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ABSTRACT 
Our objectives were i) to determine the impact of ripening and salinity on fruit ascorbate content in a cherry tomato ‘Cervil’, a medium 
sized tomato ‘Levovil’ and a larger sized tomato ‘Marmara’, ii) to compare the impact of increasing salinity by adding NaCl alone (Na) or 
NaCl plus CaCl2 (Ca+Na) as calcium may limit the salinity stress and iii) to determine how increased salinity and ripening modified the 
activity of antioxidant enzymes related to ascorbate recycling. Tomato fruits were harvested at three ripening stages: mature green (MG), 
pink (P) and red ripe (RR), on plants irrigated with a control solution (3 dS m-1) or with increased salinity solutions (Na or Ca+Na at 7.6 
dS m-1). During ripening, ascorbate content and oxidative parameters increased whereas antioxidant activities of enzymes did not show 
any obvious trend. ‘Cervil’ had higher ascorbate and oxidative parameters but lower ascorbate peroxydase (APX) activity compared to 
‘Marmara’ and ‘Levovil’. Salinity increased the reduced ascorbate content (except for RR fruits of ‘Cervil’), and the dehydroascorbate 
content in ‘Cervil’ and ‘Marmara’. Despite qualitatively similar impacts on the ascorbate pools, adding Na had a stronger impact on the 
oxidative parameters (hydrogen peroxide and lipid peroxidation) compared to adding Ca+Na. Increasing salinity did not increase the 
activity of antioxidant enzymes in Marmara, but it significantly enhanced them in ‘Levovil’ or ‘Cervil’. The stronger antioxidant enzyme 
activities observed in ‘Cervil’ when adding Ca+Na could be linked to a lower accumulation of Na+ compared to other genotypes. We 
discuss a possible link between the oxidative parameters, the ascorbate content and the activity of ascorbate recycling enzymes in 
genotypes harvested at different ripening stages and receiving different salinity solutions. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
To face the decrease in water resource in the countries 
around the Mediterranean, irrigation of tomato crop with 
salinized water could provide a convenient solution 
(D’Amico et al. 2003; Incerti et al. 2007). Several studies 
have indeed shown that irrigation with a moderate concen-
tration in salts improved tomato fruit quality with a low 
impact on the commercial yield (Ehret and Ho 1986; 
Adams 1991; De Pascale et al. 2001; Dorais et al. 2001). 
This improvement is mainly due to increased concentrations 
in dry matter, sugars, titratable acidity (Petersen et al. 1998; 
De Pascale et al. 2001) but not in flavour volatiles (Lin and 
Glass 1999). Salinity was also reported to increase the 
content in health promoting molecules such as antioxidants, 
for example, ascorbate and lycopene (De Pascale et al. 2001; 
Dorais 2001; Dumas et al. 2003; Krauss et al. 2006; Dorais 
et al. 2008). 

The impact of increasing salinity on fruit ascorbate 
content is not so clear compared to the impact on fruit dry 
matter. Depending on the experiments, fruit ascorbate con-
tent either did increase (Adams 1991; Petersen et al. 1998; 
Krauss et al. 2006) or did not increase at all (Fanasca et al. 
2007). This might be linked to the key role of ascorbate 

(Smirnoff and Pallanca 1996) as a non enzymatic system 
complementary to enzymatic systems that remove reactive 
oxygen species (ROS) produced in excess by an oxidative 
stress (Mittler 2002). Consequently, any factor that will 
affect oxidative stress may affect ascorbate pool and the 
activities of ascorbate recycling enzymes (Conklin 2001). 
Thus the differences reported in ascorbate content following 
an increased salinity treatment might be due 
i) to differences in the intensity of the salinity stress ap-

plied to the plants (composition and concentration of 
the nutrient solution, plant developmental stage at the 
onset of the salinity treatment, the duration of the sali-
nity treatment), 

ii) to interactions with other factors such as the climate 
(Dumas et al. 2003) or the ripening stage (Jiménez et al. 
2002) that can affect oxidative stress, 

iii) to differences in cultivars or species response to in-
creased salinity (Cuartero et al. 2006; Incerti et al. 
2007; Zushi and Matsukoe 2009). 
Plants have developed two antioxidant defence systems, 

enzymatic and non enzymatic scavenging systems, to mini-
mize the concentrations of ROS and protect plant cells from 
oxidative damages (Allen 1995). The key enzyme involved 
in the first steps of the ROS scavenging system is the 
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superoxide dismutase (SOD) (Gomez et al. 2004). It cata-
lyzes the dismutation of the superoxide anion (O2

•-) to oxy-
gen and hydrogen peroxide (H2O2) (Fridovich 1986). Cata-
lase, guaiacol peroxidase or ascorbate peroxidase (APX) 
convert hydrogen peroxide (H2O2) into non-toxic water 
(Asada 2006). H2O2 dismutation by APX enzyme is coup-
led with ascorbate (AsA) oxidation to monodehydroascor-
bate (MDHA), which can either dismutate back to AsA, or 
to dehydroascorbate (DHA). DHA is then rapidly reduced 
to AsA (Mano et al. 1997; Asada 2006). Different enzymes 
are involved in the regeneration of AsA from MDHA 
(monodehydroascorbate reductase enzyme, MDHAR) or 
from DHA (dehydroascorbate reductase enzyme, DHAR). 
The active ascorbate–glutathione cycle is responsible for 
efficient removal of excess ROS (Noctor and Foyer 1998; 
Asada 2006). In the non-enzymatic scavenging system, 
antioxidant compounds such as AsA, glutathione (GSH), �-
tocopherol, and carotenoids (lycopene, carotene) also play 
important roles (Foyer et al. 2005; Munné-Bosch 2005). 
Following an excessive production of ROS, the plant may 
increase accumulation of AsA and upregulate the antioxi-
dant enzymes to limit oxidative stress (Davey et al. 2000). 
The protective role of AsA towards salt oxidative stress was 
previously reported in Arabidopsis thaliana leaves: the 
VTC mutants (which accumulated less ascorbate) were more 
sensitive to salt oxidative stress (Smirnoff 2000). Similarly, 
it was previously shown in roots and leaves of wild salt-
tolerant tomato that salt induced changes in enzymatic and 
non enzymatic antioxidants (Shalata and Tal 1998; Shalata 
et al. 2001; Mittova et al. 2003), but there are few studies 
on the impact of increasing salinity on fruit antioxidant sys-
tems (Zushi and Matsukoe 2009). 

