Genetics, Breeding, and Ecology of Reed Canarygrass

Michael D. Casler

USDA-ARS, U.S. Dairy Forage Research Center, 1925 Linden Dr., Madison, WI 53706-1108 USA
Correspondence: *michael.casler@ars.usda.gov

ABSTRACT

Reed canarygrass is a cool-season perennial with a circumglobal distribution in the northern hemisphere, native to Europe, Asia, and North America. It is tolerant of a wide range of environmental stresses including cold, heat, drought, and flooding. Strains of reed canarygrass differ in their ability to survive extreme cold or heat, in direct proportion to their latitude-of-origin and mean winter temperature at their point of origin (Klebesadel and Dofing 1990; Carlson et al. 1996). Considerable genetic variation exists for tolerance to acid soils and aluminium within the sister species Phalaris aquatica L. (Requis and Culvenor 2004; Oram et al. 2009). There is also indirect evidence for genetic variation for heat and drought tolerance in the sister species P. aquatica, with the development of cultivars that tend to perform better under these conditions (Oram et al. 2009). Reed canarygrass is tolerant of a wide range of management practices, including grazing or conservation harvesting on a frequent or infrequent basis. As such, its use in agricultural systems is highly varied, including pasture, hay or silage production, straw or bedding for livestock, and soil conservation. There is no direct evidence for constitutive resistance to stem-borer insects, as discuss later in this paper. In addition, reed canarygrass possesses genetic variability for salt tolerance, capable of rapid and heritable shifts in salt tolerance, commensurate with the degree of exposure to salt stress (Maeda et al. 2006).

Reed canarygrass is a very long-lived species that may persist indefinitely in areas where it is well adapted. It is frequently found in wetlands, riparian zones, along shore-
lines of lakes and rivers, and in canals or ditches. Seeds, rhizomes, or axillary buds of culm nodes can all be used to propagate reed canarygrass. In the 1930s, it was frequently propagated by axillary buds on stem nodes tilled into highly erodible lands in the central and northern USA. It is a prolific seed producer and all genotypes are highly susceptible to seed dispersal by premature dehiscence. Seeds float on surface waters and can be carried for many kilometers (Casler et al. unpublished data), allowing reed canarygrass to colonize large areas. Annual seed production may lead to build-up of large seed banks in the soil of colonized areas. Although reed canarygrass can be controlled by systemic herbicides and repeated burning, long-term flooding may be the only way to eradicate the species once it has established a viable seed bank. Reed canarygrass seedlings are relatively low in vigor, leading to severe establishment difficulties in fields with high populations of annual weeds. Diligent management of reed canarygrass during the establishment year, including frequent clipping to maintain a canopy open to sunlight, will greatly enhance the probability of successful establishment.

TAXONOMY AND GENETICS

Reed canarygrass has two chromosome races, tetraploid (2n = 4x = 28) and hexaploid (2n = 6x = 42) (Anderson 1961). The tetraploid race originated in the cool temperate zone of Europe and spread into Asia and North America prior to recorded history. The hexaploid race is largely restricted to the Iberian Peninsula and may be derived from an interspecific hybrid between P. arundinacea and P. aquatica (McWilliam and Neal-Smith 1962).

The genus Phalaris consists of 21 species including annuals and perennials native to either Eurasia or North America. Reed canarygrass is the only member of the genus that is native to both the Old World and New World (Anderson 1961; Baldini 1995). P. aquatica (2n = 4x = 28) is its closest relative, with which it can be readily hybridized to create F1s, backcrosses, and stable introgression lines (Carlson et al. 1996; Oram et al. 2009).

