
 
Received: 28 January, 2009. Accepted: 9 December, 2009. Invited Review 

Plant Stress ©2010 Global Science Books 

 
Iron Stress in Plants: Dealing with Deprivation and Overload 

 
Raul Antonio Sperotto1 • Felipe Klein Ricachenevsky1 • Ricardo José Stein1 • 

Vinicius de Abreu Waldow1 • Janette Palma Fett1,2* 
                                                                                                    

1 Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, P.O. Box 15005, 91501-970, Porto Alegre, RS, Brazil 
2 Departamento de Botânica, Universidade Federal do Rio Grande do Sul, P.O. Box 15005, 91501-970, Porto Alegre, RS, Brazil 

Corresponding author: * jpfett@cbiot.ufrgs.br 
                                                                                                    

ABSTRACT 
Iron (Fe) is an essential nutrient for plants and one of the most abundant elements in soils. However, it is nearly inaccessible to plants 
because of its poor solubility in aerobic conditions at neutral or basic pH, resulting in much lower concentrations than required for the 
optimal growth of plants. However, when Fe is taken up in excess of cellular needs, it becomes highly toxic, since both Fe2+ and Fe3+ can 
act as catalysts in the formation of hydroxyl radicals, which are potent oxidizing agents that may damage DNA, proteins and lipids. Plants 
must be able to sense and respond to Fe stress in terms of both Fe-deprivation and Fe-overload. Depending on the level of severity, plants 
are unable to deal with such stress and undergo dramatic changes in cellular metabolism with a sequential dismantling of cellular 
structures, resulting in growth inhibition and ultimately plant death. Therefore, plants must tightly regulate Fe levels within the cell to 
ensure that Fe is present at adequate levels. Here, we describe recent progress made in understanding how Fe is sensed by plants, and how 
plants are affected by and try to deal with non-optimal Fe concentrations. 
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INTRODUCTION 
 
Iron (Fe) is an essential micronutrient for almost all living 
organisms and represents one of the most versatile metals in 
biology. Its functions are mostly based on the reversible 
redox reaction of Fe2+ (ferrous) and Fe3+ (ferric) ions, its 
ability to form octahedral complexes with various ligands 
and to vary its redox potential in response to different 
ligand environments (Hell and Stephan 2003). Such proper-
ties allow Fe to participate as catalytic cofactor in multiple 
metabolic pathways. Fe is mainly required for photosyn-
thesis, respiration, sulphate assimilation, hormone synthesis, 
nitrogen �xation, as well as DNA synthesis and repair (Puig 
et al. 2007). The essential role of Fe is evidenced by the 

disorders that its deficiency promotes in plants, including 
severe chlorosis and reduction in both yield and nutritional 
value of crops (Briat et al. 1995; Marschner 2002; Curie 
and Briat 2003). But despite its absolute requirement, when 
present at elevated concentrations, Fe can react with oxygen 
and generate noxious reactive oxygen species that damage 
cells at the level of membranes, proteins and nucleic acids 
(Halliwell and Gutteridge 1984). Plants must therefore res-
pond to Fe stress in terms of both Fe deprivation and over-
load. Plants subjected to Fe deprivation/overload respond in 
different ways (Römheld and Marschner 1991; Abadia 
1992). Therefore, Fe homeostasis in the whole organism, as 
well as in individual cells, must be balanced to supply 
enough Fe for cell metabolism and to avoid excessive, toxic 
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levels (Curie and Briat 2003). To maintain adequate levels 
of Fe ions in tight homeostasis, plants have evolved com-
plex regulatory mechanisms to modulate Fe uptake, trans-
port and storage (Wintz et al. 2002). In this review, we 
focus on how plants sense and deal with Fe deprivation and 
overload and also the processes which lead to senescence in 
plants unable to deal with extreme Fe concentrations. The 
steps and mechanisms mostly discussed in this review are 
summarized in Figs. 1 and 2. 
 
