Antihyperglycaemic Effect of *Ageratum conyzoides* L. Fractions in Normoglycemic and Diabetic Male Wistar Rats

Nyemb Nyunai1•2, Adèle Manguelle-Dicoum3• Njikam Njifutie3• El Hassane Abdennebi3• Cros Gérard4

1 Centre de Recherches Médicales, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, B.P. 3805 Yaoundé, Cameroon
2 Département de Biologie et Physiologie Animales, Faculté des Sciences, Université de Yaoundé 1, B.P. 812 Yaoundé, Cameroon
3 Département des Sciences Biologiques et Pharmaceutiques Vétérinaires, Institut Agronomique et Vétérinaire Hassan II, B.P. 6202, Rabat-Instituts, Rabat, Morocco
4 Laboratoire de Pharmacologie et Physiopathologie Expérimentales, Université de Montpellier 1, 34093 Montpellier, France

Corresponding author: nyunain@yahoo.fr

ABSTRACT

Ageratum conyzoides L. is a plant used in traditional medicine against many human infections diseases, also in case of diabetes. In order to locate the actives fractions of this plant, which allows in the future to purifying and identifying its active ingredients, bioassay tests were performed in rats treated with glucose and in those with diabetes induced by streptozotocin (STZ). First, aqueous crude extract of the plant was fractionated by column chromatography into two fractions F1 and F2. Then, fraction F1 was subjected to another fractioning into three subfractions F1a, F1b and F1c. Results of this study revealed that, in both tests, the aqueous crude extract of *A. conyzoides* had an important antihyperglycaemic potential. However, in rats given glucose, the subfraction F1c was the more potent, while in rats with streptozotocin-induced diabetes, the most active subfractions were F1a and F1b. Consequently, it is suggested that *A. conyzoides* contains more than one antihyperglycaemic compound with different chemical characteristics and mechanisms of action.

Keywords: aqueous crude extract, diabetes, streptozotocin, treatment

INTRODUCTION

Ageratum conyzoides L. (Billy goat weed; family Asteraeae) (Fig. 1) is commonly known in Cameroon as Nyada Elog (Tsabang *et al.* 2001), in Swahili as Kundambara, in Chagga as Matawana (Chhabra *et al.* 1989), in Brazil as “Mentrasto” and in Arabic as Korink, berguam or bergoman (Boulos 1983). It is found in the north and western regions of Africa, in Australia and in certain parts of Africa and South America. It is an annual herb, ramified and up to 1m tall. Its stem and leaves are covered with tiny white hairs. The flowers are purple and white and the fruits are black and easily dispersed (Gonzalez *et al.* 1991; Gargiullo *et al.* 2008).

A. conyzoides is easily cultured because of its easy adaptability and high potential of reproductively. Thus, it is considered by agriculturalist as a weed because it overlakes other plants with its growth and reduces their yield (Bansal 1988; Jha and Dhakal 1990; Kong *et al.* 1999; Singh *et al.* 2003; Batish *et al.* 2006; Nogueira *et al.* 2010).

Phytochemical studies have extracted many different compounds from *A. conyzoides*; these include kaempferol and glycoside (rhamnoside); quercetin, scutellarein, eupalestin, chromene, stigmast-7-en-3-ol, β-sitosterol, stigmastanol, fumaric acid, caffeic acid, saponin, some pyrrolizidine alkaloids, essential oils, ageratocromene derived, coumarin and alkaline (Aalbersberg and Singh 1991; Gonzalez *et al.* 1991; Wiedenfeld and Roder 1991; Cambie and Ash 1994; Okunade 2002; Moura *et al.* 2002; Moura *et al.* 2005; Danile 2006; Lans 2007; Kamboj and Saluja 2008). Pharmacological studies revealed antidiarrhoeal effect and its essential oils have antibacterial properties. There are also another pharmacological importance such as antiparasitic, anti-inflammatory, anticoagulant, myorelaxant, haemostatic, analgesic, antifungal and hypothermic properties (Lans 2007; Duke 2008).