As previously outlined, the contradictory results repor-
ted on the impact of salinity on ascorbate content in tomato 
fruit might be related to genetic differences in the sensiti-
vity to salinity stress and to the possibility for a plant to 
limit or not salt accumulation within its tissue (Rajasekaran 
et al. 2000) triggering differences in the intensity of the 
salinity stress perceived by the plant. This might be modu-
lated also through the ionic composition of the nutrient 
solution. Increasing sodium in the nutrient solution may 
dramatically increase sodium storage in the plant. Increa-
sing salinity by adding calcium or a mixture of sodium and 
calcium has been reported to trigger a lower stress than 
adding sodium alone as it reduces sodium accumulation 
within the plant tissues (Cramer 2002) and consequently 
salinity stress. In the present study, we estimated the toler-
ance or sensitivity of a genotype to salinity stress by mea-
suring the accumulation of sodium, hydrogen peroxide and 

malonyldialdehyde (MDA) (as an indicator of membrane 
lipid peroxidation). During tomato fruit ripening, under op-
timal conditions there is an increase in ROS production and 
their removal by antioxidant systems. It was previously re-
ported that ripening stage may interact with an environ-
mental factor to strongly change AsA content (Gautier et al. 
2009). Therefore, we decided to take into account three fruit 
ripening stages to get an overall view of the oxidative stress 
triggered both by salinity and ripening. The aim of the pre-
sent study was thus to look for correlations between ascor-
bate content, oxidative parameters and the activity of ascor-
bate related antioxidant enzymes in tomato fruits harvested 
at three developmental stages on three contrasted genotypes 
receiving different nutrient solutions with increased salinity. 

 
MATERIALS AND METHODS 
 
Plant material, salinity treatments and growth 
conditions 
 
The impact of increased salinity was studied on three contrasted 
sized genotypes of tomato: a cherry tomato (Solanum lycopersi-
cum L., cv. ‘Cervil’, Vilmorin®, France), a medium-sized tomato 
(S. lycopersicum L., cv. ‘Levovil’, Vilmorin®, France) and a larger 
sized tomato (S. lycopersicum L., cv. ‘Marmara’, Seminis®). 
Tomato plants were grown in three adjacent compartments (240 
m2) of a greenhouse at the Ctifl Research Station (Bellegarde, 
Southern France, 43° 45� N). On November 23, 2006, seeds were 
sown on rockwool rolls covered with vermiculite (20 × 27 mm, 
Grodan BV, Roermond, The Netherlands). After eight days, seed-
lings were transferred to larger rockwool cubes (65 × 75 × 75 mm) 
and, finally, on December 19, 2006, plants with three or four true 
leaves were transplanted onto rockwool blocks (two plants per 
block, 100 × 15 × 25, Grodan BV, Roermond, The Netherlands). 
Planting took place in greenhouse compartments, with a planting 
density of 2.4 plants m-2. 

From sowing until January 22 (which corresponded to the 
flowering of the second truss in ‘Marmara’ and ‘Levovil’ and the 
third truss in ‘Cervil’), plants received the same nutrient solution 
with an electro-conductivity of 3 dS m-1 (Fig. 1, Table 1). After 
that, control plants were irrigated with the 3 dS m-1 solution. For 
other plants, the solution conductivity was increased to 7.6 dS m-1 
either by adding a combination of NaCl plus CaCl2 (16.4 meq L-1 
Na, 17.7 meq L-1 Ca; Ca+Na treatment) or by NaCl only (40.8 
meq L-1 Na; Na treatment). Nutrient solutions were prepared with 
de-ionized water and a commercial mixture to obtain the desired 
mineral composition (Table 1). The solutions were supplied using 
a drip irrigation system in order to maintain at least 30% drainage. 

All plant side shoots were removed as they appeared and the 
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Fig. 1 Electroconductivity of the nutrient solution applied to the control and the two salinity treatments (Na, Ca+Na) during the assay. Salinity 
was progressively increased from 3 (on January 22) to 7.6 dS m-1 (on January 25), which corresponded to the second truss flowering in ‘Marmara’ and 
‘Levovil’ and to the 3rd truss flowering in ‘Cervil’. Na: salinity increased by addition of NaCl; Ca + Na: salinity increased by addition of NaCl and CaCl2.

Table 1 Content in macro-elements (meq L-1) of the three different nutrient solutions delivered to the plant. 
Electrical conductivity 
dS m-1 

[N] [P] [K] [S] [Cl] [Ca] [Mg] [Na] [Ca]/[Na] 

Control 3 13.8 1.6 9.7 5.7 4.1 11.1 4.6 0.7 15.9 
Ca + Na 7.6 24.3 1.6 14.1 14.5 25.2 28.8 5.9 17.1 1.7 
Na 7.6 13.8 1.6 9.7 5.7 45 11.1 4.6 41.5 0.3 
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old leaves were removed every 15 days. Fruit load was set at four, 
five and 20 fruits truss-1 in ‘Marmara’, ‘Levovil’ and ‘Cervil’, res-
pectively. The mean air temperature varied from 18.7°C in January 
to 21.7°C in June with a relative humidity varying from 83 to 72%. 
 
