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ABSTRACT 
Flower bearing branching systems are of major importance for plant reproduction, and exhibit significant variation between and within 
lineages. A key goal in evolutionary biology is to discover and characterize changes in the genetic programming of development that drive 
the modification and diversification of morphology. Here we present a synopsis of reproductive architecture in Papaveraceae s.l., a lineage 
in which the evolution of inflorescence determinacy, flower structure and symmetry, and effloration sequence produced unique reproduc-
tive syndromes. We discuss the potential of this group to study key issues on the evolution of reproductive structures, and refer to 
candidate gene families, choice of landmark species, and available tools for developmental genetic investigations. 
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INTRODUCTION 
 
The flower, the basic reproductive organ of angiosperms, is 
incomparably more diverse than equivalent structures found 
in any other group of organisms (Barrett 2002). This extra-
ordinary reproductive variety is further increased by a wide 
range of specialized branching systems clustering flowers, 
the inflorescences (Weberling 1992), which expose flowers 
and then fruits with their seeds to ensure successful repro-
duction (Prusinkiewicz 2007). The evolution of flowers and 
inflorescences is logically tightly connected (Coen and 
Nugent 1994). The huge morphological diversity of flowers 
and inflorescences raises the question of its evolutionary 
origin through re-orchestration of genetic control elements. 
An integrated understanding of floral and inflorescence 
diversification constitutes a major task of plant evolutionary 
biology, and can also be expected to have a tremendous and 
economically relevant impact on plant breeding strategies. 
However, available evolutionary developmental (evo-devo) 
data on the topic remain so far mostly restricted to a few 
model systems widely dispersed within flowering plant 
lineages. 

A great diversity of flowers and inflorescences is seen 
early in angiosperm history, a morphological radiation 
referred to as the “abominable mystery” by Darwin (Crepet 
1998, 2000; Friedman 2009). In fact, principal trends such 
as floral symmetry shifts and synorganization, are already 
found in the fossil record and in extant basal angiosperms, 
but further appear recurrently throughout angiosperm 
phylogeny (Soltis et al. 2009). This makes it difficult to 
infer ancestral character states in the reconstruction of the 
“primitive” flower (for one of the most recent attempts, see 
Endress and Doyle 2009). The fundamental problem that 
evolutionary developmental biology addresses is the 
correspondence of morphological traits and their underlying 
developmental processes in the comparison of different 
lineages. A common approach is to study the genetic regu-
lation of specific morphological traits in isolation. However, 
traits are often functionally linked and may exhibit coordi-
nate evolution. Understanding the genetic basis of the evo-
lution of such morphological syndromes requires a tho-
rough examination of multiple traits that show interdepen-
dency. A prime example is the coordinated evolution of 
flower and inflorescence morphology. So far, studies have 
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revealed an astonishing degree of conservation of develop-
mental mechanisms across flowering plants. Therefore, for 
non-model lineages, a candidate gene approach that uses the 
evidence from established model systems remains a straight-
forward and powerful strategy to address morphological 
evolution. Because the current major model systems are 
representatives of either core eudicots (e.g. Antirrhinum L., 
Arabidopsis (DC.) Heynh.) or monocots (e.g. Oryza L.), 
and efforts understandably concentrate on plants of econo-
mic importance, it has been realized that research in basal 
angiosperms and basal eudicots is especially needed, as it 
will be instrumental in deciphering major evolutionary tran-
sitions in the regulation of development (Soltis et al. 2002). 

Research in the Papaveraceae s.l. may be a very useful 
response to this current need. This family belongs to the 
Ranunculales, the order which diverged first in the eudicot 
lineage (Soltis et al. 2007c; APG III 2009), and is early 
branched within the order (Kim et al. 2004a; Soltis et al. 
2007c; Wang et al. 2009). The phylogenetic position of 
Ranunculales, between the core eudicot and grass model 
systems, makes the group suitable for evolutionary-deve-

lopmental studies in angiosperms (Kramer 2009). The pop-
py relatives in the broad circumscription (Papaveraceae s.l.), 
comprise around 760 species and 44 genera (Stevens 2001 
onwards), and is constituted of two main groups, the Papa-
veraceae (poppies in the narrower sense) on the one hand, 
and the Fumariaceae on the other (the fumitory family; or 
Fumarioideae subfamily of Papaveraceae s.l.). An isolated 
taxon, Pteridophyllum racemosum Siebold & Zucc., often 
viewed as a separate family Pteridophyllaceae (or Pterido-
phylloideae subfamily of Papaveraceae s.l.), may be sister 
to Fumariaceae (Wang et al. 2009; Fig. 1). Papaveraceae s.l. 
has attracted researchers because various diversity patterns 
invite comparative studies. The family received much atten-
tion for its biochemical richness in alkaloids (Hesse 2002; 
Ziegler et al. 2006). Diversity in leaf shape (Gleissberg and 
Kadereit 1999) and inflorescence morphology (Günther 
1975a, 1975b) has also been studied. 

