars exhibited hypersensitive cell death in soil inoculation experiments and this response was associated with restriction of fungal growth and activation of two enzymes involved in defense mechanisms: peroxidase and phenylalanine ammonia-lyase (He et al. 2001).

Unfortunately, controlled crosses between the two species either directly or involving bridge species have not been successful (McCollum 1988). It has to be taken into account that the process of speciation leads to the development of reproductive isolation barriers that maintain the integrity of species by restricting the flow of genes from one to another. These barriers can be classified into two categories: pre- and post-zygotic. In the first type, pollen does not germinate on the stigma, the pollen tube does not completely traverse the style, or the male gamete does not fuse with the egg, even though the pollen tube reaches the ovary. In the second type of barrier, the embryo, endosperm fuses with the egg, even though the pollen tube reaches the ovary. The inbreed type of barrier, the embryo, endosperm or both do not develop normally, or if they do, the F1, F2 or ovary. In the second type of barrier, the embryo increases their length from 35 μm at the initiation of culture (similar to mature fruits), but seed formation was incomplete. Transfer of ovules to other media was necessary to promote embryo development. The interspecific embryos increased their length from 35 μm at the initiation of culture to 1,900 μm after 120 days of culture, but seedlings were not obtained. Histological studies revealed differentiation of protoderm only. The failure of the embryos to complete differentiation and morphogenesis was probably due to a lack of or imbalance of critical metabolite(s) in the media or to a genetic cause (Marcellán and Camadro 2000).

In vitro embryo rescue to circumvent post-zygotic barriers

In vitro immature embryo rescue, by culturing zygotic embryos, ovules or ovaries in a medium that substitutes for the collapsed endosperm, appears to be a very promising technique to circumvent endosperm barriers and produce interspecific hybrids. In fact, there have been several examples of successful application of this technique over the last 50–60 years, in genera such as Brassica (Inomata 1977, 1979), Glycine (Broué et al. 1982), Helianthus (Espmasse et al. 1991; Serieys 1992), Lilium (Van Tuyt et al. 1991; Lim et al. 2008) and Lycopersicon (Alexander 1956 in Raghavan 1976) to cite a few examples. Since no information was available on the use of this technique in Asparagus, we carried out experiments to test in vitro embryo rescue. Both ovule and ovary culture were attempted in this work because the rescue of interspecific embryos in Asparagus has to be done early, when the embryos are very small (25 μm long in the spr x off crosses and 35 μm long in the off x spr ones) and difficult to manipulate. In addition, the off x spr direction was preferred to the spr x off one, due to the larger ovule size of off, the greater degree of embryo development before abortion and the lack of cross-incompatibility at the pollen-pistil level. Controlled interspecific crosses were made and 2,032 ovules and 826 ovaries were cultured three days after pollination under various culture media and incubation conditions. Ovaries cultured for 60 days became red (similar to mature fruits), but seed formation was incomplete. Transfer of ovules to other media was necessary to promote embryo development. The interspecific embryos increased their length from 35 μm at the initiation of culture to 1,900 μm after 120 days of culture, but seedlings were not obtained. Histological studies revealed differentiation of protoderm only. The failure of the embryos to complete differentiation and morphogenesis was probably due to a lack of or imbalance of critical metabolite(s) in the media or to a genetic cause (Marcellán and Camadro 2000).

The failure of the endosperm to develop normally is of common occurrence in interplloid intra- and inter-specific crosses in some genera such as Solanum (Johnston et al. 1980; Camadro and Masueilli 1995), Lycopersicon (Cooper and Brink 1945), Avena (Nishiyama and Yabuno 1978), Gossypium (Stephens 1942), Zea (Cooper 1951), Brassica (Nishiyama and Inomata 1966), Triticum (Watkins 1927 in Brink and Cooper 1947). The collapse of the endosperm has also been observed in 2x x 4x crosses in off (Wagner and Ellison 1964).