Fruit and plant sampling, physical trait 
measurement and sample preparation 
 
Flowers were tagged at anthesis and tomato fruits were harvested 
from the beginning of April until the beginning of May to obtain 
for each genotype and treatment the three following ripening sta-
ges: mature green (MG), pink (P) and red ripe (RR). Fruit ripening 
stages were defined from fruit external coloration in agreement 
with Jiménez et al. (2002): the mature green stage (with white 
distal end, fully developed green fruits, usually 2-4 days before 
breaker stage), the pink stage (2-3 days after breaker stage) and the 
red ripe stage defined as the pink stage plus 5 days. For each geno-
type, three sub-samples of 10 fruits were harvested per treatment 
and per developmental stage. After harvest, fruits were weighed 
and pericarp tissue was frozen in liquid nitrogen and maintained 
at -80°C until it was ground in liquid nitrogen. Means (± standard 
error) corresponded to the average of three independent samplings, 
extractions and analyses. Fruit dry matter content was determined 
on a sub sample after lyophilisation. 
 
Chemical analyses 
 
1. Determination of mineral composition, soluble sugars and 
starch content 
 
Nutrient solutions were analysed for total Ca, Mg, K, Na, P, S on 
an Inductively Coupled Plasma Optical Emission Spectrometer 
(ICP-OES, Vista PRO, VARIAN, Palo Alto, USA) using certified 
calibrated standards. Ionic interference was avoided using a solu-
tion of CsCl (10 g L-1), which was added to all samples, including 
the standards. Nitrogen and chlorine contents were determined by 
a continuous flow colorimetric analysis (Evolution II, Alliance 
Instrument, Méry sur Oise, France) using certified calibrated stan-
dards. The mineral composition of RR fruits was assayed accor-
ding to the method of Kjeldahl for N quantification and the method 
described by Pinta (1973) for other minerals. Soluble sugars and 
starch were assayed as previously described (Gomez et al. 2002, 
2007). Briefly, the soluble sugars were extracted at 4°C from 5 mg 
of freeze dried fruit powder. First, 1 ml of a methanol/water solu-
tion (1: 1, v/v) was added, then 0.3 ml of chloroform. Samples 
were shaken for 30 min at 4°C and centrifuged (5 min at 16,000 × 
g at 4°C). 0.8 ml of the methanol/water supernatant was recovered, 
evaporated under vacuum (Speed-Vac) and stored at -20°C until 
measurement of soluble sugars. Sugars were estimated using the 
micro-method described in Gomez et al. (2007). Glucose, fructose 
and sucrose concentrations were successively quantified by enzy-
matic assays measuring the production of NADH directly in each 
well at 340 nm using the multiskan Ascent MP reader (Labsystels, 
Thermo Fisher Scientific, Courtaboeuf, France). The contents in 
glucose, fructose and sucrose were pooled to obtain the content in 
soluble sugars. For starch measurements, 1ml of methanol was 
added to the tube containing chloroform and fruit powder and the 
tube was shaken for 20 min before centrifugation (5 min at 16,000 
× g at 4°C). The supernatant was discarded and the pellet was used 
for starch assay. Starch was dispersed by autoclaving for 2 h 
(120°C) and then hydrolysed for 1.5 h at 56°C by addition of amy-
loglucosidase solution. The glucose released by starch hydrolysis 
was measured as described previously (Gomez et al. 2007) using 
150 μL of diluted extract, 100 μL of a solution containing ATP, 
NAD and 20 μL of a solution containing glucose-6-phosphate 
dehydrogenase and hexokinase. 

 
2. Determination of ascorbate content 
 
Assays of total and reduced AsA content were carried out as previ-
ously described (Stevens et al. 2006) on material stored at -80°C. 
Briefly, tomato tissue was ground in liquid nitrogen, and 0.5 to 1 g 
of powder was homogenised with 600 μl of ice cold 6% trichloro-
acetic acid (TCA). Samples were centrifuged for 15 min at 16,000 
× g at 4°C. 20 μL of the supernatant were used in each assay. Two 

assays were carried out on each sample, one to measure the total 
AsA (including addition of 5 mM dithiothreitol (DTT)) and one to 
quantify the reduced AsA content (omission of DTT from the 
assay). 20 μL of each sample or standard were distributed into at 
least two wells (for two repetitions) of a 96-well microplate and 
mixed with 20 μl of 5 mM DTT (total AsA assay) or 0.4 M 
phosphate buffer pH = 7.4 (reduced AsA assay). The plate was 
incubated at 37°C for 20 min. 10 μL of N-ethyl maleimide (total 
AsA assay) or 0.4 M phosphate buffer pH = 7.4 (reduced AsA 
assay) were added and mixed followed by the addition of 80 μl of 
colour reagent (Stevens et al. 2006). After incubation at 37°C for 
50 min, the absorbance was read at 550 nm using the multiskan 
Ascent MP reader. The standard curve obtained from the standard 
solution values allowed calculation of the AsA concentration of 
the samples after correction for the quantity of water introduced by 
the tomato fruit sample. 

 
3. Determination of hydrogen peroxide (H2O2) content 
 
Hydrogen peroxide levels were determined as described by Mur-
shed et al. (2008a). Frozen fruit powder was homogenized in an 
ice bath with 1 mL 0.1% (w/v) TCA. The homogenate was centri-
fuged at 12,000 × g for 15 min at 4°C. Aliquots of 100 μL from 
each tube were placed in 96-well plates and 50 μL of 10 mM 
potassium phosphate buffer (pH 7.0) and 100 μL of 1 M KI were 
added in each well. Each plate also contained commercial H2O2 to 
generate a standard curve. Plate was briefly vortexed and the ab-
sorbance readings were taken at 390 nm in a micro-plate reader. 
The content of H2O2 was given on a standard curve. 