Therefore, Papaveraceae s.l. is a useful lineage to draw 
comparisons between major angiosperm clades such as eu-
dicots and monocots, as well as to elucidate the emergence 
of diversity within a well-defined group. In recent years, the 

Fig. 1 Summarized phylogeny of the Papaveraceae s.l. based on molecular inferences and traditional classifications (Hoot et al. 1997; Lidén et al. 
1997; Wang et al. 2009, and references therein). Flower symmetry and determinate/indeterminate inflorescence states are indicated for all genera. Flower 
picture, flower diagram and inflorescence type scheme are given for some selected representatives of the family throughout its phylogeny. �: Taxonomic 
groups of traditional classifications for which monophyly is not confirmed by current molecular data. 
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establishment of developmental genetic tools in members of 
the family have opened new avenues of research. So far, 
developmental genetic work has focused on Eschscholzia 
californica Cham. (Busch and Gleissberg 2003; Becker et 
al. 2005; Groot et al. 2005; Carlson et al. 2006; Wege et al. 
2007; Orashakova et al. 2009), and the economically im-
portant Papaver somniferum L., the opium poppy (Hileman 
et al. 2005; Drea et al. 2007). In fact, functional studies are 
until now exclusively carried out in these two species, using 
virus-induced gene silencing that was first developed by 
Hileman et al. (2005) in P. somniferum, and subsequently 

established by Wege et al. (2007) in Eschscholzia califor-
nica. Nevertheless, evo-devo questions on reproductive 
characters result in the need to enlarge the taxonomic rep-
resentation of Papaveraceae s.l. to include species with 
different reproductive features (Kramer et al. 1998; Kramer 
and Irish 1999, 2000; Kramer et al. 2003b; Damerval et al. 
2007; Kölsch and Gleissberg 2006; Table 1). 

We discuss here the diversity of reproductive architec-
ture in Papaveraceae s.l., paying special attention to inflo-
rescence determinacy, flower structure and symmetry, and 
effloration (the blooming sequence). We suggest candidate 

Table 1 Overview of candidate gene studies related to flower and inflorescence development in Papaveraceae s.l. Sequencing, expression and functional 
aspects are taken into account.  
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gene families that may help to elucidate how the develop-
mental regulation of these traits underwent modifications 
that gave rise to the present diversity, and review work 
already done using this approach. 
 
FLORAL AND INFLORESCENCE DIVERSITY IN 
PAPAVERACEAE S.L. 
 
Floral diversity 
 
The flower of Papaveraceae s.l. is bisexual and usually 
presents a dimeric ground plan, although trimerous flowers 
are also common in Papaveraceae. Trimery characterizes 
some taxonomic groups as a whole (the subfamily Platyste-
monoideae, Canbya Parry ex A.Gray, and Romneya Harv., 
Ernst 1962). Furthermore, some genera (Arctomecon Torr. 
& Frem., Argemone Tourn. ex L., Papaver L.) and even 
species (Dendromecon rigida Benth.) exhibit both dimeric 
and trimeric flowers (Ernst 1962). The perianth is generally 
triseriate consisting of one whorl of sepals and two alter-
nating whorls of petals, with the exceptions of Bocconia 
Plum. ex L. and Macleaya R.Br. (apetalous), and some 
Meconopsis Vig. and Sanguinaria L. (polypetalous, Ernst 
1962). Papaveraceae perianth parts are free (except in 
Eomecon Hance and Eschscholzia Cham., which are syn-
sepalous), and not elaborate, whereas in Fumariaceae petals 
are fitted with different kinds of wings, joints and/or spurs, 
and the outer and inner whorls are dissimilar (Lidén 1986; 
Endress and Matthews 2006). Furthermore, petaloid sepals 
are found in all Fumarioideae. Stamens of Papaveraceae are 
usually numerous and arranged in several whorls, even 
though only two series are found in Meconella californica 
Torr., and one in Canbya candida Parry ex A. Gray, Meco-
nella denticulata Greene and M. oregana Nutt. ex Torr. & A. 
Gray (Ernst 1962). The androecium of the remaining Papa-
veraceae s.l. develops four stamens in Pteridophyllum Sie-
bold & Zucc. and Hypecoum L., and six stamens that are 
partially fused in two bundles within Fumarioideae (Ernst 
1962; Fig. 1). The gynoecium is two- to many-carpelled in 
Papaveraceae, and two-carpelled in Fumariaceae and Pteri-
dophyllaceae, and has parietal placentation throughout 
(Murbeck 1912). 