A. conyzoides also has an insecticidal activity (in particular) against coleopters of flour (Durodola 1977; Sharma *et al.* 1978; Aalbersberg and Singh 1991; Wiedenfeld and Roder 1991; Cambie and Ash 1994; Okunade 2002; Kamboj and Saluja 2008). Fresh leaf aqueous extract is used in treating painful menstruation, itching of eye and against lice (Cambie and Ash 1994; Okunade 2002; Kamboj and Saluja 2008). Fresh leaves are chewed as an emetic, the leaves with the leaves of *Ocimum* and bush pepper are used as a cure for abdominal disorders (Ayensu 1978; Chah *et al.* 2006; Duke 2008).

In traditional medicine, a decoction or infusion of *A. conyzoides* is used for the treatment of constipation, hepatitis, eczema, epilepsy, wounds, dizziness, diarrhoea, vomiting, fever, headaches, intestinal worms and filariasis (Burlil 1985; Okunade 2002; Mustafa *et al.* 2005; de Mendonça *et al.* 2006; Duke 2008). Fresh leaf aqueous extract is used in treating painful menstruation, itching of eye and against lice (Cambie and Ash 1994; Okunade 2002; Kamboj and Saluja 2008). Fresh leaves are chewed as an emetic, the leaves with the leaves of *Ocimum* and bush pepper are used as a cure for abdominal disorders (Ayensu 1978; Chah *et al.* 2006; Duke 2008). An ethnobotanical study reported that leaves or entire plant decoction is useful for the treatment of diabetes (Tsabang *et al.* 2001; Igoli *et al.* 2005; Soumyanath 2006). Our preliminary studies reported on the effect of the aqueous extract of *A. conyzoides* on hyperglycaemia in rats (Nyunai *et al.* 2006). The present research test the aqueous
crude extract of *A. conyzoides* and its different fractions on their antidiabetic activity.

MATERIALS AND METHODS

A. conyzoides plants in flowering stage were harvested from around Yaoundé, centre region of Cameroon. The species was identified in the national herbarium, Yaoundé by comparison with the specimen N°19050/SFR/Cam stored in the herbarium. Thereafter, the leaves were air dried at the room temperature and then ground. The leaves were selected because of its traditional uses for the treatment of diabetes (Igoli et al. 2005; Soumyanath 2006). The powder obtained was boiled in water for about 30 min. Once obtained, the concoction was filtered twice and the filtrate dried for 3 days in an oven at 55°C. The yield of this extraction process was 29% w/w of the dried powder.

Fractionation of the aqueous crude extract

Twenty grams of the concoction was chromatographed using silica gel column with eluting solvent as butanolic: acetic acid: water (6: 2: 2). With the aid of thin layer chromatography two principal fractions (F1 and F2) were obtained with percentage yields of 95 and 5%, respectively. The 2 fractions were further tested for their antidiabetic activities on rats using the glucose tolerance test (D-glucose dosage was 3 g/kg) since the 2 fractions were active. The F1 fraction (more abundant) was further fractionated in a column. At this time methanol was first used as eluent and then water (H2O) using the thin layer chromatography and 3 subfractions (F1a, F1b, F1c) were obtained.

Experimental animals

Wistar albino rats raised in the pharmacology–toxicology unit, IAV Hassan II, Rabat, Morocco were used. The animals were fed standard rodent chaos and had water *ad libitum*. Male rats were used for each study and divided into several groups in a homogenous manner taking into consideration the age and weight of the animals (180-220 g).

Oral glucose tolerance test

This was carried out on normal rats with normal blood glucose level according the method of Schoenfelder et al. (2006). The animals were fasted for 16 h prior to the study. The plant material to be tested included the aqueous crude extract (ACE), F1 and F2 fractions and the F1a, F1b and F1c subfractions.