 
4. Determination of the malonyldialdehyde content (MDA) 
 
For the measurement of lipid peroxidation in fruits, the thiobarbi-
turic acid (TBA) test, which determines malonyldialdehyde 
(MDA) as an end product of lipid peroxidation (Murshed et al. 
2008a), was used. Frozen fruit powder (0.25 g) was homogenized 
in 1 mL 0.1% (w/v) TCA solution. The homogenate was centri-
fuged at 12,000 × g for 15 min and 0.5 mL of the supernatant was 
added to 1 mL 0.5% (w/v) TBA in 20% TCA. The mixture was 
incubated in boiling water for 30 min, and the reaction stopped by 
placing the reaction tubes in an ice bath. Tubes were briefly 
vortexed and triplicate, 200 �L aliquots from each tube were 
placed in 96-well plates, and the absorbance of supernatant was 
read at 532 nm in a micro-plate reader. The value for non-specific 
absorption at 600 nm was subtracted. The amount of MDA–TBA 
complex (red pigment) was calculated from the extinction coeffici-
ent 155 mM-1 cm-1. 

 
5. Antioxidant enzyme assays 
 
Extraction of enzymes: Protein extraction was performed accor-
ding to Murshed et al. (2008b). Frozen fruit powder (0.20 to 0.4 g) 
was homogenized in 1 ml of 50 mM MES/KOH buffer (pH 6.0), 
containing: 40 mM KCl, 2 mM CaCl2, and 1 mM AsA. Extracts 
were centrifuged at 4°C for 15 min at 16,000 × g, and the super-
natants were analysed immediately for enzyme activities. Protein 
was quantified by Bradford’s method (Bradford 1976), but due to 
the strong impact of fruit developmental stage on protein content 
(a 117% increase between green to red stage, P<0.0001, data not 
shown), enzyme activities were expressed per fresh weight instead 
of mg proteins. 

 
Enzyme assays: All enzyme activities were determined in 200 μL 
volume kinetic reactions at 25°C, using a micro-plate reader. APX, 
DHAR and MDHAR activities were measured by the method of 
Murshed et al. (2008b). APX activity was measured in reaction 
mixtures consisting of 50 mM potassium phosphate buffer (pH 
7.0), 0.25 mM AsA, 10 μL extract and 5 mM H2O2. Activity was 
determined by measuring the decrease in reaction rate at A290 and 
calculated from the 2.8 mM-1 extinction coefficient. DHAR acti-
vity was assayed in a reaction mixture consisting of 50 mM 
HEPES buffer (pH 7.0), 0.1 mM EDTA, 2.5 mM GSH, 0.2 mM 
DHA, and 10 μL extract. Activity was determined by measuring 
the increase in reaction rate at A265 and calculated from the 14.0 
mM-1 extinction coefficient. MDHAR activity was determined in 
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reaction mixtures consisting of 100 mM HEPES buffer (pH 7.6), 
2.5 mM AsA, 0.25 mM NADH, 20 μL extract, and 0.4 unit ascor-
bate oxidase. Activity was determined by measuring the decrease 
in reaction rate at A340 and calculated from the 6.22 mM-1 extinc-
tion coefficient. 

SOD activity was determined using modified method of 
Dhindsa et al. (1981). SOD activity was assayed in a 1.0 ml reac-
tion mixture containing 50 mM potassium phosphate (pH 7.8) 
buffer, 13 mM methionine, 75 �M nitro blue tetrazolium (NBT), 
0.1 mM EDTA, 10 �L of sample supernatant and 2 �M riboflavin. 
Tubes were briefly vortexes and triplicate, 200 �L aliquots from 
each tube, were placed in plastic 96-well plates. Each plate also 
contained commercial SOD in amounts of 0.6, 1.2, 1.8, 2.4 and 3 
units to generate a standard curve. The plates were then placed 
above white light provided by a commercial overhead-trans-
parency projector (Horizon, Model Apollo, Lincolnshire, IL, USA) 
for 5 min. After the light treatment, absorbance readings were 
taken at 560 nm in a plate reader. SOD in the extract quenched the 
photochemical reduction of NBT to blue formazan. Activity was 
expressed in units of SOD from the standard curve of activity units 
versus absorbance. 
 
Statistical analyses 
 
Fruit traits (fresh weight, dry matter soluble sugars and starch 
content), fruit ascorbate content, oxidative parameters and enzyme 
activities were subjected to a two-way analysis of variance con-
sidering the “salinity” factor, fruit ripening stage and their inter-
action using XLSTAT software (Addinsoft, France). When the 
salinity treatment was significant (�=5%), mean comparison was 
performed with a Fisher test; significant differences were indicated 
by different letters in the tables. Correlations among indicators of 
oxidative stress (H2O2, MDA), ascorbate and enzymatic activities 
related to ascorbate recycling were studied on the whole set of 
data (3 genotypes, 3 developmental stages, 3 salinity treatments 
and 3 repetitions). 
 