Papaveraceae s.l. presents a unique case of evolutionary 
transitions in floral symmetry (Kölsch and Gleissberg 2006; 
Damerval et al. 2007). Papaveraceae and Pteridophyllum 
flowers are polysymmetric (or actinomorphic), which is 
thought to be the ancestral character state in the family (e.g. 
Papaver and Chelidonium Tourn. ex L., Fig. 1). Disym-
metric flowers arose in the Fumariaceae through morpho-
logical differentiation of the two petal whorls, a process that 
can involve the formation of spurs in both outer petals (e.g. 
Hypecoum and Lamprocapnos Endl., Fig. 1). Disymmetry 
in Fumariaceae flowers also involves the androecium 
(Damerval and Nadot 2007). The reduction of symmetry 
planes can continue to monosymmetry (or zygomorphy), 
when only one of the two outer petals forms a spur (e.g. 
Fumaria L., Fig. 1). Monosymmetry in the Fumariaceae is 
quite peculiar because it develops in the transverse plane 
instead of the usual median plane. Interestingly, a 90 degree 
torsion of the pedicel before anthesis leads to a secondarily 
vertical orientation of the symmetry plane (“transverse 
zygomorphy”, Weberling 1992; Endress 1999). Furthermore, 
some species present alternatively disymmetric or mono-
symmetric flowers depending on the environmental condi-
tions (e.g. Corydalis cheilanthifolia Hemsl., Tebbitt et al. 
2008). 

Floral homeosis has evolved twice in Papaveraceae. In 
Macleaya, all the petals are replaced by stamens (Fig. 2B), 
whereas Sanguinaria canadensis L. shows additional petals 
in the location of the more external stamens (Lehmann and 
Sattler 1993, Ronse de Craene 2003; Fig. 2C). 
 
Inflorescence diversity 
 
The Papaveraceae s.l. flowers are aggregated in reproduc-

tive shoot systems usually formed by the primary shoot in 
which all meristems eventually develop into flowers. Vege-
tative renewal may occur from axillary meristems close to 
the base of the plant, allowing perennial growth. In a few 
exceptions to this rule, flowering shoots form only laterally 
while the main shoot remains vegetative. This is the case in 
the climbing fumitory Adlumia Raf. ex DC., where inflo-
rescences occupy an axillary position while the main axis 
grows indeterminately (Lidén 1986). In Dicranostigma lac-
tucoides Hook. f. & Thomson, the main shoot continues to 
grow as a vegetative rosette, and inflorescences form only 
laterally (Günther 1975a). Flowers often cluster in deter-
minate inflorescences, in which the apical meristem of the 
primary shoot converts to a flower. Determinate (or closed) 
inflorescences may occur as cymes (e.g. Hypecoum, Fig. 1), 
botryoids (a raceme with a terminal flower, e.g. Lampro-
capnos, Fig. 1), or panicles (sensu Weberling, 1992; e.g. 
Macleaya, Fig. 2B). Indeterminate (or open) inflorescences, 
in which the primary shoot meristem is aborted after forma-
tion of lateral flowers, are only found in Fumariaceae (e.g. 
racemes of Fumaria, Fig. 1), where they are associated with 
monosymmetric flowers. Therefore, characteristic reproduc-
tive syndromes are found in this family in which floral 
polysymmetry and disymmetry are associated with closed 
inflorescences, and monosymmetry with open inflorescen-
ces (Kölsch and Gleissberg 2006; Fig. 1). However, three 
interesting exceptions occur. Firstly, in Capnoides Mill., 
monosymmetric flowers form in a determinate inflores-
cence (Fig. 1). In angiosperms, monosymmetric flowers are 
almost always associated with indeterminate inflorescences 
because the lateral position of flower primordia is thought 
to provide a positional clue for adaxial-abaxial patterning. 
Exceptions are extremely rare, and besides Capnoides in the 
Fumariaceae, monosymmetric flowers in terminal position 
have only been reported for Schizanthus Ruiz & Pav. in the 
Solanaceae (Coen and Nugent 1994). Secondly, in Dactyli-
capnos Wall., disymmetric flowers are grouped in an open 
inflorescence. The phylogenetic positions of Capnoides and 
Dactylicapnos are not resolved (Fig. 1), so that it remains 
unclear if the unusual character combinations found in these 
genera arose through reversals or through parallel evolution. 
For example, disymmetry in Dactylicapnos may have 
evolved from monosymmetric ancestors. Lastly, the isolated 
Pteridophyllum has polysymmetric flowers born on an in-
determinate inflorescence. While this character combination 
is common in other angiosperm lineages, and appears e.g. 
in Arabidopsis, it occurs singly in this isolated taxon within 
Papaveraceae s.l. Taken together, three characteristic and 
widespread floral syndromes that link inflorescence deter-
minacy and flower symmetry are found in Papaveraceae s.l. 
(actinomorphic flowers/determinate inflorescence, disym-
metric flowers/determinate inflorescence, zygomorphic 
flowers/indeterminate inflorescence). However, three taxa 
are interesting “rule-breakers” with unusual syndromes, 
making this family particularly suitable for studying the 
connection between inflorescence determinacy and floral 
symmetry (Fig. 1). 