Reed canarygrass is wind pollinated with a strong self-incompatibility system that promotes a high degree of cross-pollination (Carlson et al. 1996). As such, individual populations of reed canarygrass are highly variable, demonstrating large amounts of phenotypic variability (e.g. Marum et al. 1979). Likewise, only 18% of variation for amplified fragment length polymorphism (AFLP) DNA markers could be attributed to differences among 15 European and North American cultivars, with the remainder of the variability attributed to plants within cultivars (Fig. I; Casler et al. 2009). However, a significant portion (5%; P<0.001) of this variability was related to European vs. North American origin of the cultivars. These results suggest a significant level of genetic differentiation between European and North American cultivars. More importantly, significant polymorphisms exist between modern North American cultivars and older North American cultivars that appear to represent sorghum-identified ecotypes or land races. North American land races can be clearly discriminated from European cultivars by several single-nucleotide polymorphisms in non-coding regions of the cpDNA genome (Casler et al. 2009). Conversely, most modern North American reed canarygrass germplasm traces back to selections made from old pastures and hay fields that clearly originate from introduced European germplasm. Several North American cultivars appear to derive from parental clones of highly diverse origins, including potential North American, Scandinavian, and Continental European clades (Casler et al. 2009).

Very little molecular genetic research has been conducted with the genus Phalaris. Considerable DNA marker variation has been demonstrated in reed canarygrass nuclear and chloroplast genomes (Casler et al. 2009), P. aquatica (Rouf Mian et al. 2005), and P. minor (Dhawan et al. 2008). Somatical variants of several reed canarygrass genotypes were confirmed by the use of DNA markers, with some plants demonstrating potential agronomic value (Gyalai et al. 2003). P. coerulescens Desf. has served as a model species for map-based cloning of the S and Z self-incompatibility loci within the Avenae tribe (Bian et al. 2004). Reed canarygrass has not been a target for genetic modification by plant transformation, most likely due to its relatively low economic value as one of many forage-grass options and its classification as an “invasive” species by the ecological community. Genetically modified organisms are highly regulated in the USA, requiring millions of dollars in licensing, trialing, documentation, and legal expenses, especially when the candidate species is controversial or sensitive. Linkage and association mapping studies are currently underway, using breeding populations, cultivars, and collections from natural areas, in a collaborative effort between USDA-ARS in Madison, Wisconsin and Ithaca, NY and Cornell University.

BREEDING AND SELECTION

Reed canarygrass has received relatively little attention compared to many other forage crops, with breeding and selection originating in Iowa in the 1940s (Carlson et al. 1996). Early cultivars, such as ‘Auburn’, ‘Ioreed’, and ‘Superior’ were largely ecotypes or land races that had undergone natural selection and their favorable traits identified in early agronomic trials. The origin of these land races is not currently clear, whether they represent pre-Columbian native lineages or were introduced from Europe (Casler et al. 2009). It is clear that the earliest land races of reed canarygrass (‘Auburn’, ‘AR Upland’, ‘Cana’, ‘Superior’, and to a lesser extent, ‘Ioreed’) have unique DNA profiles compared to European germplasm and modern North American cultivars (Casler et al. 2009). These authors suggested that these land races may represent native North American lineages, but recent preliminary data suggests that they may alternatively represent the hexaploid Iberian race of reed canarygrass (Johnson, R.C., 2010, unpublished data). Research is currently underway to test this hypothesis. Seedling vigor and establishment capacity, seed retention, and alkaloid profiles have served as the most important traits in reed canarygrass breeding programs during the past 30+ years. Palatability and livestock health problems...
on reed canarygrass pastures led to the identification of specific indole alkaloids as antiquality compounds in reed canarygrass herbage. Palatability, intake, and liveweight gains of ruminant livestock are all suppressed by elevated levels of indole alkaloids in reed canarygrass herbage (Marten 1985, 1989). There is considerable genetic variability within reed canarygrass for alkaloid concentration and type. Early research identified a wide range in alkaloid concentration within reed canarygrass cultivars and breeding populations. Grazing trials demonstrated that lambs easily discriminated among reed canarygrass genotypes in terms of their preference and consumption of different reed canarygrass genotypes was highly dependent on alkaloid concentration (Fig. 2; Simons and Marten 1971). Reed canarygrass also contains non-indole alkaloids, such as hordenine, which are believed to be relatively benign to livestock (Goelz et al. 1980).