The different fractions were administered orally at a dosage determined in a manner equal to 200 mg/kg (most effective dose for aqueous crude extract) taking into consideration the extraction yield of each fractioned subfraction. A hypoglycaemic reference group, glibenclamide was administered to a group of rats as the positive control. Then eight groups with five rats each were constituted and the animals received a dose of 3 g/kg of glucose by const. Thereafter, the leaves were air dried at the room temperature and then ground. The leaves were selected because of its traditional uses for the treatment of diabetes (Igoli et al. 2005; Soumyanath 2006). The powder obtained was boiled in water for about 30 min. Once obtained, the concoction was filtered twice and the filtrate dried for 3 days in an oven at 55°C. The yield of this extraction process was 29% w/w of the dried powder.

Antihyperglycaemic effect of plant extracts on diabetic rats

Experimental diabetes was induced on rats by applying the protocol of Szkudelski (2001) and Schoenfelder (2005). This was obtained following an intravenous injection of a solution of streptozotocin (STZ) (60 mg/kg body weight) freshly prepared in an acidified saline solution. Non diabetic animals were kept as the control and they received acidified saline solution in place of STZ. After 72 hours when the diabetic state must have stabilised the animals with blood glucose above 200 mg/dL were retained for the study (Nyunaï et al. 2006). The animals were divided into six groups with five rats each: a control group (Group A) and five groups of diabetic animals B, C, D, E and F. Group A rats received DW, those of group B, C, D, E, and F were treated with crude plant extract, subfractions of fraction 1 and glibenclamide (10 mg/kg). The doses of the different plant extracts administered were same as those used for the glucose tolerance test.

Blood sample was collected before the commencement of treatment with plant extracts then after.

Blood collection and determination of blood glucose

The blood was collected from the tail after making a slight cut. Drop of blood was squeezed out and served for the determination of the blood glucose with the aid of a glucometer (Glucotrend®2, an Accuchek system of Roche Diagnostics, D-68298 Gmbh Mannheim, Germany). The percentage of change in this parameter was calculated by applying the following formula proposed by Jiménez et al. (1986):

\[
\text{% change of glucose} = \left(\frac{G_{i} - G_{x}}{G_{i}} \right) \times 100
\]

where *G*_i is the glycaemia at time *x* and *G*₀ is the glycaemia at initial time.

Statistical analysis

All the values in the test are presented as mean ± SEM (Standard Error of the Mean). Statistical differences between the means of the various groups were evaluated by one-way analysis of variance (ANOVA) using the SPSS program followed by Student’s *t*-test.

RESULTS

Effect of different extracts of *A. conyzoides* on glucose tolerance

The means of blood glucose obtained from the different groups are presented in **Table 1**. It was observed that the crude aqueous crude extracts of *A. conyzoides* significantly reduced the increase in blood glucose induced 30 min after glucose administration when compared to the group that received distilled water.

The F1 fraction also presented an effective antihyperglycaemic importance. It did not only inhibit the hyperglycaemia induced by glucose but also reduced the initial glycaemia which decreased from 109.75 ± 5.5 mg/dL in initial time to 102 ± 3.16 mg/dL after 2 h 30 min. This fraction induced hypoglycaemia as from the second hour after administration of glucose. The F2 fraction had the same effect as F1 but was more effective. With the exception of blood samples obtained at an hour after glucose administration, all the other samples collected showed a decrease of the blood glucose with significant results after 2 h. After 2 h 30 min of glucose administration was observed a reduction of 36.7% in the blood glucose.

Though all the subfractions (F1a, F1b, and F1c) were active against increase in blood glucose, it was the F1c subfraction that had a significant effect. At first this subfraction prevented increase in blood glucose observed in the control, then continue to decrease and finally render the animals hypoglycaemic from the second hour after the beginning of the experiment with a reduction of blood glucose of approximately 17.5% (*p* < 0.05).

Finally the glibenclamide reference hypoglycaemic drug used as a positive control was also very active by inducing a continuous reduction of blood glucose from 94.38 mg/dL (*p* < 0.05) 30 min after glucose administration to 71.81 ± 20.0 mg/dL (*p* < 0.005) at the end of the experiment.
Table 1 Blood glucose concentration (mean ± SD) of the rats after receiving extract, fraction and subfractions of *Ageratum conyzoides* after glucose.