Inflorescences differ not only with regard to determi-
nacy. Some Papaveraceae, such as members of Eschschol-
zia, Papaver, and Meconopsis, have solitary flowers born 
on elongated leaf-less end internodes. These “full rosette 
plants” (Günther 1975b) resemble “flowering rosettes” 
found in some Brassicaceae (Yoon and Baum 2004), but 
differ in that their primary shoot also forms a flower. In 
contrast to the more common half-rosette plants, leaves 
preceding the solitary flower in full rosette plants are not 
elevated by internodes and remain close to the ground (Fig. 
2D). Solitary flowers also occur in rhizomateous genera 
such as Sanguinaria, a chelidonioid poppy, and are infre-
quently found in Fumariaceae (e.g. Dicentra uniflora 
Kellogg). 

The blooming sequence, or effloration, is not a com-
monly documented character in plant groups, despite its 
probable great evolutionary significance (Sell 1969). This 
trait has been systematically studied in Papaveraceae (Gün-
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ther 1975a, 1975b), but is less well documented in Fumaria-
ceae. Changes in effloration accompany evolutionary tran-
sitions in which the unit of pollinator attraction shifts from 
a single large flower to inflorescences of increasing orders 
(Sell 1969; Maresquelle 1970). In accordance with this 
trend, plants with large singly exposed flowers have a basi-
petal effloration, the terminal flower opening first, followed 
by lateral flowers that bloom in the order of their proximity 
to the terminal flower (e.g. Papaver, Fig. 1). The same se-
quence is found in the dichasium of Hypecoum (Fig. 1). An 
inverse effloration sequence occurs in plants in which the 
inflorescence constitutes an attraction unit. Chelidonium 
(Fig. 1) has a corymb-like determinate inflorescence in 
which the terminal flower blooms first, followed by acro-
petal effloration of the lateral flowers. Effloration in Boc-
conia and Macleaya is almost completely acropetal, with 
the terminal flower the last to bloom (Ernst 1962). In some 
Fumariaceae, such as Lamprocapnos (Fig. 1), effloration is 
completely acropetal even while a terminal flower persists. 
Acropetal effloration is also the rule in all species with 
indeterminate inflorescences, e.g. Fumaria (Fig. 1). 
 

CANDIDATE GENE APPROACHES TO FLOWER 
AND INFLORESCENCE DIVERSITY IN 
PAPAVERACEAE S.L.: STATE-OF-THE-ART AND 
PROSPECTS 
 
Floral organ identity genes 
 
Papaveraceae, unlike other Ranunculales such as Ranuncu-
laceae, has flowers with a distinct bipartite perianth, a pat-
tern otherwise typical for core eudicots. This similarity with 
core eudicots makes the Papaveraceae particularly suitable 
for comparative studies of genetic pathways controlling 
floral organ identity. 

Floral organs acquire their specific identity during deve-
lopment through the action of homeotic genes that act as 
major developmental switches between genetic programs 
specific for a particular organ (for an overview, see Theis-
sen and Melzer 2007). Activity and interactions of floral 
homeotic genes have been summarized in the “ABC model” 
based on the observation of mutant phenotypes in Arabi-
dopsis and Antirrhinum (Coen and Meyerowitz 1991). In 
this model, A class genes account for sepal formation, A and 