Alkaloid type has a significant effect on both liveweight gains and livestock health, with mixed-type cultivars (gramine, tryptamines, and β-carbolines) resulting in reduced liveweight gains and greater incidence of livestock health issues compared to cultivars with gramine as their only alkaloid (Marten 1985, 1989). The presence of tryptamines and β-carbolines in reed canarygrass herbage is governed by a simple two-locus inheritance model (Marum et al. 1979a), so it was relatively simple to identify true-breeding plants with gramine as the principal indole alkaloid. ‘Vantage’ was the first cultivar to be free of tryptamines and β-carbolines, leading to a slight increase in liveweight gains and a large increase in health of lambs grazing reed canarygrass (Table 1). ‘Palaton’ and ‘Venture’ represented the next generation of cultivars with reduced levels of gramine (Wittenberg et al. 1992). The improvement of reed canarygrass cultivars is clearly a two-step process with both removal of tryptamines and β-carbolines and subsequent reduction in gramine having independent effects on improving liveweight gains (Table 2). Low-alkaloid cultivars have become so dominant in the marketplace that old cultivars with tryptamines and β-carbolines in their herbage have been discontinued and many can be found only in gene banks.

There were sporadic efforts to improve seed retention of reed canarygrass during the 20th century. The most significant of these was phenotypic selection for seed retention, as determined by tactile evaluation, in spaced-plant nurseries, resulting in the release of ‘Palaton’ and ‘Venture’ with improved seed production (Kalton et al. 1989a, 1989b). A single plant of P. aquatica was found to have an intact rachilla, resulting in improved seed retention, which has been incorporated into all recent cultivars of this species (Oram and Lodge 2003). This trait has been successfully incorporated into F₁,8 and backcrosses with P. arundinacea, but these materials have not yet been successfully transferred into reed canarygrass breeding programs. These interspecific hybrids and backcrosses have been used to transfer genes for aluminum and acid-soil tolerance from reed canarygrass into P. aquatica (Ridley et al. 2002).

Recent efforts have led to an increase in stand establishment capacity through the use of systematic natural selection methods (Casler and Undersander 2005). Natural selection for survival in competition with annual weeds led to progeny with increased seedling vigor, expressed as both increased root and shoot mass, leading to increased establishment capacity.

Changes in Status and Perception

Reed canarygrass was cultivated in Europe as early as the mid-18th century (Alway 1931). The first cultivation of reed canarygrass in North America likely occurred around the 1830s in the northeast USA and eastern Canada, about the same time that cultivation spread from Scandinavia into other parts of northern Europe (Schott 1929; Alway 1931). At this time, cultivation consisted of harvesting seed from native stands and planting the species in disturbed areas, largely for reclamation of peatlands and marshes.

Natural European strains of reed canarygrass were imported into North America beginning sometime prior to 1924 and quickly dominated the marketplace (Schott 1929). Agronomic research on reed canarygrass began sometime around 1920, with most efforts focused on comparing it to other perennial grasses, defining management systems, and improving seed production and harvesting methodology. In 1924, reed canarygrass was still considered to be of minor importance to agriculture, barely warranting mention in textbooks of forage crops (Piper 1924). The use of reed canarygrass in agriculture likely increased in the 1930s, as farmers and extension personnel were desperate for perennials that could withstand the severe drought that plagued the mid-western USA in the early 1930s. Reed canarygrass is one of the most drought tolerant cool-season grasses adapted to eastern North America (Wilkins and Hughes

Table 1 Alkaloid profiles, average daily gain, and diarrhea incidence for lambs grazing three reed canarygrass cultivars (adapted from Marten et al. 1981).