 
 

RESULTS 
 
Impact of salinity on fresh weight and dry matter 
and sugars contents 
 
In control conditions, the fresh weight (FW) of fruits in-
creased during ripening in ‘Cervil’ and ‘Marmara’, but not 
in ‘Levovil’ (Table 2). The Na treatment decreased fruit FW 
at MG, P and RR stages in ‘Levovil’, at P and RR stages in 
‘Marmara’ and at RR stage in ‘Cervil’. Adding Na or of a 
combination of Ca+Na had similar effect on the FW of 
‘Cervil’. But the Na treatment decreased more fruit FW in 
‘Levovil’ and ‘Marmara’ compared to the Ca+Na treatment 
(P<0.001). Salinity increased fruit dry matter (DM) content 
at the different ripening stages but the Ca+Na treatment 
triggered a lower DM increase compared to the Na treat-
ment. During ripening, soluble sugars increased whatever 
the genotype. Salinity had no effect on soluble sugars con-
tent in ‘Cervil’ (except a small decrease at MG stage). In 
contrast, salinity increased soluble sugars content in ‘Levo-
vil’ and ‘Marmara’ at P and RR stages. Salinity also in-
creased starch content at MG and P stages in ‘Cervil’ and 
‘Levovil’ and at MG stage in ‘Marmara’. The Ca+Na treat-
ment limited starch accumulation in ‘Levovil’ and ‘Mar-
mara’ compared to the Na treatment. 
 
Impact of salinity on fruit ionic composition 
 
Fruit ionic content in N, P and K expressed per g FW was 
about twice in ‘Cervil’ that in larger fruits (‘Levovil’ and 
‘Marmara’, Table 3). This difference may be due to the 
higher fruit dry matter content in ‘Cervil’ (Table 2). In con-
trast, ‘Cervil’ did not accumulate much Ca and Na com-
pared to larger sized genotypes. Increasing salinity favoured 
N accumulation in the three genotypes tested, but P and K 
were either not or only slightly affected. 

As attempted, raising the Na supply in the nutrient solu-
tions significantly induced an increase of Na+ content in the 
fruit. This increase was more important in fruits harvested 

Table 2 Impact of salinity treatments on fruit fresh weight, dry matter and sugar content. Data are means ± se. Fruit traits (fresh weight, %dry matter, 
soluble sugar and starch content) were subjected to a two way analysis of variance considering the ripening stage, the salinity treatments and the 
interaction between them. Mean comparison was performed with a Fisher test; significant differences (�=5%) between salinity treatments and ripening 
stages within a genotype were indicated by different letters in a column. 
   Fruit fresh weight g Dry matter 

g / 100 g FW 
Soluble sugars 
g / 100 g DM 

Starch 
g / 100 g DM 

Cervil  Control 5.9 ± 0.1 c 11.1 ± 0.1 b 26.2 ± 0.4 c 14.3 ± 0.5 b 
MG : Mature green Ca + Na 6.0 ± 0.0 bc 13.1 ± 0.2 a 23.1 ± 0.7 d 19.4 ± 0.5 a 

  Na 5.8 ± 0.1 c 12.7 ± 0.3 a 23.0 ± 0.5 d 20.7 ± 1.0 a 
  Control 6.2 ± 0.1 b 11.2 ± 0.1 b 36.0 ± 1.0 b 7.8 ± 0.3 c 

P : Pink Ca + Na 6.0 ± 0.0 bc 12.9 ± 0.2 a 34.9 ± 0.4 b 12.9 ± 0.4 b 
  Na 6.1 ± 0.0 b 13.1 ± 0.2 a 34.6 ± 0.7 b 13.6 ± 0.4 b 
  Control 6.9 ± 0.0 a 11.1 ± 0.1 b 48.1 ± 0.6 a 2.2 ± 0.1 d 

RR : Red ripe Ca + Na 6.1 ± 0.0 b 13.0 ± 0.1 a 47.9 ± 1.8 a 3.7 ± 0.1 d 
  Na 6.1 ± 0.1 b 13.2 ± 0.1 a 46.6 ± 0.6 a 3.5 ± 0.7 d 
Levovil  Control 139 ± 4 a 4.0 ± 0.1 d 35.1 ± 0.7 de 9.1 ± 0.6 b 

MG : Mature green Ca + Na 110 ± 2 bc 6.9 ± 0.2 b 33.5 ± 0.1 e 9.9 ± 0.5 ab 
  Na 103 ± 4 c 7.4 ± 0.2 a 33.6 ± 0.7 e 11.3 ± 0.4 a 
  Control 133 ± 4 a 4.8 ± 0.1 c 41.3 ± 0.4 cd 0.5 ±0.0 e 

P : Pink Ca + Na 102 ± 4 c 7.5 ± 0.2 a 44.2 ± 0.7 bc 2.5 ± 0.1 d 
  Na 103 ± 3 c 7.2 ± 0.2 ab 50.4 ± 6.6 ab 5.1 ± 0.8 c 
  Control 141 ± 5 a 5.1 ± 0.2 c 41.8 ± 0.9 cd 0.4 ± 0.1 e 

RR : Red ripe Ca + Na 118 ± 3 b 6.9 ± 0.1 b 49.1 ± 0.9 ab 0.7 ± 0.2 de 
  Na 105 ± 3 c 7.5 ± 0.1 a 51.0 ± 0.7 a 1.1 ± 0.1 de 
Marmara  Control 120 ± 2 cd 4.6 ± 0.1 c 36.2 ± 0.4 de 0.8 ± 0.1 d 

MG : Mature green Ca + Na 100 ± 5 f 6.1 ± 0.1 b 35.0 ± 0.4 de 10.9 ± 0.2 b 
  Na 103 ± 4 ef 6.9 ± 0.1 a 34.0 ± 1.4 e 14.1 ± 1.1 a 
  Control 150 ± 8 ab 3.6 ± 0.1 d 37.3 ± 1.5 d 0.6 ± 0.1 d 