INDUCTION OF SOMA CLONAL VARIATION AND IN VITRO SELECTION FOR RESISTANCE TO FUSARIUM PROLIFERATUM TOXINS

Among the strategies adopted to address the complexity of the asparagus/Fusarium pathosystem and to facilitate the breeding process, we investigated the development of in vitro selection techniques. These techniques have allowed the achievement of significant progress in the control of diseases and disorders (reviewed in Crino 1997, and Remotti 1998 among others). Many of them aim to exploit somaclonal variation, an otherwise undesirable phenomenon when cloning elite genetic materials through micropropagation or somatic embryogenesis, as it was discussed earlier in this review. However, there was little information as to whether useful somaclonal variation could be induced and selected for increasing Fusarium resistance in asparagus. Therefore, as a first step, we adjusted callus growth and organogenesis (i.e. shoot and root development) from asparagus long-term callus cultures to establish a suitable protocol for a prospective in vitro selection program (Pon taroli and Camadro 2005a). Two elite clones of cultivar Argenteuil, both susceptible to Fusarium (the same as used by Raimondi et al. 2001), were used in this study. After initiating callus cultures from square sections in media with different auxin levels, an adequate growth rate and appearance of calluses was obtained when using 1.5 mg.fL-1 2,4-D in the media. Shoot primordia induction from >18-months-old calluses was evaluated on several media, varying in auxin and cytokinin type and concentration, sucrose, agar and salt concentration, and inclusion of antioxidants. As a result, the percentage of shoot primordia induction ranged from 0 to 89%, and the average number of shoot primordia per callus, from 0 to 8.6, depending on the media × genotype combination. Once shoot primordia were induced and shoots developed, several different rooting media were tested. The percentage of root induction varied between 0 and 100%, again depending on the media × genotype combination. Overall, a suitable protocol for the establishment of long-term callus cultures and further plant regeneration by organogenesis was produced for two of our elite breeding genetic materials. In parallel with the results obtained in our laboratory when adjusting the micropropagation and somatic embryogenesis techniques for mass propagation of such materials (Raimondi et al. 1995, 2001), important medium × genotype interactions were detected here, adding evidence to the need of adjusting in vitro culture protocols for specific asparagus genotypes.

Before applying in vitro selection it is essential to identify the conditions which favor somaclonal variation and also to characterize such variation. Whereas information on somaclonal variation in asparagus was available for plants regenerated by somatic embryogenesis (e.g. Kunitake et al. 1998; Raimondi et al. 2001), only a few cytogenetic studies had been published for plants regenerated by organogenesis from long-term callus cultures (Reuther and Becker 1987; Reuther 1990). Based on the hypothesis that organogenesis favors the occurrence of somaclonal variation as compared to somatic embryogenesis (Duncan 1997), we considered that the results obtained by Raimondi et al. (2001) would not necessarily apply to our situation, even though the same genotypes were used in both their and our works. Therefore, somaclonal variation in plants regenerated by organogenesis from long-term cultured calluses (Pon taroli and Camadro 2005a) was characterized by plant phenotype, ploidy, meiotic behavior, pollen viability, fruit and seed set, and amplified fragment length polymorphism (AFLP) profiles (Pon taroli and Camadro 2005b). Phenotypic deviations from the donors were detected in foliage color, flower size, and cladode and flower morphology. Ploidy changes were observed in 37.8% of the 37 regenerants studied. Meiotic alterations in 12 out of 21 regenerants included laggards, dicentric bridges, micronuclei, restitution nuclei and polyads. Of the 408 AFLP markers screened in 43 regenerants and the donor clones, 2.94% showed polymorphism between regenerants and their respective donor clone. High pollen viability was observed in the 22 regenerants analyzed. All crosses between one female plant and 35 regenerants, as well as the controls, produced fruits and seeds; however, no plump seeds resulted in 35.3% of the crosses with regenerants, and no seeds germinated in 12.5% of those with apparently normal seeds. Fruit and seed set was similar in crosses with diploid regenerants with normal meiosis and the controls but was significantly lower in crosses with diploid and polyploid regenerants with abnormal meiosis.

In some cases, differences in several to all the traits studied were detected among regenerants derived from the same callus. It is particularly important to consider this variation when regenerating plants from callus after in vitro screening because, according to our results, many calluses seem to exhibit a heterogeneous (epi)genetic and/or chromosomal constitution. This latter type of culture that can eventually be manifested in the regenerants.

In summary, the different tools used by us in this study (Pon taroli and Camadro 2005b) proved useful and reliable for assessing somaclonal variation in asparagus, and the conspicuous variability detected led us to conduct further research on the establishment of an in vitro selection program (Pon taroli 2005).

An obvious prerequisite for carrying out in vitro selection is the availability of an effective selective agent. In asparagus, it had been shown that the culture filtrate (CF) of F. oxysporum f.sp. asparagi displayed toxicity to in vitro-grown plantlets (Nik 1993), mesophyll cell cultures (Jullien 1988) and pollen (Pon taroli et al. 2000, described earlier in this review). However, we did not know whether a CF obtained from F. proliferatum, the other Fusarium species we were working with, would display such toxicity. Therefore, a CF of F. proliferatum was characterized regarding its mycotoxin content and toxicity to asparagus in vitro cultures (Pon taroli 2005). The CF, in which fumonisins B1 (0.88 µM) was detected, (1) diminished callus induction, fresh weight and growth rate, and increased the percentage of callus area with necrosis; (2) was highly toxic to cell suspensions; and (3) induced typical symptoms in roots of in vitro-grown plantlets. This demonstrated that the CF contained metabolites and/or toxins involved in pathogenesis. This assertion was reinforced by the fact that fumonisins B1, a toxin present in asparagus plants naturally infected with F. proliferatum (Logrieco et al. 1998), and known to produce necrotic lesions in several species such as tomato and corn (Lamprecht et al. 1994) and Arabidopsis (Stone et al. 2000), was determined in the CF.