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Alkaloid types</th>
<th>Alkaloid concentration (mg g⁻¹ D.W.)</th>
<th>Average daily gain (g lamb⁻¹)</th>
<th>Diarrhea incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rize</td>
<td>Gramine, Tryptamine, β-carboline</td>
<td>0.0</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>Vantage</td>
<td>Gramine</td>
<td>0.9</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>MN-76</td>
<td>Gramine</td>
<td>0.2</td>
<td>116</td>
<td>2</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Mean biomass yield of reed canarygrass under three harvest managements (two harvests in Spring or Autumn, one harvest in Autumn, or one harvest in late Winter) evaluated for three years at three locations in the North Central USA (adapted from Tahir et al. 2010).

<table>
<thead>
<tr>
<th>Harvest management</th>
<th>Ames, Iowa</th>
<th>McNay, Iowa</th>
<th>Arlington, Wisconsin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring + Autumn</td>
<td>10.49</td>
<td>6.02</td>
<td>7.54</td>
</tr>
<tr>
<td>Autumn only</td>
<td>7.49</td>
<td>4.56</td>
<td>6.21</td>
</tr>
<tr>
<td>Winter only</td>
<td>3.23</td>
<td>1.45</td>
<td>2.46</td>
</tr>
<tr>
<td>LSD (0.01)</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Reed canarygrass, considered as an invasive species, even though early agronomists recognized its ability to create dense monocultures (Hoover et al. 1948).

Gradually, during the last half of the 20th century, reed canarygrass became recognized as an invasive species, because it was found in wetlands where it had never been observed and it typically became the dominant species within 5-6 years. Volker and Smith (1965) showed that reed canarygrass had invaded a native wetland in Iowa sometime between 1915 and 1961. During this period, 11 species disappeared, while reed canarygrass and several other invasive species became the dominant flora. Although it is not so well documented at other sites, this phenomenon seems to have occurred throughout temperate North America during the latter half of the 20th century. Because European germplasm was repeatedly introduced into North America beginning in the late 19th century, and distinguishing from the native North American type on the basis of phenotype, there are unsubstantiated opinions and beliefs that European-derived cultivars represent a group of invasive genotypes that have overtaken native reed canarygrass populations (Lavergne and Molofsky 2004).

Many significant changes occurred to agriculture during the latter half of the 20th century, coincident with the increase in breeding and cultivation of reed canarygrass. Inexpensive fossil fuels and advances in agricultural mechanization led to more intensive and frequent tillage operations and huge increases in the use of non-organic fertilizers (McNeill and Winiewarter 2004). Tractors replaced horses, tractors and tillage equipment gradually became larger, pastures and prairies were replaced with grain crops, and inorganic fertilizers became commonplace. In addition, many wetlands were drained, converting them to croplands divided by roads, drainage ditches, and waterways (Prince 1997).

A steady increase in soil erosion has been one of the most significant changes in agriculture since World War II, directly related to increased use of tillage (Pimentel et al. 1995). Runoff induced by precipitation or irrigation carries sediments, pesticides, nutrients, minerals, and bacteria into rivers, streams, lakes, and estuaries. Indeed, the economic consequences of soil erosion to off-farm ecosystems are far greater than those on agricultural productivity (NRC 1986). Agriculture accounts for more than 50% of the suspended sediments discharged into surface waters of the USA (USDA 1987). Furthermore, 50-70% of the nutrients reaching surface waters originate from agricultural lands (USDA 1987).