P : Pink Ca + Na 133 ± 2 bc 6.9 ± 0.1 ab 44.8 ± 0.7 bc 2.5 ± 0.3 c 
  Na 115 ± 4 de 7.1 ± 0.4 a 44.6 ± 0.4 bc 3.5 ± 0.3 c 
  Control 159 ± 6 a 4.7 ± 0.1 c 42.5 ± 0.2 c 0.4 ± 0.0 d 

RR : Red ripe Ca + Na 133 ± 4 c 6.7 ± 0.2 ab 46.9 ± 0.9 ab 0.8 ± 0.0 d 
  Na 127 ± 5 c 6.9 ± 0.1 a 47.8 ± 0.8 a 0.8 ± 0.1 d 
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from plants irrigated with Na alone compared to Ca+Na 
treatment. Nevertheless, ‘Cervil’ accumulated much lower 
Na+ (+95% with Ca+Na treatment and +280% with Na) 
compared to ‘Levovil’ (+370 and +1,870%, respectively) or 
‘Marmara’ (+340 and +945%, respectively). 

Fruits also accumulated more calcium under salinity 
treatments in ‘Cervil’ and ‘Marmara’ but not in ‘Levovil’. 
Consequently, the [Ca]/[Na] ratio was strongly decreased 
(down to 20 times) in the larger fruit genotypes and the 
addition of calcium was not sufficient to maintain this ratio. 
In contrast, this ratio was not modified in ‘Cervil’ fruits 
under the Ca+Na treatment, or decreased by about 50% 
under the Na treatment. 
 

 
 
 
 

Comparison of ascorbate content, indicators of 
oxidative stress and activities of ascorbate 
recycling enzymes among genotypes grown under 
control conditions 
 
In the three genotypes, total ascorbate and reduced ascor-
bate increased during fruit ripening while the oxidized form 
DHA decreased (Fig. 2). ‘Cervil’ (the cherry tomato) had 
the highest total ascorbate content more than twice that of 
‘Levovil’ (or ‘Marmara’). This was mainly due to higher 
content in the reduced AsA form, but also in DHA. 

Fig. 3 shows H2O2 and MDA contents in fruits during 
ripening for the three genotypes. ‘Cervil’ had the highest 
contents in H2O2 and MDA which were about twice that 
found in fruits of the larger sized genotypes. During ripen-
ing, these molecules increased in ‘Cervil’ and ‘Marmara’ 
(Fig. 3). The activities of SOD, MDHAR and DHAR during 
ripening were similar among ‘Cervil’ and ‘Levovil’ but 
much higher in ‘Marmara’ (around 3 times more, Fig. 4). 
‘Cervil’ had a very low APX activity compared to the larger 
sized genotypes. The MDHAR and DHAR activity de-
creased with ripening stage (except for MDHAR in ‘Mar-
mara’). 
 
Comparison of ascorbate content, indicators of 
oxidative stress and activities of ascorbate 
recycling enzymes among genotypes grown under 
increased salinity 
 
Increasing salinity increased total ascorbate content by 18 
to 70% (P<0.0001) depending on the genotype and fruit 
developmental stage except at RR stage in ‘Cervil’ (Fig. 5). 
This was mostly due to increased AsA content by Na 
addition which triggered the maximal increase compared to 
the Ca+Na addition. Increasing salinity increased DHA in 

Table 3 Ionic composition of red ripe fruits. Data expressed as μg g-1 FW are means ± se. Data were subjected to a two way analysis of variance 
considering the genotype, the salinity treatments and the interaction between them. Mean comparison was performed with Fisher’s test; significant 
differences (�=5%) between salinity treatments and genotypes were indicated by different letters in a column. 
  [N] [P] [K] [Ca] [Na] [Ca]/[Na] 
Cervil Control 3000 ± 40 c 524 ± 31 a 4083 ± 77 a 52 ± 1 d 19 ± 0 g 2.76 ± 0.01 b 
 Ca + Na 3390 ± 90 a 458 ± 18 b 3255 ± 28 b 106 ± 2 a 37 ± 0 f 2.84 ± 0.05 b 
 Na 3215 ± 115 b 484 ± 20 ab 3298 ± 34 b 96 ± 1 b 73 ± 0 d 1.32 ± 0.02 d 
Levovil Control 935 ± 5 f 235 ± 2 c 2217 ± 4 e 61 ± 0 c 15 ± 0 h 4.08 ± 0.04 a 
 Ca + Na 1170 ± 20 de 250 ± 16 c 2685 ± 26 d 60 ± 2 c 70 ± 0 e 0.87 ± 0.03 e 
 Na 1165 ± 15 de 262 ± 5 c 2672 ± 13 d 58 ± 2 c 296 ± 1 a 0.20 ± 0.01 g 
Marmara Control 1110 ± 30 e 270 ± 4 c 2712 ± 6 cd 45 ± 0 e 20 ± 1 g 2.26 ± 0.08 c 
 Ca + Na 1335 ± 25 d 269 ± 15 c 2822 ± 47 c 53 ± 0 d 88 ± 1 c 0.60 ± 0.01 f 
 Na 1245 ± 35 de 261 ± 9 c 2671 ± 34 d 50 ± 1 d 209 ± 1 b 0.24 ± 0.00 g 
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‘Cervil’ at MG stage but mostly in ‘Marmara’ when adding 
Na (compared to Ca+Na). 

During the ripening period, under Na treatment, H2O2 
content increased by 40% in ‘Cervil’ (P<0.0001), and in the 
larger fruits ‘Levovil’ (+250% at P stage) and ‘Marmara’ 
(+80% at MG and P stages) (Fig. 6). In response to Ca+Na 
treatment, H2O2 increased in ‘Cervil’ fruits at MG and P 
stages and in ‘Marmara’ at the MG stage. Considering fruits 

at RR stage under the two salinity treatment, a good cor-
relation (R² = 0.77, data not shown) was found between in-
creased fruit content in Na and increased H2O2 content; this 
confirms that genotypes which were not able to limit Na 
influx within the fruits had increased oxidative parameters. 

