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ABSTRACT 
Copper (Cu) is an essential element for plant growth and development, but it can be toxic when available in excessive amounts. This 
study aimed to determine Cu sensitivity (0-500 μM) in stem height and radial growth in relation to photosynthetic performance and stress 
enzymes in young Populus x canescens trees. Biomass and leaf formation rate were unaffected by Cu variation in the range from 0.128 
μM (normal supply with the nutrient solution) to 5 μM. Higher Cu concentrations caused reductions in all growth parameters and severe 
leaf injury. The quantum yield of photosystem II was decreased at Cu concentrations above 5 μM, but recovered in darkness almost 
completely indicating high Cu tolerance of photosystem II despite foliar damage. The activities of stress enzymes such as guaiacol 
peroxidase, glutathione peroxidase and NADH oxidase showed no increase with growth reductions suggesting that H2O2 was not involved 
in stress symptoms. Cu deficiency stimulated root growth. Modulation of Cu supply in the optimum range affected the relation between 
elongation and radial growth indicating differences in the Cu demand of these processes. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
A serious environmental problem is the accumulation of 
heavy metals in plants as a result of pollution of soils and 
water. Anthropogenic factors such as industrial activities of 
men, mining, sewage disposal, traffic, smelting, electro-
plating and ore refining have resulted in increasing conta-
mination of soil, water and air (Schützendübel and Polle 
2002). Further, acid rain increases soil acidity. Lowering of 
soil pH mobilizes and drives leaching of nutrient cations 
and increases the availability of toxic heavy metals. Such 
changes in the soil chemical characteristics reduce soil 
fertility, which ultimately results in negative impact on 
growth and productivity of trees and crop plants (Singh and 
Agrawal 2008). 

Among the heavy metals that are accumulating in 
natural ecosystems, the focus of the present work is on Cu. 
Cu, is a redox-active transition metal and an essential 
micro-nutrient for plants (Marschner 1995). But, it can also 
be a toxic element when tissue concentrations exceed the 
optimal demand (Ducic and Polle 2005; Yruela 2005). Most 
of the functions of Cu as a plant nutrient are based on the 
participation of enzymatically-bound Cu in redox reactions. 
Many studies showed that at the biochemical level, Cu 
toxicity induced stress enzymes involved in the detoxifica-
tion of reactive oxygen species (Ducic and Polle 2005). 

A stimulating effect of Cu on plant growth was noted 
earlier when using Cu salts as fungicides (Sommer 1931) 
indicating that too low Cu supply can also have negative 
effects. However, continued application of such fungicides 
caused accumulation of Cu in agricultural soils threatening 
environmental quality and reducing soil fertility for crop 
growth (Strawn and Baker 2008). It is well known that vari-
ations of Cu outside the sufficient or optimum range influ-
ence plant performance. For example, in poplar (P. tricho-
carpa x P. deltoids hybrid) Cu deficiency affected root 
growth more than shoot growth (Van Den Driessche 2000). 
In P. x canescens, low concentrations of Cu did not cause 
chlorosis, or browning and did not suppress shoot develop-

ment (Bojarczuk 2004). However, high concentrations in-
hibited shoot and root development. 

It has been suggested to use poplars for phytoremedia-
tion (Lasat 2002; Gratão et al. 2005; Peuke and Rennenberg 
2005; Ghost and Singh 2005) as well as for monitoring of 
heavy metal pollution of air and soils (Sawidis et al. 1995; 
Madejon et al. 2004; Suleyman et al. 2005; Berlizov et al. 
2007). Woody species with high biomass production, deep 
root system, high growth rate, high capacity to grow in im-
poverished soils, and high capacity to allocate metals to the 
trunk, may be especially suitable in this respect (Almeida et 
al. 2007). This applies particularly to Populus species 
because of their fast growth rate (Taylor 2002; Tsakou et al. 
2003), extensive root system (Koprivova et al. 2002) and 
high biomass production (Laureysens et al. 2004). A recent 
study of Borghi et al. (2008) on two poplar species (P. x 
canadensis and P. alba) showed different responses to high 
Cu concentrations. The authors detected high Cu accumula-
tion in roots of P. x canadensis suggesting its suitability for 
phytostabilization, whereas P. alba accumulated Cu in 
leaves indicating Cu polluted soils. 

To date, little is known about the Cu requirements and 
sensitivity of trees. The main aim of this experiment was to 
determine the Cu sensitivity of height and stem growth in 
hybrid poplar (P. x canescens) and relate plant performance 
to photosynthesis and biochemical stress responses. 

