TDZ-induced Callus and Adventitious Shoot Formation from Leaf, Petiole and Calyx Explants of Tigridiopalma magnifica (Chen)

Changxin He¹ ² ˚, Binxuan Wu³ ˚, Guohua Ma¹ ˚

¹ Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
² Graduate University of Chinese Academy of Sciences, Beijing 100049, China
³ College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China

Corresponding author: * magh@scib.ac.cn ˚ These authors contributed equally to the work

ABSTRACT

Tigridiopalma magnifica Chen is an endemic, critically endangered species found only in Guangdong Province, China. Unfortunately, economic exploitation has impacted severely on its natural environments in mountain areas in recent years, disrupting fragile plant communities and sharply decreasing distribution of the species. To better protect but also allow sustainable utilization of this critically endangered ornamental plant, we report on an efficient in vitro mass propagation and plant regeneration protocol from original in vivo explants. Callus and adventitious shoot formation was induced on calyx explants incubated on induction media (Murashige and Skoog) containing thidiazuron (TDZ) alone or in combination with 6-benzyladenine (BAP). Leaf and petiole explants from in vitro grown plants also induced callus and adventitious shoot formation on induction media containing 4.4-22.0 μM TDZ alone or in combination with 2.25 μM BAP or 5.37 μM α-naphthaleneacetic acid (NAA), respectively. Our study shows that TDZ plays a crucial role in the induction of adventitious shoots from calyx, leaf and petiole explants. Once adventitious shoots were induced, shoots were able to be propagated and subcultured for mass proliferation on MS media containing 1.07 μM NAA and 4.45 μM BAP or 1.07 μM NAA and 4.6 μM cytokinin, respectively. Root formation was achieved on ½MS medium containing 0.49-4.92 μM 3-indolebutyric acid or 0.54-5.37 μM NAA; 99% of rooted plants survived establishment in soil.

Keywords: Tigridiopalma magnifica (Chen), thidiazuron, plant regeneration

Abbreviations: BAP, 6-benzyladenine; 2,4-D, 2,4-dichlorophenoxyacetic acid; IBA, indole-3-butyric acid; NAA, α-naphthaleneacetic acid; KT, cytokinin; TDZ, thidiazuron

INTRODUCTION

Tigridiopalma magnifica Chen is also called ‘bear’s paw’ or ‘large lotus pod’ and was first found in the 1970’s in Guangdong Province, China (Chen 1978). Tigridiopalma (Melastomaceae) is a monospecific genus and T. magnifica is the only known example of this Chinese endemic species (Xu 1998). It is found only in the Big Fog Mountain/ Huangzhang Natural Protection Zones between Yangchun County and Xinyi County in Guangdong Province (Chen 1978; Wang et al. 2005). T. magnifica is currently listed as a critically endangered species (Chen 1984; Xing 2005), partly because its natural distribution area is very narrow (it is only found in an area of < 1.0 km² in the core zone of Huangzhang) but also due to increasing exploitation of adjacent original forest in recent years for cultivation of Citrus (orange) and fast-growing eucalypts. Cultivation of crops has resulted in a sharp decrease in the extremely fragile natural environment of T. magnifica; consequently, its continued existence in the wild can no longer be guaranteed. This unusual plant is highly adapted to its natural environment; it only grows on rocks in moist shadowy closed forested valleys where other understory plant species can seldom grow. Leaves of T. magnifica are large (up to 100 cm in diameter) when fully grown; and its flowers are small but brightly mauve coloured. T. magnifica has a very high ornamental and landscape value and can be used as an indoor ornamental plant (Zeng 2005; Zhao 2006). Propagation and regeneration of T. magnifica via seed sowing and immature leaf in vivo has been reported (Li et al. 2006; Zeng et al. 2008). However, adventitious shoot formation induced from leaf, petiole or floral explants of T. magnifica has never been reported before. In this report we present details of an efficient shoot mass propagation and plant regeneration system in T. magnifica developed from calyx, leaf and petiole explants respectively via callus induction and adventitious shoot formation.