Under Na treatment, lipid peroxidation estimated from 
MDA content was increased in ‘Marmara’ (P<0.001) and in 
‘Levovil’, but not significantly in ‘Cervil’. The Ca+Na 
treatment had no impact on MDA content in ‘Cervil’ and 
‘Levovil’ while an increase in MDA content was observed 
in ‘Marmara’ at all stages. 

For a given genotype, increasing salinity by adding 
Ca+Na (respectively by adding Na) globally triggered simi-
lar impact on the four enzymatic activities measured (Fig. 
7). But these changes in activity were strongly dependent 
on the genotypes and on the salinity treatment. SOD acti-
vity increased in response to Ca+Na treatment (and to a 
lower extend to Na treatment) in ‘Cervil’ (P<0.001) and in 
‘Levovil’ (P<0.01), but it was not significantly modified by 
Ca+Na or was slightly decreased by Na in ‘Marmara’ (Fig. 
7). APX activity which removed excessive [H2O2] was sig-
nificantly increased by salinity in ‘Cervil’ (P<0.001) and 
‘Levovil’ (P<0.06) but not in ‘Marmara’. The presence of 
calcium promoted the increase in APX activity in ‘Cervil’ 
only. 

MDHAR activity increased with salinity in ‘Cervil’ 
(P=0.03) and ‘Levovil’ (P=0.07) mostly at the RR stage, but 
it decreased in ‘Marmara’ (P<0.001). DHAR activity also 
increased in ‘Cervil’ (P<0.01) and in ‘Levovil’ (P<0.0001) 
with salinity and mostly in RR fruits. In contrast DHAR 
activity was not modified in ‘Marmara’ by addition of 
Ca+Na or it was slightly decreased with Na alone (P<0.1). 
Similarly to what observed for other enzymes activity, Cal-
cium promoted the increase in MDHAR and DHAR activity 
with salinity in ‘Cervil’ only. 
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during fruit ripening among genotypes grown under control conditions. 
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Correlations between fruit content in ascorbate, 
oxidative parameters and the activities of 
antioxidant enzymes 
 
The most significant correlations were found among total 
ascorbate and the indicators of oxidative stress [MDA] and 
[H2O2] (Table 4, Fig. 8). The correlation was not so good 
when considering DHA (Table 4). Strong correlations were 
also found among MDHAR or DHAR and the SOD acti-
vity: The latter initiates the removal of active oxygen pro-
ducing [H2O2] followed by AsA consumption (by APX) to 
reduce H2O2 and the former (MDHAR and DHAR) were 
then involved in AsA regeneration. 
 
DISCUSSION 
 
The present study showed on three contrasted genotypes 
how ripening and salinity may affect fruit composition (dry 
matter, sugars, starch and ascorbate), oxidative parameters 
and antioxidant enzyme activity. Both ripening and salinity 
have been shown to trigger oxidative stress response in 
tomato fruit. Jiménez et al. (2002) reported changes in oxi-
dative and anti-oxidative parameters during tomato fruit 
ripening. They found that [H2O2] increased at breaker stage 
and then decreased during ripening. Similarly, Mondal et al. 
(2004) reported on tomato that ripening was accompanied 
by a progressive increase in oxidative stress; at the begin-
ning of ripening, fruit respond to the increase oxidative 
stress by increasing their ascorbate content as well as the 
activity of scavenging enzymes. Later on, ROS scavenging 
system was not sufficient to cope with ROS production 
leading to the accumulation of ROS. Ahn et al. (2002) also 
observed in cherry tomato a transient increase in the SOD 
from MG to orange stage followed by a decrease at the end 
of the ripening, which was in agreement with the present 
data on ‘Cervil’ and ‘Levovil’. 
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In the present study, we observed contrasted responses 
linked to the genotypes: ‘Cervil’ showed a strong increase 
in [H2O2] content from MG to P and even more from P to 
RR stage, whereas ‘Marmara’ showed a smaller increase in 
[H2O2] content mostly from MG to P stage, and in contrast 
[H2O2] content slightly decreased from MG to P stage in 
‘Levovil’. During ripening, lipid peroxidation also increased 
in the three genotypes but to a larger extent in ‘Cervil’. This 
could be linked to the higher accumulation of H2O2 in 
‘Cervil’ as we found a nice correlation between these two 
compounds (H2O2 and MDA, Table 4). In a previous study 
(Jiménez et al. 2002), the increased lipid peroxidation in 
tomato fruit coincided with the increased [H2O2] content 
during ripening, both indicating increased oxidative activity. 
Considering AsA accumulation, ‘Cervil’ was once again 
very different from the larger sized genotypes (‘Levovil’ 
and ‘Marmara’) having more than the double content in as-
corbate may be linked to increased [H2O2] accumulation 
and lower APX activity. 