 
MATERIALS AND METHODS 
 
Production of plants, growth conditions and Cu 
exposure 
 
Grey poplar P. x canescens, a hybrid of P. tremula x P. alba plants 
were produced by in vitro micro-propagation after the method of 
Leplé et al. (1992). Micro-cuttings were prepared in a rooting 
medium (modified after Murashige and Skoog 1962) under sterile 
conditions. Rooted plantlets were placed into hydroponic nutrient 
solution (modified Long Ashton medium (Hewitt and Smith 1975) 
in a culture room under controlled conditions (air temperature 22 ± 
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1°C, photoperiod 18 h with 184 ± 7 μmol quanta m-2 s-1 photosyn-
thetically active radiation, PAR and a relative air humidity of 60 ± 
5%) for three weeks. The nutrient solution was changed regularly 
once a week. Subsequently, the plants were transferred to a green-
house equipped with supplementary lighting of approximately 
180-200 μmol quanta m-2 s-1 PAR (16 h photoperiod, F58 W/125 
T8 fluorescent lamps, Havells Sylvania GmbH, Erlangen, Ger-
many). The temperature fluctuated between 21 and 25°C. 

Based on uniformity in shoot height (mean height 17.1 ± 2.6 
cm), 36 plants were selected. Six plants were placed in a box with 
20 l of nutrient solution. Each box was used for one of the fol-
lowing Cu treatments: 0, 0.128, 1, 5, 50, and 500 μM of Cu (sup-
plied as CuSO4·5H2O). The nutrient solutions were constantly 
aerated with sterile air and exchanged regularly once a week. The 
plants were exposed to the range of different Cu concentrations for 
two weeks. 
 
Chlorophyll fluorescence 
 
Chlorophyll fluorescence was determined by using a pulse modu-
lated chlorophyll fluorometer (MINI-PAM, Walz, Effeltrich, Ger-
many) on the upper surface of the first fully-expanded leaf at the 
top of each plant. The yield of chlorophyll fluorescence was deter-
mined in light (with approximately 180-200 μmol quanta m-2 s-1 

PAR) and in darkness (before the light started). 
The quantum yield of photosystem II (�) was calculated ac-

cording to Genty et al. (1989):  
 
�dark= (Fm-F0)/ Fm and �light= (F´m-F´0)/F´m 
 
where �dark = maximum quantum yield of photosystem II, �light = 
actual quantum yield of photosystem II, Fm = maximum fluores-
cence in darkness, F´m = maximum fluorescence in light, F´0 = 
basic fluorescence in light, and F0 = basic fluorescence in darkness. 
 
Growth and biomass 
 
To monitor growth, height of the plant shoot, stem diameter at the 
root neck and leaf numbers were determined regularly once a 
week. The growth rate during Cu exposure was calculated in the 
last week of Cu treatment. After 14 days of Cu exposure the plants 
were harvested. Each plant was separated into shoot and root. The 
shoot was divided into leaves and stem. The root was divided into 
fine and coarse roots. The fresh mass of each plant fraction was 
determined. Two to three fully expanded leaves from each plant 
were removed, frozen in liquid nitrogen and stored at –80�C for 
biochemical analysis. All residual plant materials were dried at 
70°C for seven days and used for dry mass determination. 
 
Biochemical analysis 
 
Total leaves of each plant were pooled at harvest and two to three 
leaves were used for the biochemical analysis. Frozen leaves (1 g) 
were ground in liquid nitrogen, extracted in buffer and gel-filtered 
as described previously (Schützendübel et al. 2001) and used to 
determine the activities of guaiacol peroxidase (EC 1.11.1.7) after 
Polle et al. (1990), NADPH oxidase (EC 1.6.99.3) after Polle et al. 
(1992) and glutathione peroxidase (EC 1.11.1.9) according to Dro-
tar et al. (1985). The total soluble protein content was determined 
with bicinchoninic acid method, using BSA (2 mg/ml) as the 
standard according to the instructions of the manufacturer (Uptima, 
Montflucon, France). For each replicate, 30 μl from the standard 
protein (0, 25, 50, 75, 100, and 200 μg/ml) or from the sample was 
mixed with the bicine choninic reagent in a 1.5 reaction tube (Ep-
pendorf, Sarstedt, Nümbrecht, Germany). The reaction of the mix-
ture was enhanced by incubating the tubes in a water bath at 60°C 
for 30 min. After incubation, the samples and standards were 
placed on ice for 1 to 2 min to cool down. The extinction was 
measured by a spectrophotometer (UV-DU® 640, Beckman Instru-
ments Inc., Fullerton, USA) at 25°C and the wavelength of 562 
nm. 
 
Statistical analysis 
 
Data were analysed with the statistical programme JMP 5.1 Start 

Statistics, 3rd edition (SAS Institute, Inc., Cary, North Carolina, 
U.S.A) using One-Way-ANOVA. Data are the mean of six rep-
licates per Cu treatment. The separation of the means was per-
formed by Tukey’s test. A probability level for P � 0.05 was con-
sidered to indicate significant differences. 
 