Fig. 2 The ABCE model of floral organ specification. Classic (A), as inferred for Macleaya (B), and Sanguinaria (C). Illustrations of floral and 
inflorescence features are provided for the two taxa. D. Architecture of Eschscholzia caespitosa Benth. (above) and E. lobbii Greene (below), illustrating 
the transition from half rosette to full rosette growth by restriction of elongation to the internode below the single flower (redrawn from Günther 1975a, 
1975b). Floral diagram of Macleaya microcarpa Fedde in (B) from Karrer (1991) and Sanguinaria canadensis in (C) from Lehmann and Sattler (1993). 
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B for petals, B and C for stamens and C for carpels (Fig. 
2A). Class D genes implicated in ovule identity were pro-
posed later (Angenent and Colombo 1996), however, a 
group of redundant genes active in all whorls, termed E 
class, became an essential part of the model that is now 
often referred to as the ABCE model (Theissen 2001; Fig. 
2A). Most ABCE genes are members of the same family of 
transcription factors, type II MIKC MADS-box genes. In 
Arabidopsis, A function is specified by AP1 and APETALA2 
(not a MADS-box gene), B function is specified by AP3 
and PI, C function by AGAMOUS (AG) and SHATTER-
PROOF1/2, D function by SEEDSTICK, and E function by 
SEPALLATA (reviewed by Theissen and Melzer 2007; Soltis 
et al. 2009). Major duplication events affecting these genes 
are quite concurrent with major events in angiosperm phy-
logeny such as the evolution of core eudicots (Soltis et al. 
2007b). These duplications generate new pools of genes for 
possible neo- and subfunctionalizations, and therefore they 
may have provided the "material" to construct novelties in 
flower architecture and to forge ahead its diversification 
(Soltis et al. 2007b). 

AP1, which specifies A-function in Arabidopsis, pro-
vides an example of how lineage-specific duplications 
affect the use of the candidate gene approach in evo-devo 
studies. AP1 results from a series of duplication events that 
occurred in core eudicots, and Arabidopsis possesses the 

three paralogs euAP1, AGL79 and euFUL (Shan et al. 
2007; Fig. 3A). Basal eudicots and basal angiosperms share 
an ancestral copy of these paralogs, FUL (Litt and Irish 
2003). Independent duplication events near the base of 
Ranunculales gave rise to two copies of FUL-like genes 
found in Papaveraceae s.l. (Table 1; Litt and Irish 2003; 
Shan et al. 2007). It is unclear whether any of these FUL-
like genes have a sepal-specifying function as initially cha-
racterized for AP1 in the core eudicot Arabidopsis. No FUL 
expression data are available in Papaveraceae s.l. (Table 1), 
and they are scarce in other basal eudicots. So far, A func-
tion has not been clearly documented outside the core eu-
dicots (Soltis et al. 2007a, 2007b). In Euptelea pleiosper-
mum Hook.f. & Thomson, a representative of the small but 
possibly first diverged family in Ranunculales (Kim et al. 
2004a; Worberg et al. 2007), the two FUL-like copies show 
different expression patterns. One paralog is expressed in 
leaves, as well as in floral and inflorescence meristems, 
whereas the other is restricted to leaves (Shan et al. 2007). 
This may indicate neo- or sub-functionalization following 
the duplication. Regarding the copy expressed in flowers, 
no data on the precise location of the transcription product 
exist. In addition, functional analysis will be necessary to 
establish any A class role of these FUL-like genes. 

Genes with B function are better documented in Papa-
veraceae s.l. AP3 and PI lineages result from a duplication 

Fig. 3 Summarized phylogenies of some genes of the ABCE model. (A) AP1/FUL lineage in angiosperms (based on Shan et al. 2007), (B) AP3/PI 
lineage in angiosperms (based on Kim et al. 2004b), (C) detail of AP3 lineage in Ranunculales (based on Rasmussen et al. 2009). Bold lines correspond to 
branches with significant statistical support (bootstrap values �70%, and/or posterior probabilities �95%). Stars indicate putative duplication events. D. 
Phenotypes obtained by VIGS of AP3 and PI paralogs in Papaver somniferum (based on Drea et al. 2007), and deduced organization of these paralogs in 
the ABCE model. 
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event preceding – or coincident with – the advent of angio-
sperms, and consequently both genes are found in Ranun-
culales families (Fig. 3B). No duplication at supraspecific 
level is detected in the Ranunculales for PI (Shan et al. 
2006), although one may have occurred within Ranuncula-
ceae (Kim et al. 2004b). For the AP3 lineage, three main 
duplication events have been inferred, leading to the AP3-I, 
AP3-II and AP3-III clades (Kramer et al. 2003a; Fig. 3C). 
Papaveraceae AP3 paralogs are distributed between the 
AP3-I and AP3-III clades, and no AP3-II representative has 
been reported to date (Fig. 3C). It is possible that AP3-II 
genes are present in the family, but additional sequencing 
effort is required to detect them. Alternately, the AP3-II 
copy was lost after the duplication, or the duplication giving 
rise to AP3-II genes did not involve the Papaveraceae. Pub-
lished gene trees would allow alternative topologies consis-
tent with this last hypothesis without breaking any signifi-
cantly supported branch (Fig. 3C). Expression data are 
consistent with the presumed function of AP3 and PI in 
petal and stamen specification (Table 1), which has been 
supported by VIGS data of AP3 and PI genes in Papaver 
somniferum (Drea et al. 2007). The results of these VIGS 
experiments show that PI paralogs of P. somniferum seem 
to have an additive and general B function (Fig. 3D). In 
contrast, AP3 paralogs are subfunctionalized, with AP3-1 
implicated in petal, and AP3-2 in stamen development (Fig. 
3D). 

