Biofilm Morphologies of Plant Pathogenic Fungi

Michael W. Harding1* • Lyriam L. R. Marques2 • Ronald J. Howard3 • Merle E. Olson4

1 Innovotech Inc., 301 Horticultural Station Road East, Brooks, Alberta, T1R 1E6 Canada
2 HydroQual Laboratories Ltd., #4, 6125-12th Street S.E., Calgary, Alberta, T2H 2K1 Canada
3 Alberta Agriculture and Rural Development, Crop Diversification Centre South, 301 Horticultural Station Road East, Brooks, Alberta, T1R 1E6 Canada
4 Innovotech Inc., Suite 101, 2011 – 94 Street, Edmonton, Alberta, T6N 1H1 Canada

Corresponding author: * michael.harding@innovotech.ca

ABSTRACT

Microbial biofilms often complicate management of bacterial and fungal diseases. While much is known about biofilms formed by bacteria and yeasts, few descriptions of biofilms formed by filamentous fungi are available. A novel biofilm culture technology, the BEST Assay™, was used to culture biofilms of plant pathogenic fungi in vitro. Biofilm growth was characterized at 6-, 12-, 24-, and 48 h via scanning electron microscopy and compared with fungal growth seen in planta. Descriptions of the in vitro and in planta biofilm morphologies of Fusarium sp., Verticillium dahliae, and Botrytis cinerea are presented. The surface-associated growth of these plant pathogenic fungi is consistent with criteria for biofilm morphology indicating that filamentous fungi likely do form biofilms on host plant surfaces.

Keywords: biofilm development, filamentous fungal biofilms, plant-associated biofilms

INTRODUCTION

Biofilm research has led to many important discoveries in environmental, medical and industrial microbiology. A biofilm can be simply described as an assemblage of microorganisms within a self-produced polymeric matrix and growing in association with a biotic or abiotic surface. Additional characteristics have been associated with biofilm formation, such as in gene expression and resultant phenotypic changes. The most commonly described phenotype ascribed to biofilms is an increased tolerance to chemical or antibiotic treatments (Costerton et al. 1999; Ceri et al. 2001; Olson et al. 2002).

Bacteria and yeast biofilms that have a role human diseases have been most extensively studied, however microbes associated with plant tissues also form biofilms (Marques et al. 2002; Dow et al. 2003; Morris and Monier 2003; De Boer et al. 2004; Harrison et al. 2005a) and biofilm formation has been suggested to play a role in attachment (Matthysse et al. 2005), colonization (Marques et al. 2002),
pathogenicity (Walker et al. 2004), survival in harsh conditions (Monier and Lindow 2003), dispersal and virulence (Dow et al. 2003), vector transmission (Newman et al. 2004), and resistance to host defense mechanisms (de Souza et al. 2005). To date there have been sufficient published works on plant-associated biofilms to warrant several excellent reviews on the subject (Ramey et al. 2004; Danhorn and Faqua 2007; Rudrappa et al. 2008). Lent reviews on the subject (Ramey et al. 1999). The BEST Assay™ was performed as previously described (Marques et al. 2006; Harding et al. 2009). Briefly, the inoculum was prepared by scraping mycelia from a sporulating culture growing on an agar plate, and homogenizing (2 × 30-sec) in sterile phosphate buffered saline in a Waring blender. Homogenate was filtered through two layers of cheesecloth and adjusted to an estimated 10^5 cfu/mL using a haemacytometer. Cultures were allowed to recover for 1 h at room temperature after which 5 mL were placed into each well of a 12-well plate. A BEST Assay™ lid, with 12 wood pegs attached (Fig. 1), was used to cover the 12-well plate base. Plates were incubated on rotary shaker at ~75 rpm and at room temperature for 72 h. Pegs were sampled at 6-, 12-, 24-, 48- and 72 h.

Scanning electron microscopy

All samples were prepared for SEM using chemical fixation. Briefly, colonized wood pegs from the BEST Assay™ were collected and air-dried in a fume hood for 30 min in an open Petri dish. Primary fixation was done in a 7-mL scintillation vial containing 2-5 mL of primary fixative [3% glutaraldehyde (Electron Microscopy Sciences, USA)] +1.6% paraformaldehyde (Electron Microscopy Sciences, USA) in 0.1 M Na Cacodylate buffer pH = 7.5 (Electron Microscopy Sciences, USA), or enough to completely cover all tissues. Vials were capped and incubated at room temperature in a fume hood for at least two hours. Pegs were then removed from vials and air-dried in an open Petri dish in a fume hood overnight. Infested plant tissues were excised with a scalpel, placed in a 7-mL scintillation vial and covered with primary fixative (as previously described) and incubated in a fume hood at room temperature at least two hours. Tissues were rinsed three times (15 min each) in 0.1 M Na Cacodylate buffer (Electron Microscopy Sciences, USA). After rinsing, 1-3 mL (or just enough to cover plant tissues) of 1% osmium tetroxide (Electron Microscopy Sciences, USA), or enough to completely cover all tissues. Vials were incubated in a fume hood at room temperature for at least 1 h. Rinsing with buffer was repeated (as above) and samples were dehydrated through a graded ethanol (Fisher Scientific, Canada) series with 10 min rinses each in ethanol at concentrations of 35%, 50%, 70%, 85%, 95% and two rinses in absolute ethanol). If samples were stored overnight they were immersed in 35% EtOH and kept at 4°C. All samples, both in vitro and in planta, were critical point dried, mounted onto aluminum stubs, sputter coated, and scanned in a Philips C-60 ESEM.