RESULTS 
 
Chlorophyll fluorescence 
 
To examine the effect of different Cu treatments on the 
photosynthetic performance of P. x canescens, the yield of 
chlorophyll fluorescence (�) was determined in light and 
darkness. Cu concentrations of 50 and 500 μM caused sig-
nificant reductions in the photosynthetic yield in light, 
which were initially almost fully reversible in darkness (Fig. 
1A, 1B). With progressing exposure time, older leaves were 
shed and younger leaves showed severe injury such as dry-
ing. After two weeks of Cu exposure, the reduction of the 
actual quantum yield of photosystem II was more than 50% 
with the highest Cu treatment. Still, the maximum reduction 
in photosynthetic yield in darkness was only 10% compared 
with controls (Fig. 1B). This shows that excessive Cu 
caused only moderate injury to photosystem II and mainly 
resulted in down-regulation of electron transport. 
 
Growth performance 
 
To analyse the performance of P. x canescens plants ex-
posed for two weeks to different Cu treatments, the growth 
was monitored by measuring shoot height, leaf numbers and 
stem diameter at the root neck regularly. 

The leaf formation rate was significantly reduced in 
plants that received the highest Cu concentrations of 50 and 
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Fig. 1 Effect of increasing Cu concentrations on the quantum yield of 
photosystem II (�) of Populus x canescens in light (A) and in darkness 
(B). The following Cu concentrations were applied: 0 (open square), 0.128 
(open circle, control), 1 (open triangle), 5 (closed triangle), 50 (closed 
square) and 500 μM Cu (closed circle). Data are means (n = 6 plants for 
each Cu treatment, ± SE). Stars indicate significant differences at P � 0.05 
from controls. 
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500 μM Cu, respectively, compared with control plants (Fig. 
2A). Plants supplied with 1 μM Cu in the nutrient solution 
showed maximum stem height growth (Fig. 2B), whereas 
moderate decreases in stem elongation were observed in 
plants supplied with less (0.128 μM Cu) or no Cu as well as 
in plants exposed to 5 μM Cu. Plants exposed to 50 or 500 
μM Cu showed no stem elongation any more (Fig. 2B). In 
contrast to stem elongation, maximum radial growth was 
found in presence of 0.128 μM Cu, which is the normal 
concentration of standard nutrient medium. Cu depletion for 
two weeks did not affect radial growth. Radial growth was 
more sensitive to higher Cu concentrations than elongation 
growth since reductions were already found at 1 μM Cu in 
the nutrient solution. 
 
Biomass 
 
After two weeks of exposure to different Cu treatments, the 
dry mass of P. x canescens was determined. Significant 
reductions in total plant dry mass were only found in plants 
treated with 50 or 500 μM Cu, whereas all other treatments 
had only marginal effects compared with the controls re-
ceiving 0.128 μM Cu in the nutrient solution (Table 1). No 
significant variations in the root/shoot ratio were detected in 
response to increasing Cu supply (Table 1). However, in the 

absence of Cu the root-to-shoot ratio increased, pointing to 
a relative stimulation in root formation (Table 1). 
 
Biochemical analysis 
 
To find out whether excess Cu stimulated the defence sys-
tem, total soluble protein content and the activities of per-
oxidases with glutathione or guaiacol as substrates and of 
NADH oxidase were determined in leaves. The total soluble 
protein content and the activities of glutathione POD 
showed no variation between the control plants and any of 
the other Cu treatments (Table 2). In contrast, the activities 
of NADH oxidase were significantly higher in the controls 
than in any of the other Cu treatments. Guaiacol POD acti-
vities decreased with increasing Cu concentration leading to 
significant effects in the presence of 50 μM Cu (Table 2). 
Leaves of plants exposed to 500 μM Cu showed severe 
injury and drying symptoms; they were not analysed. 
 
DISCUSSION 
 
In this study, Cu sensitivity of P. x canescens growth per-
formance was investigated in relation to photosynthesis and 
biochemical stress responses. The Cu concentrations ap-
plied here were in a range similar to those employed in 
other studies, where poplars were exposed up to 1000 μM 
Cu (Bojarczuk 2004; Borghi et al. 2007). Under field con-
ditions, soil Cu concentrations can also vary over a wide 
range (Ducic and Polle 2005). On contaminated sites up to 
990 mg Cu kg-1 have been found (Yoon et al. 2006). How-
ever, it is important to note that the plant availability of 
elements in nutrient solutions is usually much higher than in 
soil because of exchange processes between soil solution 
and soil particles. Experiments in hydroponics, therefore, 
provide conservative estimates of plant sensitivity to nut-
rient toxicity. 