<table>
<thead>
<tr>
<th>Group (n=5)</th>
<th>0 h</th>
<th>30 min</th>
<th>60 min</th>
<th>90 min</th>
<th>120 min</th>
<th>150 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW</td>
<td>90 ± 9.44</td>
<td>88.39 ± 8.37</td>
<td>170.1 ± 19.77</td>
<td>157.8 ± 19.97</td>
<td>133.66 ± 12.76</td>
<td>110.7 ± 8.62</td>
</tr>
<tr>
<td>ACE</td>
<td>88.4 ± 5.60</td>
<td>88.2 ± 2.28</td>
<td>139.38 ± 21.18</td>
<td>123 ± 9.53</td>
<td>112.06 ± 8.44</td>
<td>96.9 ± 14.77</td>
</tr>
<tr>
<td>F1</td>
<td>109.75 ± 5.5</td>
<td>108.25 ± 6.29</td>
<td>115 ± 18.98</td>
<td>109.5 ± 19.05</td>
<td>106.75 ± 6.8</td>
<td>102 ± 3.16</td>
</tr>
<tr>
<td>F2</td>
<td>102.25 ± 2.99</td>
<td>92.5 ± 16.74</td>
<td>116.25 ± 12.04</td>
<td>94 ± 7.96</td>
<td>83.75 ± 8.66</td>
<td>74.15 ± 11.18</td>
</tr>
<tr>
<td>F1a</td>
<td>96.5 ± 5.07</td>
<td>96.75 ± 6.8</td>
<td>106.25 ± 14.97</td>
<td>93.5 ± 12.15</td>
<td>102 ± 13.54</td>
<td>87.85 ± 13.33</td>
</tr>
<tr>
<td>F1b</td>
<td>98.33 ± 5.80</td>
<td>105 ± 3.20</td>
<td>118.33 ± 2.45</td>
<td>113.33 ± 8.46</td>
<td>107.33 ± 6.95</td>
<td>87.33 ± 16.07</td>
</tr>
<tr>
<td>F1c</td>
<td>93 ± 2.16</td>
<td>91.5 ± 7.59</td>
<td>96.5 ± 11.90</td>
<td>98.25 ± 5.74</td>
<td>77.25 ± 8.22</td>
<td>76.75 ± 10.34</td>
</tr>
<tr>
<td>Glib</td>
<td>90.1 ± 7.10</td>
<td>67.58 ± 17.7</td>
<td>94.38 ± 12</td>
<td>85.32 ± 21</td>
<td>72.98 ± 23</td>
<td>71.81 ± 20.1</td>
</tr>
</tbody>
</table>

**significant at p<0.05 is compared to initial glucose concentration of rats respectively of each group.
** significant at p<0.005 is compared to initial glucose concentration of rats respectively of each group.

Effect of different extracts of *A. conyzoides* on the blood glucose of diabetic rats

The results of this test are presented in Table 2. In spite of the changes on blood glucose based on the initial blood glucose (-8.05 to -2.30%) distilled water did not have any effect on the blood glucose of diabetic rats. On the contrary, the aqueous crude extract showed an important efficacy throughout the experiment by reducing the hyperglycaemia of -5.75% in the blood obtained at 1 h 30 min (p<0.01) to -20% in 8 h (p<0.01). In the same way, the F1a fraction was very effective in reducing the hyperglycaemia from -22% at 1 h 30 min (p<0.01) to -23.15% at 8 h (p<0.01).

With exception of blood sample collected at 1 h 30 min which remained hyperglycaemic throughout, the F1b reduced the blood glucose in the same way as the F1a: -12.81% in 3 h, -21% in 5 h and -23.43% in 8 h (p<0.01).

The effect of the F1c subfraction on blood glucose was comparable to that obtained in the control rats that received distilled water. The antihyperglycaemic activity of glibenclamide was moderate (-15.5%, p<0.001) with respect to the effect of aqueous crude extract (ACE) and the subfractions F1a and F1b.

DISCUSSION

The objective of this study was to confirm the antihyperglycaemic effect of *A. conyzoides* and further determine the active fraction through bio guided fractionation. This allows in place the putting of the different steps of purification and identification of some active components of this plant.