MATERIALS AND METHODS

Establishment of an adventitious shoot propagation system from floral explants

Plants of T. magnifica were grown in pots at the Introduction and Domestication Nursery of South China Botanical Garden, Guangzhou. Immature flowers (3-4 mm long) were collected in September (2006) and sterilized in 70% (w/v) alcohol for 10 s and 0.1% (w/v) mercuric chloride for 9 min then rinsed in sterilized water 3 times. Flowers were taken off the perianth and petal and inoculated on MS medium containing different plant growth regulators (PGRs) (Table 1). Each treatment consisted of 5 calyx explants/container (total of 30 explants/treatment) and the experiment was repeated within a week. Data from both experiments were pooled and statistically analyzed by one-way ANOVA with a post-hoc test (PLSD, P ≤ 0.05) to separate treatment means. Culture jars were placed in a culture chamber at 25 ± 2°C with low lighting (PPFD = 10 μmol m⁻² s⁻¹, 14-h photoperiod). All media contained 30 g l⁻¹ sucrose with pH adjusted to 5.6 and solidified with 0.6% (w/v) agar (Guangdong Huankai Microbiological Scientific Company, Guangzhou city, China), then autoclaved at 121°C for 15 min.
Table 1 Effects of PGR combination in induction media on callus and adventitious shoot formation from calyx explant of *T. magnifica*.

<table>
<thead>
<tr>
<th>PGR combination in the induction media (μM)</th>
<th>Number of shoots per explant</th>
<th>Observation result</th>
<th>Number of explants</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No response</td>
<td>0 a*</td>
<td></td>
</tr>
<tr>
<td>BAP 4.45</td>
<td>No callus, no shoot formation</td>
<td>0 a</td>
<td></td>
</tr>
<tr>
<td>TDZ 4.40</td>
<td>Few callus, shoot formation</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>TDZ 0.88 + BAP 4.45</td>
<td>Few callus, shoot formation</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>NAA 1.07 + BAP 4.45</td>
<td>Few callus, no shoot formation</td>
<td>0 a</td>
<td></td>
</tr>
<tr>
<td>2, 4-D 4.5 + BAP 4.45</td>
<td>Few callus, no shoot formation</td>
<td>0 a</td>
<td></td>
</tr>
<tr>
<td>NAA 5.37</td>
<td>Few callus, no shoot formation</td>
<td>0 a</td>
<td></td>
</tr>
<tr>
<td>2, 4-D 4.5</td>
<td>Few callus, no shoot formation</td>
<td>0 a</td>
<td></td>
</tr>
</tbody>
</table>

* Means followed by the same letter in a column are not significantly different by the LSD test (*P* ≤ 0.05).

Table 2 Adventitious shoot propagation of *T. magnifica* in different propagation media after culturing for 25 days and 45 days, respectively.

<table>
<thead>
<tr>
<th>PGR combination in propagation media (μM)</th>
<th>Propagation index in different culture period (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>BAP 4.45</td>
<td>2.6 b</td>
</tr>
<tr>
<td>BAP 4.45 + NAA 1.07</td>
<td>3.6 a</td>
</tr>
<tr>
<td>KT 4.6 + NAA 1.07</td>
<td>3.4 a</td>
</tr>
<tr>
<td>TDZ 0.88 + BAP 4.45</td>
<td>2.4 b</td>
</tr>
<tr>
<td>TDZ 0.88 + KT 4.6</td>
<td>2.5 b</td>
</tr>
</tbody>
</table>

Means followed by the same letter in a column are not significantly different by the LSD test (*P* ≤ 0.05).

Propagation of multiple shoots

Adventitious shoots were transferred to the shoot propagation MS medium containing 1.07 μM α-naphthaleneacetic acid (NAA) and 4.45 μM 6-benzyladenine (BAP) maintained in low light (as above) and subcultured every 45 days. Approximately 3 months later (2 subculture periods) shoot clumps were divided into smaller pieces and inoculated to different propagation media and subcultured for 45 days. The propagation indices of different culture media (Table 2) were investigated and calculated after a further 25 and 45 days, respectively. This procedure was repeated three times in total with treatment data pooled and analyzed statistically as before with mean propagation indices calculated.

Induction of adventitious shoot formation from leaves and leafstalks in vitro

Immature leaves and petioles in *vitro* were cut into approx. 0.5 cm² in size (0.6-0.7 cm long) and inoculated on various media (Table 3). There were 5 culture jars/treatment, each containing 10 explants. After a total of 50 days of culture, adventitious shoots formed and propagated on various rooting media containing ½ (half micro- and macronutrients) MS basal medium with zero PGR (control treatment), zero PGR + 0.2% (w/v) activated charcoal (AC), 1.07 or 5.37 μM NAA, 0.98 or 4.92 μM 3-indolebutyric acid (IBA), or a combination of 1.07 μM NAA + 2.46 μM IBA (Table 3). Root formation was investigated after 2 months of culture. Plantlets were removed from jars and transferred to a rooting media containing 0.88 μM TDZ and 4.45 μM BAP during the same period. Over the next 1–2 weeks adventitious shoots were produced from this basal callus (Fig. 1A). Medium containing 4.4 μM TDZ induced more adventitious shoots than medium containing 0.88 μM TDZ and 4.45 μM BAP (Table 1). Medium containing 1.07 μM NAA and 4.45 μM BAP induced some callus on explants; however, no adventitious shoots were observed. On basal media containing 4.45 μM BAP, 4.5 μM 2,4-D, 5.37 μM NAA or 4.45 μM BAP and 4.5 μM 2,4-D, respectively, neither callus nor adventitious shoots were induced and explants became brown and died gradually after 30 days in culture.