In accordance with previous studies, grey poplar 
showed severe growth inhibition and injury when exposed 
to Cu concentrations above 50 μM (Bojarczuk 2004; Borghi 
et al. 2007). Other tree species such as Pinus pinea, Pinus 
pinaster, Fraxinus angustifolia and Prunus cerasifera were 
more sensitive to excess Cu than poplar because growth 
reduction occurred at concentrations from 5 to 16 μM (Ar-
duini et al. 1995, 1996; Lombardi and Sebastiani 2005). 
Similarly, Wojcik and Tukiendorf (2003) showed that 
hydroponically-grown Arabidopsis thaliana treated with 5 
to 100 μM Cu for two weeks exhibited a progressive de-
crease of root length and biomass with increasing Cu in the 
nutrient solution. Overall data from hydroponic experiments 
indicated that heavy metals affect root cell elongation and 
decrease mitotic activity with a consequent inhibition of 
root growth (Polle and Schützendübel 2003). Our study 
showed that excess Cu inhibited shoot and root biomass 
formation to a similar extent as the root-to-shoot ratio was 
unaffected. A relative increase in root biomass occurred, 
however, in response to Cu deficiency, possibly indicating 
an attempt of the plant to increase “soil” exploration for this 
limiting element. 

The photosynthetic apparatus of poplar is obviously 
relatively stable against injury imposed by Cu as we found 
mainly down-regulation of electron transport and only little 
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Fig. 2 Influence of copper on leaf formation (A), height growth (B) and 
stem diameter growth (C) of Populus x canescens. Cu treatments of 0, 
0.128, 1, 5, 50 and 500 μM Cu lasted for two weeks. Growth measure-
ments were performed on three occasions following the application of Cu 
treatments. Data are mean growth rate of six plants per treatment (n = 6, ± 
SE). Different letters indicate significant differences at P � 0.05. 

Table 1 Effects of different Cu treatments on dry mass and root/shoot ratio 
of Populus x canescens. Plants were analysed after 2 weeks of Cu 
exposure. Data are means (n = 6, ± SE). Different letters indicate signi-
ficant differences at P � 0.05. 
Cu treatment (μM) Total plant DW (g) Root-to-shoot ratio 
0 4.3 ± 0.9 abc 0.21 ± 0.02 b 
0.128 6.0 ± 0.4 c 0.14 ± 0.01 a 
1 5.1 ± 0.5 abc 0.14 ± 0.02 a 
5 5.3 ± 0.8 bc 0.15 ± 0.01 a 
50 2.7 ± 0.5 a 0.16 ± 0.01 a 
500 3.1 ± 0.3 ab 0.14 ± 0.01 a 
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injury of PS II. As PSII injury was low even in plants with 
severe leaf injury, it is concluded that fluorescence yield is 
an inadequate indicator for Cu stress. Growth of P. x canes-
cens is apparently more sensitive than photosynthesis. This 
suggestion is also supported by a recent study of Kovacs et 
al. (2005), who compared the effects of Cu and Cd on leaf 
development in poplar. They demonstrated that growth was 
more strongly reduced by Cu treatment, while Cd prefer-
ably inhibited photosynthesis. Strategies to improve heavy 
metal tolerance by transgenic modifications as in Koprivova 
et al. (2002) and Gyulai et al. (2005), therefore, must be 
specifically developed for different metal stresses. To im-
prove Cu tolerance they should be targeted at improving 
protection of other compartments than chloroplasts. 

In our study cell biochemistry, such as NADH oxidase 
activities and protein content were little affected by Cu 
stress. In contrast to several other species (Radotic et al. 
2000; Wang et al. 2004; Uzunova et al. 2004; Gao et al. 
2008), poplar leaves showed decreases in guaiacol peroxi-
dase activities when exposed to excess Cu. The inactivation 
of peroxidases seems to be typical for poplar since sup-
pression of peroxidases was also found in roots of mature 
trees of black poplar (Populus nigra) and cottonwood 
(Populus deltoides) in a heavy metal polluted environment 
(Stobrawa and Lorenc-Plucinska 2007). 

Among the parameters analysed, stem radial increment 
was the most Cu-sensitive growth process compared with 
shoot elongation or leaf formation. As our experiment lasted 
only for two weeks, this inhibition did not yet cause loss in 
stem biomass production. However, this may be expected 
under long term conditions. For example, exposure of Scots 
pine to Cu and Ni pollution resulted in retardation in tree 
diameter growth over 15 years after contamination of the 
field site (Fedorkov 2007). Our study demonstrates a remar-
kable sensitivity of radial growth in poplar, which occurred 
at concentrations as low as 1 μM Cu in the nutrient solution, 
whereas photosynthetic electron transport was only injured 
at 50 μM Cu. Future studies must elucidate why elongation 
growth is less Cu-sensitive than radial growth. Further 
analysis of the underlying reasons is required if poplars are 
to be introduced for phytoremediation because the most 
sensitive factor will determine the suitability of this species 
for soil clean up. 
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