Long-term callus cultures in the presence of CF and plant regeneration from selected calluses were then performed, aiming to increase Fusarium resistance in the same two (susceptible) clones used in our previous studies. Fifty-nine clones of clone ‘265’ and 115 of ‘357’ were selected after the culture period; of these, respectively seven and 26 formed, aiming to increase plant regeneration from selected calluses were then performed on several media, varying in auxin and cytokinin type and concentration, sucrose, agar and salt concentration, and inclusion of antioxidants. As a result, the percentage of shoot primordia induction ranged from 0 to 89%, and the average number of shoot primordia per callus, from 0 to 8.6, depending on the media × genotype combination. Once shoot primordia were induced and shoots developed, several different rooting media were tested. The percentage of root induction varied between 0 and 100%, again depending on the media × genotype combination. Overall, a suitable protocol for the establishment of long-term callus cultures and further plant regeneration by organogenesis was produced for two of our elite breeding genetic materials. In parallel with the results obtained in our laboratory when adjusting the micropropagation and somatic embryogenesis techniques for mass propagation of such materials (Raimondi et al. 1995, 2001), important medium × genotype interactions were detected here, adding evidence to the need of adjusting in vitro culture protocols for specific asparagus genotypes.

Before applying in vitro selection it is essential to identify the conditions which favor somaclonal variation and also to characterize such variation. Whereas information on somaclonal variation in asparagus was available for plants regenerated by somatic embryogenesis (e.g. Kunitake et al. 1998; Raimondi et al. 2001), only a few cytogenetic studies had been published for plants regenerated by organogenesis from long-term callus cultures (Reuther and Becker 1987; Reuther 1990). Based on the hypothesis that organogenesis favors the occurrence of somaclonal variation as compared to somatic embryogenesis (Duncan 1997), we considered that the results obtained by Raimondi et al. (2001) would not necessarily apply to our situation, even though the same genotypes were used in both their and our works. Therefore, somaclonal variation in plants regenerated by organogenesis from long-term cultured calluses (Pon taroli and Camadro 2005a) was characterized by plant phenotype, ploidy, meiotic behavior, pollen viability, fruit and seed set, and amplified fragment length polymorphism (AFLP) profiles (Pon taroli and Camadro 2005b). Phenotypic deviations from the donors were detected in foliage color, flower size, and cladode and flower morphology. Ploidy changes were observed in 37.8% of the 37 regenerants studied. Meiotic alterations in 12 out of 21 regenerants included laggards, dicentric bridges, micronuclei, restitution nuclei and polyads. Of the 408 AFLP markers screened in 43 regenerants and the donor clones, 2.94% showed polymorphism between regenerants and their respective donor clone. High pollen viability was observed in the 22 regenerants analyzed. All crosses between one female plant and 35 regenerants, as well as the controls, produced fruits and seeds; however, no plump seeds resulted in 35.3% of the crosses with regenerants, and no seeds germinated in 12.5% of those with apparently normal seeds. Fruit and seed set was similar in crosses with diploid regenerants with normal meiosis and the controls but was significantly lower in crosses with diploid and polyploid regenerants with abnormal meiosis.

In some cases, differences in several to all the traits studied were detected among regenerants derived from the same callus. It is particularly important to consider this variation when regenerating plants from callus after in vitro screening because, according to our results, many calluses seem to exhibit a heterogeneous (epi)genetic and/or chromosomal constitution. This latter type of culture that can eventually be manifested in the regenerants.

In summary, the different tools used by us in this study (Pon taroli and Camadro 2005b) proved useful and reliable for assessing somaclonal variation in asparagus, and the conspicuous variability detected led us to conduct further research on the establishment of an in vitro selection program (Pon taroli 2005).