The results of this study have clearly shown that *A. conyzoides* has an important hypoglycaemic activity, to this effect, thus, justifies its utilization for the treatment of diabetes in Cameroon, Nigeria and Reunion (Lavergne and Véra 1989; Tsabang et al. 2005; Soumya et al. 2006).

The glucose tolerance test showed that the F2 fraction was the most active. The fractionation into subfractions was carried out on fraction F1, also active and contained more extract (yield 95%). As opposed to distilled water (control group) and crude aqueous extract, this test equally showed that all the subfractions prevented increase in blood sugar, with a very pronounced effect of subfraction F1c. Glibenclamide showed an antihyperglycaemic activity throughout which was generally similar to that of F1c.

The tests on the diabetic rats show that the aqueous crude extract and its subfractions F1a and F1b had an opposing effect on experimental hyperglycaemia while the subfraction F1c and the glibenclamide had moderate effect.

Taking into consideration it's mechanism of action which is the stimulation of insulin liberation, glibenclamide is only effective in moderate diabetic condition and has little or no effect in a severe diabetic condition where the β cells of the pancreas are destroyed (Ivorra et al. 1989; Suba
Ageratum conyzoides is a plant that may contain more than one antihyperglycaemic activity, though they are different based on the tests which suggested that the plant contains more active antidiabetic components with different chemical properties and mechanisms of action. We can thus admit that the subfractions F1a and F1b contain identical active substances but different from that of F1c. This hypothesis is supported by the fact that F1c is only active on the glucose tolerance test; meanwhile the F1a and F1b are very active in the hyperglycaemia induced by streptozotocin. In the two tests the F1c had a similar activity as the glimebinacl. This support the assumption that this plant acts in the same way resulting in hypoglycaemia by stimulating the liberation of insulin. Subfractions F1a and F1b, react complementing the pancreas; their effect can be attributed to the extra pancreatic mechanisms that influence the metabolism of glucose just like the stimulation of the uptake of the blood sugar by the peripheral tissues, inhibition of the production of endogenous glucose and/or activation of the glycogenic route by the stimulation of the activity of the glycogen synthetase (Burcelin et al. 1995; Mukherjee et al. 2006).

The phytochemical studies carried out on A. conyzoides showed that this plant contains many bioactive components and these include: flavonoids, alkaloids, coumarin, glucosides, chromenes, terpenoids and tannins (Okunade 2002). As reported by Oliver (1980), Mukherjee et al. (2006) glucosides, flavonoids, tannins, organic sulphurs components and alkaloids constituted the active metabolic part of hypoglycaemic plants; on the basis of Marles and Farnsworth (1995) and Yu et al. (2003) hypothesis which indicated that plants containing terpenoids and/or coumarins possess a hypoglycaemic activity, the hypoglycaemic effect of A. conyzoides would be in part due to the presence of the substances already isolated from this plant. These natural compounds can act separately or synergically to cause the global hypoglycaemic effect.

The study of the aqueous crude extract of the leaves of A. conyzoides and the subfractions indicated that A. conyzoides possess an important hypoglycaemic potential in streptozotocin-induced diabetic rats as well as in glucose loaded hyperglycaemic rats. The results of this study suggest that this plant may contain more than one antihyperglycaemic component. It is then important for future research to identify these antihyperglycaemic components and to understand their mechanisms of action.

ACKNOWLEDGEMENTS

This research was funded by “Agence Universitaire de la Franco-phonie”. Institut Agronomique et Vétérinaire Hassan II et University of Yaoundé 1 were the hosts of this grant.

REFERENCES

De Meendorf AC, Da Silva KFS, Dos Santos KK, Ribeiro Junior KAL, Sant’Ana AEG (2005) Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti. Fernando. Fitoterapia 76, 629-636
Lans C (2007) Creole Remedies of Trinidad and Tobago, Lulu.com, 114 pp
Effect of *A. conyzoides* on normoglycemic and diabetic rats. Nyunaï et al.