The C function involves carpel organ identity specifica-
tion as well as floral meristem determinacy. Expression data 
on AGAMOUS homologs in Papaveraceae s.l. are consistent 
with the putative C function documented for this gene 
throughout angiosperms (Zahn et al. 2006; Table 1). An-
other candidate gene for this function is CRC, a member of 
the YABBY gene family which has been shown to regulate 
aspects of carpel development in angiosperms, from Oryza 
to Arabidopsis (Orashakova et al. 2009, and references 
therein). A single-copy CRC ortholog was found for Papa-
veraceae, in Eschscholzia californica (Orashakova et al. 
2009). VIGS experiments carried out to silence EcCRC re-
sulted in carpels with reduced differentiation of abaxial 
cells, and multiple gynoecia interlocked as “Russian matri-
oshka dolls” (Orashakova et al. 2009). These results suggest 
that the Papaveraceae CRC ortholog may participate in both 
aspects of the C function, namely the specification of 
gynoecium identity, and the termination of the floral meri-
stem. 

Establishing the genetic pathways of floral organ speci-
fication is of fundamental importance, for its intrinsic inter-
est but also because it represents a first essential step 
toward understanding floral traits superimposed onto the 
basic model. As mentioned before, homeotic changes have 
occurred in Macleaya and Sanguinaria (Fig. 2). Fixation of 
the number of floral parts, resulting in a “closed ground 
plan”, permits subsequent organ elaboration and synorgani-
zation to take place through fusion or close connection of 
parts (Endress 1990). It also favors changes in symmetry, 
which are more frequent in a closed ground plan (Damerval 
and Nadot 2007). Compared to Papaveraceae, Fumariaceae 
flowers show a fixed number of stamens that may be par-
tially fused. The Fumariaceae corolla is an example of syn-
organization through morphological differentiation of outer 
and inner petals. This creates a disymmetric flower, and 
evolution of monosymmetry represents a further step in 
flower synorganization. Congenital organ fusion outside the 
gynoecium is rare, but Eschscholzia and Eomecon are syn-
sepalous. 
 
Floral symmetry genes 
 
In core eudicots, evolution of monosymmetric flowers is 
linked to CYC-like TCP transcription factors (Preston and 
Hileman 2009). These genes are characterized by a TCP and 
an R domain with a conserved ECE motif in between 
(Howarth and Donoghue 2006). In both asterids (Luo et al. 
1996) and rosids (Feng et al. 2006), CYC-like genes act in 

the adaxial part of floral meristems to impose monosym-
metry. In Antirrhinum, this function is accomplished through 
interaction with MYB genes (Corley et al. 2005). In ad-
dition, CYC-like genes play a role in the repression of 
lateral branching in both grasses (Doebley et al. 1997) and 
Arabidopsis (Aguilar-Martínez et al. 2007). 