Channelization of former wetlands into roads, drainage ditches, and waterways has provided a mechanism for reed canarygrass to travel long distances through runoff from agricultural lands. Sedimentation and nutrient loading of wetlands provides an ideal environment for germination of reed canarygrass seeds, establishment of seedlings, and colonization by adult plants (Werner and Zedler 2002). Sedimentation smothers native vegetation, reducing microtopography and species richness, and creating open ground available to colonization by introduced species. Elimination of native vegetation reduces canopy cover, increasing light interception, and enhancing germination of reed canarygrass seeds (Lindig-Cisneros and Zedler 2002a). Gaps in the canopy are also important for enhancing the success of seedling establishment (Lindig-Cisneros and Zedler 2002b). Growth of reed canarygrass is heavily favored by low vegetative cover, as found in these types of disturbed or low-density habitats (Morrison and Molofsky 1998). These authors also suggested that continual introductions of reed canarygrass seed increase the probability of successful colonization. High seed production and seed shattering of reed canarygrass, followed by precipitation, runoff, and frequent sedimentation events, likely results in repeated introduction of reed canarygrass seeds into this ideal establishment environment.

The nutrients that accompany sedimentation are also a key component of this equation. High-nutrient environments enhance the biomass production of reed canarygrass (Green and Galatowitsch 2001; Maurer and Zedler 2002), increasing its aggressiveness and suppressing effect on native plant species (Green and Galatowitsch 2002). Once established, high nutrient levels enhance the vegetative spread of reed canarygrass by rhizomes and tillers (Maurer and Zedler 2002). The opportunistic nature of reed canarygrass is illustrated by an alternative strategy under low-nutrient conditions — allocation of more resources to root growth and tillering closer to the parent clone (Maurer and Zedler 2002). These strategies lead to the inevitable succession of reed canarygrass as the dominant species, gradually replacing native wetland species and reducing wetland diversity (Spuhler 1994; Barnes 1999; Galatowitsch et al. 1999; Lavoie et al. 2003). Perry et al. (2004) elegantly verified this effect, by demonstrating that the dominance of reed canarygrass over a native Carex species was reversed when N fertilizer was applied to carbon-enriched plots. Clearly, the colonization of wetland habitats by introduced reed canarygrass is largely a function of landscape disturbances combined with agricultural systems that have promoted erosion, sedimentation, and nutrient loading of wetlands.

REED CANARYGRASS AS A BIOENERGY CROP

With increased interest in the development of bioenergy crops for diverse environmental conditions, interest in reed canarygrass has increased in recent years. Reed canarygrass has extremely high biomass yields compared to most other C3 grasses commonly used for hay or pasture production (Marten 1985; Jasinskas et al. 2008). Routine reed canarygrass biomass yields of 14 to 17 Mg DM ha⁻¹ have been reported in temperate North America and Europe (Wrobel et al. 2009). Biomass yield of reed canarygrass responds linearly to nitrogen fertilizer at least up to 200 kg N ha⁻¹ with split applications in a multiple-harvest system (Malzer and Schoper 1984; Schmitt et al. 1999). Higher rates of nitrogen fertilizer are generally considered too high for profitable and sustainable biomass feedstock production; low to intermediate rates, approximately 100 kg N ha⁻¹, seem to be common for a one- or two-harvest management system (Landström et al. 1996; Cherney et al. 2003). Especially with a single-harvest management, nitrogen-use efficiency decreases rapidly above 100 kg N ha⁻¹, leading to inefficient use of fertilizer N and potential leaching into groundwater (Landström et al. 1996; Cherney et al. 2003; Lewandowski and Schmitt 2006). Furthermore, with a single-harvest management, most of the nitrogen in stored biomass is lost in translocation of nutrients via translocation from shoot to roots, reducing the need for N fertilization in subsequent production seasons (Partala et al. 2001). Biomass yield of reed canarygrass responds well to application of municipal wastewater effluent and the species is capable of extracting large amounts of N, P, and other nutrients from the soil (Marten et al. 1979). Co-location of reed canarygrass production fields with a bio- mass-capable power plant and source of wastewater can municipal effluent or agricultural processing facility would be a logical solution to develop a sustainable production system that minimizes or eliminates the need to transport expensive fertilizers and nutrients into the system.