IRON IN THE ENVIRONMENT AND IN PLANTS 
 
Environmental conditions leading to iron stress 
 
Iron availability is one of the major constraints for crop pro-
duction. Although Fe is the fourth most abundant element in 
soils, it is not readily available to plants. Fe2+ is relatively 
soluble but it is readily oxidized by atmospheric oxygen, 
while Fe3+ tends to form insoluble oxyhydroxide polymers 
(Hell and Stephan 2003). The concentration of free Fe3+ in 
aerobic soils of neutral pH (~10-17 M) is much lower than 
concentrations required for the optimal growth of plants 
(~10-9 to 10-4 M) (Guerinot and Yi 1994; Marschner 2002). 
Thus, Fe-deficiency is an issue for plants grown on calca-
reous soils (Fig. 1 - Soil), which represent approximately 
30% of soils worldwide (Mori 1999; Kerkeb and Connolly 
2006), causing agricultural problems. This limitation cannot 
easily be overcome by the use of Fe-containing fertilizers, 
because Fe availability is a problem of solubility and not of 
abundance (Guerinot 2001; Hell and Stephan 2003). Fe-
deficiency is usually recognized by chlorotic or yellowing 
of interveinal areas in new leaves and if severe, can lead to 
reduction in crop yields and sometimes complete crop fail-

ure (Guerinot and Yi 1994). In anaerobic and acid sulphate 
soils, high amounts of reduced iron (Fe2+) become available 
and soluble because of the reductive environment created 
by waterlogging (Ponnanperuma et al. 1955; Ponnanperuma 
1972), leading to the occurrence of Fe toxicity (Fig. 2 - 
Soil). Thus, Fe-overload occurs in flooded soils and hence 
affects primarily the production of lowland cultivated plants 
(Becker and Asch 2005). Fe toxicity is the most widely 
distributed nutritional disorder in lowland-rice production 
(Dobermann and Fairhurst 2000) and occurs when the rice 
roots take up a high concentration of Fe2+ from the soil and 
a toxic concentration of Fe accumulates in the leaves 
(Sahrawat 2004), where an elevated production of toxic 
oxygen radicals can damage cellular structural components 
and impair physiological processes (Becker and Asch 2005). 
 
How plants perceive the iron status 
 
One of the most intriguing issues on Fe homeostasis is how 
plants sense the Fe concentration within tissues. The most 
discussed question is if Fe status is perceived locally by 
roots or there is a long-range signal transported from shoots 
throughout the plant body (Fig. 1, red arrows). Romera et al. 
(1992) reported that soaking half of the root system in Fe-
deprived medium induced Fe-deficiency responses in the 
Fe-sufficient half of roots, indicating the existence of a 
long-distance signal in sunflower and cucumber. Results 
obtained with two non-allelic pea mutants, brz and dgl, 
which show constitutive Fe-deficiency responses in roots, 
but over-accumulate Fe in shoots, suggested that a “shoot 
factor” is involved in signaling the Fe status to roots (Gru-
sak et al. 1990; Kneen et al. 1990; Grusak and Pezeshgi 
1996). When mutant shoots were grafted into wild-type 

 
Fig. 1 Schematic representation of plant responses to Fe-deprivation. In well aerated alkaline soils, most Fe is precipitated and unavailable for plant 
uptake. Both shoot- and root-borne signals could induce transcription factors (FER, FIT, IRO, IDEF), Strategy I (AHA, FRO, IRT) and Strategy II (YSL) 
genes to improve Fe uptake in roots of plants with low Fe concentrations. When adequate Fe levels are not achieved, chlorophyll synthesis and several 
other physiological processes are impaired, leading to both shoot and root senescence. LHCs, light harvesting complexes; TSS, total soluble sugars. 
Pictures were obtained from Sperotto RA, Ricachenevsky FK, Fett JP (2007) Iron deficiency in rice shoots: identification of novel induced genes using 
RDA and possible relation to leaf senescence. Plant Cell Reports 26, 1399-1411, ©2007 and Sperotto RA, Boff T, Duarte GL, Fett JP (2008) Increased 
senescence-associated gene expression and lipid peroxidation induced by iron deficiency in rice roots. Plant Cell Reports 27, 183-195, ©2008 with kind 
permission from Springer Science + Business Media (license numbers 2123690403786 and 2123690080509, respectively). 
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roots and grew under Fe-sufficient conditions, plants still 
exhibited enhanced Fe3+ reductase activity in roots (Grusak 
and Pezeshgi 1996), a characteristic response to Fe-defici-
ency. This indicates that the shoot of brz and dgl mutants 
fail to correctly signal plant Fe-sufficiency. Grusak (1995) 
showed that interruption of phloem transport decreases the 
Fe3+ reductase activity in roots of pea, suggesting that the 
shoot factor is a phloem mobile molecule. 