An obvious prerequisite for carrying out in vitro selection is the availability of an effective selective agent. In asparagus, it had been shown that the culture filtrate (CF) of F. oxysporum f.sp. asparagi displayed toxicity to in vitro-grown plantlets (Nik 1993), mesophyll cell cultures (Jullien 1988) and pollen (Pon taroli et al. 2000, described earlier in this review). However, we did not know whether a CF obtained from F. proliferatum, the other Fusarium species we were working with, would display such toxicity. Therefore, a CF of F. proliferatum was characterized regarding its mycotoxin content and toxicity to asparagus in vitro cultures (Pon taroli 2005). The CF, in which fumonisins B1 (0.88 µM) was detected, (1) diminished callus induction, fresh weight and growth rate, and increased the percentage of callus area with necrosis; (2) was highly toxic to cell suspensions; and (3) induced typical symptoms in roots of in vitro-grown plantlets. This demonstrated that the CF contained metabolites and/or toxins involved in pathogenesis. This assertion was reinforced by the fact that fumonisins B1, a toxin present in asparagus plants naturally infected with F. proliferatum (Logrieco et al. 1998), and known to produce necrotic lesions in several species such as tomato and corn (Lamprecht et al. 1994) and Arabidopsis (Stone et al. 2000), was determined in the CF.
this resistance and resulted in a susceptible phenotype. Callus selection for resistance to fungal metabolites not related to pathogenesis but present in the CF could have also occurred (Remotti 1998). Although there are several reports on the generation of pathogen resistant materials through in vitro selection in a high number of species, it could be additionally hypothesized that callus resistance to the CF and plant response to the fungus in vivo are independent characters.

Even though no significant differences in the average percentage of root area with symptoms were detected between lines and donor clones, an important variation between replications was observed in some of the lines, showing that, if analyzed individually, some of those regenerants had a much more resistant phenotype than the donor clones. The experimental error was minimized by a strict environmental control and an adequate design; rather, it is feasible that the regenerants derived from the same line were not precisely ‘replications’ (as they were considered in this study), but exhibited a certain level of (epi) genetic variation and/or chromosomal variation, as it was observed by this study), but exhibited a certain level of (epi) genetic

CONCLUDING REMARKS

Asparagus breeding is a long process when conventional methods are used because the species is dioecious and, being also a perennial, field evaluations have to be conducted for several years to obtain reliable data on the expected performance over longer periods of time. Notwithstanding, asparagus breeders can take advantage of the two modes of reproduction of the species and a handful of already tested biotechnologies both to introduce and/or generate genetic variability (in vitro embryo rescue after wide hybridization, callus induction for selection and/or generation of somaclonal variation) and to clone elite genotypes (micropropagation and somatic embryogenesis). In doing so, it is important to take into account that (a) important genotype × environment interactions occur in vitro, establishing the need to adjust already published protocols to specific genotypes; (b) the asparagus Fusiarrum pathosystem is very complex, and (c) the in vitro results do not necessarily correlate with the in vivo behavior.

The in vitro techniques described in this paper can be carried out with simple facilities and equipment. They should be incorporated into breeding programs if the advantages they entail (high multiplication rates of elite genotypes in small spaces, production of pathogen-free planting genetic materials, possibility of generation of somaclonal variability not present in the crop) overcome the disadvantages they could pose by genotype × environment (medium composition and culture conditions) interactions (with strong interactions, the time required to adjust a protocol could demand one full time person for an undetermined period of time).

ACKNOWLEDGEMENTS

The financial support of UNMdP, INTA and CONICET is acknowledged.

REFERENCES

Brink RA, Cooper DC (1947) The endosperm in seed development. Botanical Review 13, 423-541

Bruna AV (1991) Marchitez y pudriciones de corona y raices en espargos (Asparagus officinalis L.) causado por Fusarium oxysporum Schlecht. f. sp. asparagi Cohen. Agricultura Técnica (Chile) 51, 52-54

Cooper DC (1951) Caryopsis development following matings between diploid and tetraploid strains of Zea mays. American Journal of Botany 38, 702-708

Cooper DC, Brink RA (1945) Seed collapse following matings between diploid and tetraploid races of Lycopersicon pimpinellifolium. Genetics 30, 376-401

Duncan RR (1997) Tissue culture-induced variation and crop improvement. Advances in Agronomy 58, 201-240

Elmer WH (1990) Fusarium oxysporum as a causal agent in fusarium crown and root rot of asparagus (Asp.). Plant Disease 74, 938

Endo RM, Burkholler EC (1971) The association of Fusarium moniliforme with the crown rot complex of asparagus. Phytopathology 61, 891

Falavigna A (1979) Pure lines of Asparagus officinalis obtained by in vitro anther culture in Italy. Proceedings of 5th International Asparagus Symposium, Giezenheim, Germany, pp 91-96

Feng XR, Wolyn DJ (1993a) Genotype, temperature, and sampling date affect embryogenesis in asparagus anther culture. HortScience 28, 216-217

Feng XR, Wolyn DJ (1993b) Development of haploid asparagus embryos from liquid cultures of anther-derived calli is enhanced by ancymidol. Plant Cell Reports 12, 281-285

Grogan RG, Kimble KA (1959) The association of Fusarium wilt with the asparagus decline and replant problem in California. Phytopathology 49, 122-125

pestrix x B. oleracea in culture in vitro of excised oviaries. II. Development of excised oviaries in various culture media. Japan Journal of Breeding 29, 115-120.