Reed canarygrass is tolerant of a wide range of harvest management and could produce large amounts of biomass under the relatively infrequent harvest systems used for biomass production. In a three-location study in the North Central USA, reed canarygrass biomass yield was highest under...
a two-harvest system in which first harvest was taken after anthesis but prior to seed ripening and second harvest was taken after killing frost (Table 2). Biomass yields were reduced by 18% to 29% when the first harvest was eliminated for a single harvest in autumn. Biomass yields were reduced by 67% to 76% when the first harvest was eliminated for a single harvest at the end of winter. The late winter harvest is utilized as a mechanism to allow plant biomass to naturally leave and be removed. Sedum undulatum (von Zabern) biomasses used to generate energy in a combustion system. Numerous studies have shown that undesirable elements such as CI and K are severely reduced in a reed canarygrass crop left standing over winter (Lindström et al. 1996; Burvall 1997; Hadders and Olsson 1997; Tahir et al. 2010), greatly improving the biomass feedstock quality of reed canarygrass hay. Estimates of biomass yield loss during overwintering of a standing crop are generally about 25% with an associated decrease in moisture content of approximately 50% in Europe (Lindström et al. 1996; Christian et al. 2006), but 57 to 68% in the North Central USA (Table 2). In the USA study, lodging was a severe problem, even though the rates of N fertilization were similar between the USA and European studies, eliminating the possibility of successful harvest approximately once every three years (Tahir et al. 2010). A distinct advantage of a two-harvest system is that first harvest could be taken before any ripe seed is produced, completely eliminating the potential invasive threat of bioenergy-type reed canarygrass cultivars to neighboring ecosystems.

There are environments in which routine overwintering of reed canarygrass biomass appears to be a long-term sustainable enterprise for producing biomass feedstocks. In Ostrobotnia, Finland, a successful research and outreach effort led to rapid increases in land area devoted to reed canarygrass feedstock production to support several local coal-fired power plants, essentially saturating the marketplace within 4-5 years (Pahkala et al. 2008). This program has been strongly supported by management and production research, education and outreach, and a breeding program, all designed to deliver improved methods, information, and cultivars to reed canarygrass growers (Sahramaa 2003; Pahkala et al. 2008).

There is a large amount of genetic variation for biomass yield and quality traits that could be used to select cultivars with improved biomass yield and conversion efficiency (Marum et al. 1979b; Casler and Hovin 1985). Because management of reed canarygrass as a bioenergy feedstock is dramatically different than its use as a forage crop, breeding objectives and selection criteria must be dramatically altered. Most of the needs of both the feedstock producer, but also the end users who are concerned with energy production (combustion to produce heat, fermentation to produce liquid fuels, or thermochemical conversion to produce syngas). The issue is further confounded in that each conversion platform may demand highly significant modifications to the breeding objectives, e.g. reduced lignification or reduced cross-linking between lignin and cell-wall polysaccharides for fermentation (Casler et al. 2008), reduced Si, CI, and K combined with lodging resistance for combustion (Lindvall 1997), or simply high biomass yield for thermochemical conversion (Boateng et al. 2008). Demonstrating the significant deviation of bioenergy feedstock breeding objectives from forage breeding objectives, Sahramaa et al. (2003) have shown that improvement of biomass yield for a one-harvest management system should focus on tall plants with many nodes and a high straw fraction, high panicle number, reduced leaf area index, and reduced aerial shoot development.

Due to the palatability and liveweight gain issues associated with alkaloids of reed canarygrass, germplasm used in pasture breeding programs has been severely restricted. Because alkaloids are not an issue in biomass conversion to energy, these restrictions need not apply to reed canarygrass breeding programs that focus on bioenergy. Because alkaloids may function to protect plants from insect predation and some environmental stresses, the use of genotypes with “wild-type” alkaloid profiles may be advantageous for developing dedicated bioenergy feedstocks. Reed canarygrass genotypes with high alkaloid concentrations are more resistant to infestation by stem borers such as frit fly, Oscinella frit (Byers and Sherwood 1979). Gramine is also a deterrent to aphid feeding in barley, Hordeum vulgare L. (Corcuer 1993), suggesting that alkaloids likely act as a mechanism of antibiosis to multiple families of insects.