RESULTS AND DISCUSSION

Fungal biofilms in BEST Assay™

Subsequent to contact with the wood pegs fungal spores became attached to the pegs and germinated. After 6 h, spore attachment, germination, germing extension and hyphal development across the surface of the wood was observed (Fig. 2A, 2E, 2I). Spores and germlings of some filamentous fungi are known to secrete extracellular polymeric substances or ‘mucilage’ to assist in adhesion (Hamer et al. 1998; Braun and Howard 1994). By 12 h, hyphae began to grow and branch to form a

MATERIALS AND METHODS

Isolation of fungi

Diseased potato and tomato plants were collected from commercial fields or greenhouses respectively, placed in plastic bags with moist paper towels, and transported in a cooler to the labo-
monolayer or microcolony at which time hyphae appeared intertwined and the remains of extracellular polymeric substances (EPS) were visible (Fig. 2B, 2F, 2J). It is important to note that a polymeric matrix would be desiccated and collapsed after chemical fixation, dehydration and drying. Well-preserved EPS of fungal biofilm have been visualized using cryofixation protocols in preparation for SEM and/or cryo-SEM imaging (Beauvais et al. 2007; Villena and Gutiérrez-Correa 2007; Villena et al. 2010). The artifacts that remain from the EPS after chemical fixation have also been described for fungal biofilms (Elvers et al. 2001; Mowat et al. 2008), and are very similar in appearance to those observed in this study.

At 24 h, biofilm development had progressed and hyphae were more frequently observed to be intertwined and beginning to form layered and/or aggregated clusters, often bundled together with more abundant EPS (Fig. 2C, 2G, 2K). Finally, in the latter stages of biofilm development (48 h), large cables of bundled hyphae and deeply layered sheets of intertwined hyphae punctuated by channels were observed within abundant EPS (Fig. 2D, 2H, 2L). During this final stage, sporulation was occasionally observed (not shown). These results are consistent with biofilm development models for filamentous fungi (Harding et al. 2009b). Specifically, evidence for all six stages of biofilm development were observed, namely; (I-II) adsorption and active attachment of spores, (III) microcolony formation with hyphal branching and surface colonization, (IV) hyphal-hyphal adhesion, layering and bundling permeated by channels and encased in abundant EPS material, (V) maturation and formation of reproductive structures, (VI) potential dispersal via spore production.

Fungal biofilms in planta

When diseased plant tissues, heavily infested with filamentous fungal growth, were examined, fungal morphologies observed were similar to mature biofilms seen on the BEST Assay™ wood pegs after 48 h. Fungal hyphae in planta had undergone bundling, layering and appeared to have produced abundant extracellular matrix (Fig. 3). For example, *Fusarium* sp. growth in potato showed hyphal layering and remains of what appeared to be abundant EPS (Fig. 3B, 3C). This was comparable to *Fusarium* sp. growth in the BEST Assay™ after 12 to 24 h (Fig. 2B, 2C). *Botrytis cinerea* growing on tomato stem was heavily layered, with large bundles of hyphae punctuated by open channels and significant exopolymeric matrix (Fig. 3E, 3F), similar to the growth of *B. cinerea* in the BEST Assay™ after 24 to 48 h (Fig. 2K, 2L).

CONCLUSIONS

The BEST Assay™ allows for consistent and rapid formation of surface-associated fungal growth under liquid shear force biofilms in a high throughput, multi well plate format. Additionally, the *in vitro* biofilms had high morphological similarity to those of *in planta* biofilms, indicating that fungal growth using the BEST Assay™ may accurately represent growth on or within host tissues. Although surface-associated growth by filamentous fungi has rarely been described as biofilm, we found that the morphologies of three filamentous fungi resembled biofilms when growing on surfaces within host plants and on wood pegs in the BEST Assay™ plates. For example, the fungal cells form a surface-associated community that appeared to be encased in a polymeric matrix. Stages and appearances of surface-associated fungal growth were consistent with microbial biofilm criteria and models indicating that some filamentous fungi appear capable of forming biofilms. Perhaps plant pathogenic fungi, growing as biofilms, display increased tolerances to chemical and physical treatments, similar to phenotypes seen in bacteria and yeast. If so, laboratory testing and development of plant disease management strategies should be done using biofilm cultures, such as those formed in the MBEC Assay™ and BEST Assay™, in order to more closely approximate efficacy of treatments in actual disease management surfaces and conditions.
ACKNOWLEDGEMENTS

We thank Mrs. Liz Middlemiss for technical assistance with scanning electron microscopy preparation and visualization. We gratefully acknowledge in-kind and/or financial support of this work from: Innovotech Inc.; Alberta’s Agriculture Funding Consortium (AFC), through the Alberta Agriculture Research Institute (AARI) and Alberta Crop Industry Development Fund (ACIDF); Alberta Ingenuity Fund (LLRM and MH); and Alberta Agriculture and Rural Development (ARD).

REFERENCES

Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JI (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proceedings of the National Academy of Sciences USA 100, 10995-11000
Eivers KT, Leeming K, Lappin-Scott HM (2001) Binary culture biofilm for...
mation by Stenotrophomonas maltophilia and Fusarium oxysporum. Journal of Industrial Microbiology and Biotechnology 26, 178-183

Harding MW, Howard RJ, Olson ME (2009a) Impact of microbial biofilms and importance of surface testing methodology in plant pathology research. Canadian Journal of Plant Pathology 33, 122

Harding MW, Marques LLR, Howard RJ, Olson ME (2009b) Can filamentous fungi form biofilms? Trends in Microbiology 17, 475-480

Harrison JJ, Turner RJ, Marques LLR, Ceri H (2005a) Biofilms: A new understanding of these microbial communities is driving a revolution that may transform the science of microbiology. American Scientist 93, 508-515