Other works clearly indicate that a local signal is res-
ponsible for at least some responses of the root system 
under Fe-deprivation. Schikora and Schmidt (2001) using 
the pea mutants brz and dgl and the tomato mutant chloro-
nerva (Becker et al. 1998), showed that the formation of 
root epidermis transfer cells is Fe-regulated, independently 
of the constitutive Fe3+ reductase activity of these mutants. 
This demonstrates that even mutants with high Fe concen-
tration in shoots can sense the Fe status locally, inducing 
morphological changes in root epidermal cells only when 
submitted to Fe starvation (Schikora and Schmidt 2001). 
When describing an Fe3+ reductase gene from pea (FRO1), 
Waters et al. (2002) showed that both its mRNA levels and 
Fe3+ reductase activity are regulated by different signals in 
roots and shoots. In roots, brz and dgl mutants constitu-
tively expressed FRO1, under both Fe-deficiency and Fe-
sufficiency conditions. However, expression of FRO1 in 
shoots was Fe-responsive, with up-regulation of the mRNA 
level only under Fe-deficiency in mutants as well as in 

wild-type. A recent work reporting microarray data from 
Fe-deprived Arabidopsis roots suggests that Fe is sensed 
internally, as the stele is the root region with the more pro-
nounced general stress-responses (Dinneny et al. 2008). 

Vert et al. (2003) performed split-root experiments with 
Arabidopsis plants. Half of the roots were maintained under 
Fe-deficiency and the other half supplied with Fe. Intri-
guingly, mRNA expression of IRT1 (Eide et al. 1996) and 
FRO2 (Robinson et al. 1999), two Fe-deficiency up-regu-
lated genes, were even higher in Fe-resupplied roots than in 
Fe-deprived roots after three days. The authors suggested 
that, after the Fe-deprived status is sensed by the plant, a 
shoot-borne signal is probably up-regulating the genes in 
Fe-resupplied roots. Moreover, presence of Fe is necessary 
for induction of Fe-deficiency responses, as roots which 
were submitted to removal of the apoplastic Fe pool and 
then kept in Fe-depleted medium were unable to up-
regulate IRT1 and FRO2 mRNA expression. This indicates 
that both long-distance (shoots perceiving the Fe-deficiency 
status of the plants) and local signals (presence of Fe, 
although in low concentrations) are necessary to induce the 
expression of Fe-deficiency genes, explaining why the Fe-
resupplied roots up-regulated their IRT1 and FRO2 mRNA 
levels. In conclusion, plants probably have to integrate both 
signaling pathways to respond to Fe-deficiency (Vert et al. 
2003). 

Enomoto et al. (2007) reported that the long-distance 

 
Fig. 2 Schematic representation of plant responses to Fe-overload. In waterlogged soils, low pH and low oxygen availability lead to Fe reduction. 
Highly available ferrous iron can be precipitated in the root’s apoplast (avoidance mechanism) or enter root cells. Some plant genotypes are able to keep 
most of the Fe in the roots (low acropetal transport), while others translocate high Fe levels to shoots, where it leads to oxidative stress. Diverse plant 
species and genotypes within a species can take advantage of Fe compartmentalization or chelation, storage inside Ferritin and induction of anti-oxidant 
enzymes to deal with high leaf Fe concentrations. When such mechanisms are not efficient enough, several physiological processes lead to the typical Fe 
overload symptoms and to senescence, possibly regulated by a WRKY transcription factor in rice. ROS, reactive oxygen species; APX, ascorbate 
peroxidase. Pictures obtained by Ricardo J. Stein. 
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signal is probably a promotive and not a repressive one in 
tobacco (Nicotiana tabacum L.). When leaves of Fe-defici-
ent plants are excised, NtIRT1 and NtFRO1 are down-regu-
lated to Fe-sufficient levels, showing that the absence of the 
source of a promotive signal stops up-regulation of these 
genes. In agreement with the local signal hypothesis, this 
work also shows that hairy roots cultured without shoots are 
still capable of up-regulating NtIRT1 and NtFRO1 under 
Fe-deficiency conditions (Enomoto et al. 2007), indicating 
that both shoot and root signals are important for the induc-
tion of correct responses to the Fe status in plants. 