Existing cultivars of reed canarygrass are clearly suboptimal for development and production of dedicated bioenergy feedstocks. Biomass yield and pest resistance are lacking in low-alkaloid germplasm, necessitating the need to discover, collect, evaluate, and refine new sources of germplasm suitable for bioenergy feedstock production. Sachs and Coulman (1983) found a wide range of Canadian accessions, collected from natural stands over a wide geographic area, that were considerably higher in biomass yield compared to existing cultivars. Because the focus of this collection and evaluation was for forage and pasture, this germplasm collection has yet to be exploited for improving biomass yields of reed canarygrass as a bioenergy feedstock in Canada. Casler et al. (2009) collected and evaluated 72 reed canarygrass accessions collected from natural and wild areas in NE Oklahoma. 85% of these accessions were classified as tolerant to aphid feeding in barley, Hordeum vulgare L. (Corcuer 1993), suggesting that alkaloids likely act as a mechanism of antibiosis to multiple families of insects.

In much of temperate North America, reed canarygrass is still considered to be one of the premier forage grasses, having utility as both a hay and pasture crop with adaptation to a wide range of soils and environmental conditions. Low seedling vigor and poor competitive ability against annual weeds, leading to poor and/or inconsistent establishment, is the major limitation to increased utilization of reed canarygrass in livestock agriculture. Research on naturally occurring alkaloids in reed canarygrass tissues and their role in palatability, intake, and health of grazing livestock resulted in drastic modifications to reed canarygrass cultivars, successfully transforming a highly toxic plant used largely for soil conservation into a healthy and nutritious pasture plant. Future use in bioenergy feedstock production systems will require comparable breeding efforts and genetic studies using specific harvest management schemes and focus on specific selection criteria and breeding objectives designed to improve biomass yield and standability, stress tolerances, and feedstock quality.

REFERENCES

Alway FJ (1931) Early trials and use of reed canary grass as a forage plant. Journal of the American Society of Agronomy 23, 64-66

Burvall J (1997) Influence of harvest time and soil type on fuel quality in reed canary grass (Phalaris arundinacea L.). Biomass and Bioenergy 12, 149-154

Byers RA, Sherwood RT (1979) Differential reaction of clones of Phalaris arundinacea to Ocsinella frit. Environmental Entomology 8, 408-411

Carlston IT, Oram RN, Surprenant J (1996) Reed canarygrass and other Pha-

Marum P, Hovin AW, Marten GC (1979a) Inheritance of three groups of indole alkaloids in reed canary grass. Crop Science 19, 539-544

Marum P, Hovin AW, Marten GC, Shenk JS (1979b) Genetic variability for cell wall constituents and associated quality traits in reed canary grass. Crop Science 19, 355-360

National Resource Council (1986) Soil Conservation: Assessing the National Resources Inventory (Vols 1, 2), National Academy Press, Washington, DC, 314 pp

Piper CV (1924) Forage Plants and Their Culture, McMillan, New York

Sahramaa M (2003) Evaluation of reed canary grass for different end-uses and in breeding. Agriculture and Forest Science in Finland 12, 227-241

Sahramaa M, Ihmäki H, Jauhiainen L (2003) Variation in biomass related variables of reed canary grass. Agriculture and Forest Science in Finland 12, 231-225

Simons AB, Marten GC (1971) Relationship of indole alkaloids to palatability of Phalaris arundinacea L. Agronomy Journal 73, 915-919

United States Department of Agriculture (1987) Agricultural Resources –

Volker R, Smith GS (1965) Changes in the aquatic vascular flora of Lake East Okoboji in historic times. Iowa Academy of Science 72, 65-72