Propagation of multiple shoots

Callus with adventitious shoots was transferred to medium containing 1.07 μM NAA and 4.45 μM BAP for further culture where more adventitious shoot formation occurred. Three months later enough multiple shoots were induced to be cut into small pieces and then inoculated on various propagation media. Media containing 1.07 μM NAA and 4.45 μM BAP or 1.07 μM NAA and 4.6 μM cytokinin (KT) induced more multiple shoots on media containing 4.45 μM BAP, 0.88 μM TDZ and 4.45 μM BAP or 0.88 μM TDZ and 4.6 μM KT, respectively (Table 2). It was evident that calli were induced more frequently on medium containing 0.88 μM TDZ and 4.45 μM BAP and while some adventitious shoots gradually grew from callus tissue, somatic embryos were not observed.

Propagation of multiple shoots

Callus cultures with adventitious shoots were grown on...
TDZ-induced adventitious shoot in Tigridiopalma magnifica. He et al.

medium containing 1.07 μM NAA and 4.45 μM BAP to stimulate shoot proliferation. After 4 weeks 2-3 cm high shoot clumps (Fig. 1E) were divided into single shoots and placed in various rooting media. All media containing 0.54-5.37 μM NAA or 0.49-4.92 μM IBA induced roots in 5-6 weeks (Fig. 1F). Among the rooting media, those containing high concentrations of NAA (5.37 μM) or IBA (4.92 μM) (Table 4). Media containing only 0.2% active carbon or no PGRs did not induce any root formation (up to 2 months after shoots were placed in these media).

Rooted plantlets were transferred into plastic pots containing humus soil and vermiculite (1:1) with 99% of 300 plantlets surviving after 40 days in the greenhouse. All plantlets grew normally and no obvious aberrations were observed (Fig. 1G).

DISCUSSION

Our results revealed that only TDZ could induce adventitious shoots of T. magnifica from different explants including calyx explants from plants grown in vivo or leaves and petioles from in vitro grown shoots. However other cytokinins
BAP, KT) or auxins (2,4-D, NAA) seemed not to play any observable role in enhancing induction of adventitious shoot formation from the explants. This indicated that TDZ plays a crucial role in the induction process leading to adventitious shoot formation in *T. magnifica*, similar to observations reported for other plant species where TDZ has been used to induce shoot organogenesis from leaf explants (Mohamed *et al.*, 1991; Dai and Zhang 2007; Nhut *et al.*, 2007; Xu *et al.*, 2007; He *et al.*, 2009). Once adventitious shoots of *T. magnifica* were induced, these shoots could in turn be propagated by multiple shoot proliferation, rooted and established as whole plantlets with high success. This protocol will be highly valuable for *ex situ* conservation, mass propagation, cultivation and for possible reintroduction of this critically endangered endemic Chinese plant.

ACKNOWLEDGEMENTS

Support from the Corporation Program of Fairy-lake Botanical Garden and Guangdong Scientific and Technological Program (2008B021500005) are gratefully acknowledged.

REFERENCES

* In Chinese

Dai HY, Zhang ZH, Goo XW (2007) Adventitious bud regeneration from leaf and cotyledon explants of Chinese hawthorn (*Crataegus pinnatifida* Bge. var. major NEBr.). *In Vitro Cellular Developmental Biology – Plant* 43, 2-8

Li LN, Zeng SJ, Wu KL, Chen ZL, Duan J (2006) Asepsis sowing and *in vitro* propagation of *Tigridiopalma magnifica* C. Plant Physiological Communications 6, 1135

Mohamed FM, Paul ER, Dermot PC (1991) Effect of TDZ and forchlorfenuron on shoot organogenesis from nodal tissue cultures of common and faba beans. *HortScience* 26, 681

Xing FW (Ed) (2005) *Rare Plants of China*, Hunan Education Publisher, Changsha, pp 125-127

Zeng SJ (2005) Rare ornamental plant species *Tigridiopalma magnifica* C. *Flower and Horticulture* 12, 39

Zhao YJ (2006) Characteristics and Management of rare ornamental plant species *Tigridiopalma magnifica*. *Practical Forestry Technology* 4, 43-44