So far, Papaveraceae s.l. is the only group outside of 
core eudicots for which the implication of CYC-like genes 
in genetic mechanisms underlying floral symmetry has been 
addressed (for a review, see Jabbour et al. 2009). Indepen-
dent duplications of CYC-like genes have occurred in basal 
eudicots, and these may be associated with flower sym-
metry evolution in Fumariaceae (Kölsch and Gleissberg 
2006; Damerval et al. 2007; Table 1). Two CYC-like para-
logs are present in both Papaveraceae and in Fumariaceae, 
including taxa with actinomorphic, disymmetric and mono-
symmetric flowers. Therefore, symmetry changes in Papa-
veraceae s.l. cannot be directly linked to differences in the 
number of CYC-like genes. However, expression data sug-
gest a different temporal expression pattern during develop-
ment that is related to symmetry (Table 1). In non-actino-
morphic flowers the expression is limited to earlier stages 
(buds smaller than 2 mm), whereas transcripts are detected 
in later stages of actinomorphic flower buds (at least until 
the size 3-5 mm; Damerval et al. 2007). RT-PCR profiling 
also indicated some divergence in spatial expression pat-
terns (Kölsch and Gleissberg 2006; Damerval et al. 2007; 
Table 1). Expression in disymmetric and zygomophic 
flowers is preferentially located in outer petals (Damerval et 
al. 2007), consistent with a role in spur formation and a 
morphological differentiation between outer and inner 
petals. In the disymmetric Lamprocapnos spectabilis (L.) T. 
Fukuhara, one of the two paralogs, LsCyL1, showed higher 
expression levels in floral buds smaller than 2 mm (Damer-
val et al. 2007). An orthologous gene in the zygomorphic 
Capnoides sempervirens Borkh., CsCYL1, exhibited asym-
metric expression in the outer petals (Damerval et al. 2007). 
More comprehensive expression data, particularly from in 
situ hybridization, are needed to clarify to what extent 
organ- and stage-specific expression, as well as paralog-
specific expression, is associated with symmetry changes in 
this group. The ability to modulate expression levels will be 
crucial to elucidate the function of these genes as suggested 
by their expression patterns. In the absence of transforma-
tion protocols, VIGS may provide a tool to study the role of 
CYC-like genes in flower symmetry diversification in 
Fumariaceae. Silencing of CYC-like genes may be expected 
to convert monosymmetric and disymmetric flowers into 
the ancestral polysymmetric state. Until now, VIGS tech-
nology is only available for two species of Papaveraceae, 
and needs to be developed in Fumariaceae representatives. 
 
Floral meristem identity genes 
 
In core eudicots, the acquisition of floral identity by the 
shoot apical meristem (SAM) and the development of inflo-
rescence structures involve an antagonistic interaction 
between the flower meristem identity genes FLO/LFY and 
AP1/FUL on the one hand and CEN/TFL1 on the other 
(Benlloch et al. 2007). Mutants in one or both of the floral 
meristem identity genes FLO/LFY and AP1/FUL partly or 
fully convert flowers into vegetative shoots. This function is 
widely conserved, while the degree of redundancy varies 
between species. For example, mutation of the Antirrhinum 
FLO gene alone is sufficient for a full conversion of flowers 
into vegetative shoots, while redundant action of AP1/FUL 
(and the paralog CAL) in Arabidopsis lfy plants maintains 
some floral characteristics of these meristems. The floral 
meristem identity genes FLO/LFY and AP1/FUL positively 
regulate each other. In both Antirrhinum and Arabidopsis, 
expression of CEN and TFL1, respectively, represses 
FLO/LFY and AP1 activity and thus prevent flower forma-
tion from the terminal inflorescence meristem. Accordingly, 
this repression is released in cen and tfl1 mutants. 

Shifts between indeterminate and determinate inflores-
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cences, at least in core eudicots, are accompanied by chan-
ges in expression domains of TFL1 and its counterparts 
FLO/LFY and AP1/FUL. Absence of expression of TFL1 
homologs in terminal inflorescence meristems and presence 
of floral meristem identity genes in different species is 
correlated with determinate inflorescence architecture 
(Benlloch et al. 2007). We hypothesize that the transition 
from determinate (in Papaveraceae and basal Fumariaceae) 
to indeterminate architecture (in later branching Fumaria-
ceae) may be associated with altered expression patterns 
and interactions between FLO/LFY, FUL, and CEN/TFL1 
genes. FLO/LFY genes are extensively studied and found in 
all land plants (Maizel et al. 2005). Only one copy has been 
found in Eschscholzia californica (Busch and Gleissberg 
2003), even though this species, as well as the entire Papa-
veraceae family is known to be ancient tetraploid (Cui et al. 
2006). This result is consistent with the assumption of rapid 
gene loss following duplication events for FLO/LFY genes, 
which are generally found as single copies in angiosperms 
(Maizel et al. 2005). This trend is suggested to be due to the 
low ability of recently generated FLO/LFY duplicates to 
experience subfunctionalization and neofunctionalization 
(Maizel et al. 2005). Expression studies in Eschscholzia 
californica show FLO/LFY transcripts restricted to the 
flanks of the SAM and in developing dissected leaves 
(Busch and Gleissberg 2003; Becker et al. 2005). The pat-
tern of expression of EcFLO mRNA in the flanks of the 
shoot apex is maintained from late embryogenesis until 
flower initiation, indicating a continuous role of this gene in 
meristem function. As flower organs develop, EcFLO ex-
pression becomes more restricted to the petal and stamen 
primordia. Development of the gynoecium occurs without 
EcFLO expression, indicating that it may not be necessary 
for the activation of C-class genes. EcFLO is not upregu-
lated during reproductive transition, as in core eudicot 
species with indeterminate inflorescences such as Arabi-
dopsis and Antirrhinum. This may reflect its different, deter-
minate inflorescence architecture. It is possible that AP1/ 
FUL alone functions in the transition from vegetative to 
floral meristems in Eschscholzia and other Papaveraceae 
with determinate inflorescences. Functional analyses are 
needed to fully evaluate the roles of FLO/LFY and AP1/ 
FUL genes as flower meristem identity genes. In Brassica-
ceae, FLO/LFY have been linked to the evolution of 
“flowering rosettes” (Yoon and Baum 2004), and therefore 
could also contribute to inflorescence diversification in 
Papaveraceae (Fig. 2D). 