This hypothesis, that higher AsA content coupled to 
higher ascorbate recycling activities may induce an higher 
tolerance to increased H2O2 and limit lipid peroxidation was 
then tested by comparing the control treatment to a mode-
rate salinity stress (Ca+Na) or to a stronger salinity stress 
(Na). The strong correlation observed between ascorbate 
content and oxidative parameters confirmed the involve-
ment of ascorbate as a strong antioxidant in response to 
oxidative stresses induced by ripening or salinity. Moreover, 
we were able to discriminate three types of response to in-
creasing oxidative stress depending on the genotype: 

‘Marmara’ had a low content in ascorbate and oxidative 
parameters that slightly increased during ripening. The acti-
vities of antioxidant enzymes were already very high under 
control conditions which may be related to low MDA ac-
cumulation during ripening. Increasing salinity strongly 
increased fruit content in Na+, and both form of ascorbate 
(AsA and DHA), but it did not enhance antioxidant enzyme 
activity (Fig. 7), so that oxidative parameters (mostly 

MDA) increased with salinity (Fig. 6). 
‘Levovil’ had a low content in ascorbate and oxidative 

parameters that did not vary a lot with ripening. The acti-
vities of antioxidant enzymes were low under controlled 
condition (except APX activity). Increasing salinity strongly 
increased fruit content in Na+, and in reduced ascorbate. It 
also increased antioxidant enzyme activity specifically in 
the Na treatment compared to the Ca+Na treatment, but this 
increase was not sufficient to cope with increased oxidative 
stress in the Na treatment and consequently both indicators 
of oxidative stress strongly increased. 

‘Cervil’ had a high content in ascorbate and oxidative 
parameters which increased a lot with ripening. The acti-
vities of antioxidant enzymes were low under control condi-
tions, so that H2O2 accumulate a lot. Increasing salinity trig-
gered a moderate increase in Na+ content, in AsA and DHA 
(no more significant at RR stage). It also increased antioxi-
dant enzyme activities to a larger extent in the Na treatment 
compared to the Ca+Na treatment. This increase was suf-
ficient to limit the accumulation of oxidative parameters 
with salinity. This increase in APX activity might be related 
to the higher tolerance to salt oxidative stress in ‘Cervil’. 
Indeed, Tsugane et al. (1999) previously observed in an 
Arabidopsis mutant (pst1) showing higher salt tolerance an 
increase in APX activity in response to salt photo-oxidative 
stress. Shalata and Tal (1998) also suggested that in a wild 
salt-tolerant tomato species (Lycopersicon pennelli) the 
tolerance to salt stress could be due to higher salt induced 
activities of SOD, APX, and MDHAR coupled to higher in-
herited activities of SOD and APX. 

‘Cervil’ fruits content in Ca increased with salinity 
(both Ca+Na and Na treatments), in contrast to the larger 
sized genotypes for which Ca was not significantly modi-
fied. This might be due to the lower vegetative development 
of the cherry tomato compared to ‘Levovil’ and ‘Marmara’. 
Consequently the transpiration flux from the leaves might 
be reduced in ‘Cervil’, allowing more Calcium to reach and 
accumulate in ‘Cervil’ fruits compared to larger sized geno-

Table 4 Pearson's correlation coefficients among variables considering the whole set of data (81 points corresponding to three genotypes, three 
developmental stages, three salinity treatments and three replicates per treatment). Bold values are significantly different from 0 (P<0.05). Fig. 8 
illustrates the highest correlations among total ascorbate and indicators of oxidative stress. t-AsA: total ascorbate, r-AsA: reduced ascorbate. 
Variables APX DHAR SOD MDHAR H2O2 MDA t-AsA r-AsA DHA 
APX 1         
DHAR 0.48 1        
SOD 0.38 0.86 1       
MDHAR 0.36 0.87 0.91 1      
H2O2 -0.49 -0.34 -0.19 -0.25 1     
MDA -0.50 -0.52 -0.33 -0.40 0.88 1    
t-AsA -0.51 -0.40 -0.22 -0.32 0.85 0.90 1   
r-AsA -0.49 -0.35 -0.18 -0.27 0.82 0.86 0.96 1  
DHA -0.31 -0.32 -0.23 -0.32 0.50 0.55 0.59 0.36 1 
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types. Such a relation between calcium transport into the 
fruits and transpiration flux linked to humidity during the 
day was already underlined by Adams and Holder (1992). 
Lopez and Satti (1996) previously reported protective effect 
of Calcium that limited the impact of salinization of the 
nutrient solution. They observed that addition of NaCl re-
duced root volume and fresh weight and consequently fruit 
yield and that addition of calcium reversed these negative 
impacts. In the present study, Na treatment strongly in-
creased oxidative stress parameters ([H2O2] or [MDA]) 
compared to the Ca+Na treatment, which triggered a lower 
or no increase in these parameters. These data confirmed 
that the combination of Ca+Na compared to Na treatment 
led to a lower stress that may be due to lower Na concentra-
tion within the fruit (Table 3), despite similar electrocon-
ductivity of the nutrient solution. These data are in agree-
ment with previous results (Rajasekaran et al. 2000) in 
tomato leaves for which the salt tolerance of tomato species 
was correlated among others to their ability to exclude Na+ 
from the leaves. Thus, increased Na content in fruit tissue 
may be responsible for increased oxidative parameters. 

The present study underlines strong correlations among 
the different traits measured to characterize the oxidative 
stress. The reductase activities (MDHAR and DHAR) were 
correlated, and also correlated to the SOD activity. This 
indicates that the detoxification of superoxide radicals on 
one side (by SOD) and the regeneration of reduced AsA on 
the other side (by MDHAR or DHAR) were tightly cor-
related. But as the intensity of the response to salinity was 
genotype dependent: the increased activity of ascorbate re-
cycling enzymes was only sufficient in the cherry tomato to 
avoid further increased in oxidative parameters. This ap-
parent tolerance of ‘Cervil’ to salinity stress might be 
related to the fact that i) it already strongly responded to the 
oxidative stress induced by ripening by accumulating high 
amount of antioxidant such as ascorbate, ii) it did not ac-
cumulate much Na+ compared to the other genotypes, and 
iii) it strongly increased its enzymatic activities related to 
ascorbate recycling in the Ca+Na treatment. 
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