The major reproductive syndromes occurring in Papa-
veraceae s.l., determinate inflorescences with polysymmet-
ric or disymmetric flowers and indeterminate inflorescences 
with monosymmetric flowers, provide a unique opportunity 
to study correlated traits in conjunction. TFL1 may be im-
portant in the elucidation of that connection because it links 
inflorescence determinacy and flower symmetry. Mutations 
in TFL1 result in a switch from indeterminate to deter-
minate growth, but also affect the symmetry of the newly 
generated terminal flower. Such terminal flowers appear 
polysymmetric (a condition termed peloric) whereas the 
axillary flowers remain monosymmetric (Coen and Nugent 
1994). In contrast, all flowers in cyc mutants are polysym-
metric (Rudall and Bateman 2003, and references therein). 
Naturally occurring peloric flowers attracted interest from 
an evolutionary point of view, starting with Darwin (1868). 
The terminal peloric flower of tfl1 mutants suggests a deve-
lopmental constraint for generating monosymmetry, which 
could depend on a racemose condition. Coen and Nugent 
(1994) proposed that the terminal flower meristem, in con-
trast to axillary meristems, constitutes a symmetrical envi-
ronment that lacks the cues required to activate CYC in an 
asymmetrical manner. This would explain why monosym-
metric flowers are usually grouped in indeterminate in-
florescences. The rare occurrence of monosymmetric termi-
nal flowers, as in the monotypic Fumariaceae genus Cap-
noides, presents an additional incentive to study these 
reproductive syndromes in Fumariaceae. 

Tools available for investigation 
 
Two species in Papaveraceae, Papaver somniferum and 
Eschscholzia californica, can be considered emerging model 
systems, as functional studies based on VIGS have become 
available and have already been used to investigate deve-
lopmental genes (Drea et al. 2007; Orashakova et al. 2009). 
These studies have demonstrated that VIGS is a powerful 
technique to study the role of meristem-expressed genes in 
morphogenesis. Protocols for stable transformation via 
Agrobacterium inoculation have also been reported for the 
two species (Park and Facchini 2000; Chitty et al. 2003) 
that should enormously increase future options for func-
tional studies, by allowing overexpression, induced expres-
sion, and promoter-marker gene studies. However, since 
these protocols are based on time-consuming plant regene-
ration from callus culture, developmental genetic studies 
using Agrobacterium-mediated transformation have not yet 
surfaced. Papaver somniferum is a focus of pharmaceutical 
research that is reflected in a large number of publications 
(e.g. Zulak et al. 2007) and over 20,000 Expressed Se-
quence Tags available in GenBank. A moderate Expressed 
Sequence Tag collection of floral tissue is also available for 
Eschscholzia californica (Carlson et al. 2006), and develop-
mentally important families of microRNAs have been 
identified in this species (Barakat et al. 2007). While these 
are important beginnings, no such tools are yet available for 
the Fumariaceae. 
 
CONCLUDING REMARKS 
 
The overview of flower and inflorescence diversity in 
Papaveraceae s.l. demonstrates the great potential of this 
family to study the evolution of reproductive syndromes. To 
explore the multiple morphological transitions in this lin-
eage, it is necessary to broaden the taxonomic sampling, 
focusing on plants with distinct combination of characters 
for which their phylogenetic position is known. Such taxa 
need to be evaluated for their malleability for develop-
mental-genetic studies. Functional studies, such as virus-
induced gene silencing, are of particular importance in the 
elucidation of the changing role of developmental gene 
regulators in plant evolution. 
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