The major constraint about this shoot-to-root signaling 
model is that at least two sensors are necessary. To date, the 
Fe status-signaling molecules are still unknown. Li CJ et al. 
(2000) suggested that auxin could be a long-distance signal 
from the shoot Fe status to be sent to the roots, at least in 
cucumber. Auxin-resistant Arabidopsis mutants are still able 
to respond to Fe-deficiency, indicating that this hormone is 
not involved in Fe homeostasis (Schmidt et al. 2000). 
Recently, cytokinins were described as repressors of Fe-
deficiency responsive genes, but independently from the Fe 
nutritional status. In fact, cytokinins seem to down-regulate 
Fe-deficiency genes through its root growth-inhibitory 
effect, as well as other treatments (Séguéla et al. 2008). 

It has also been described that ethylene action is 
necessary for the up-regulation, under Fe-deficiency, of the 
AtFRO2, AtIRT1, and AtFRU genes in Arabidopsis (respec-
tively, Fe reductase, Fe transporter and Fe-deficiency trans-
cription factor); the LeIRT1, LeFRO1 and LeFER (AtFRU 
ortholog) genes in tomato (Lycopersicon esculentum); and 
the CsHA1, CsIRT1 and CsFRO1 genes in cucumber (Cucu-
mis sativus) (Lucena et al. 2006; Waters et al. 2007). The 
authors showed that the ethylene enhancement of Fe-defici-
ency gene expression is under the control of the Fe status, 
as plants under normal Fe concentrations are almost insen-
sitive to added ethylene precursors. A model was proposed, 
where ethylene production is up-regulated under Fe-defici-
ency, and Fe could inhibit the up-regulation of Fe uptake 
genes mediated by ethylene. Low levels of Fe re-circulating 
in the phloem sap from leaves to roots under Fe-deficiency 
would allow ethylene to promote up-regulation of FRU, 
IRT1, FRO and HA genes or their homologues (Lucena et al. 
2006; Waters et al. 2007). The phloem Fe concentration is 
suggested to be a signal for root perception of the Fe status 
of the plant. 

Krüger et al. (2002) described an Fe-binding protein 
localized in phloem exudates of Riccinus communis, named 
iron-transport protein (ITP1). Although the shoot-borne 
signal is thought to be phloem-transported, there is no evi-
dence that ITP1 participates in signaling processes. Nitric 
oxide (NO), a small gas molecule, was already described as 
involved in Fe-deprivation responses (Grazziano and Lamat-
tina 2007). In tomato plants, NO production increases when 
plants are submitted to low Fe conditions; NO scavenging 
prevents up-regulation of LeIRT1 and LeFRO1 at the 
mRNA level; and addition of NO enhances the Fe-depriva-
tion responses (Graziano and Lamattina 2007). Moreover, 
the fer mutant, which is defective in FER gene product (a 
bHLH transcription factor that induces the Fe-deprivation 
responses), is insensitive to NO (Brumbarova and Bauer 
2005). It is clear, therefore, that NO participates in the sig-
naling pathway responsible for sensing local Fe in roots. 
 
IRON DEPRIVATION STRESS 
 
Effects of iron deficiency on chloroplasts and 
photosynthesis 
 
Chloroplasts are the major Fe sink in plants, accumulating 
80% of total Fe from leaf tissues. Fe participates in several 
chloroplast reactions, including electron transport and 
chlorophyll synthesis. It has been shown that in maize (Zea 
mays) leaves, Fe-deficiency leads to reduced chlorophyll 
content, impairment of electron transport on photosystem II 
(PSII) and mainly on photosystem I (PSI), and lowered CO2 

fixation capacity in Fe-deprived plants when compared to 
Fe-sufficient plants (Sharma 2007). Similar effects were 
observed in spinach (Spinacia oleracea) leaves under Fe-
deficiency, showing photosynthesis inhibition, impairment 
of photochemical efficiency, increased heat dissipation as 
well as altered PSI and PSII distribution pattern in the thy-
lakoid membrane and degradation of PSI proteins to a 
larger extent than of PSII proteins (Timperio et al. 2007). 
Sperotto et al. (2007) demonstrated that Fe-deficiency re-
sults in decreased chlorophyll content in rice leaves (Oryza 
sativa L.). In sugar beet (Beta vulgaris), proteomic ap-
proaches were used to show that the thylakoid membrane 
composition is highly altered by Fe-deficiency, with lower 
levels of electron transport proteins and increased levels of 
carbon fixation proteins in leaves (Andaluz et al. 2006). A 
partial disconnection occurs between the internal PSII an-
tenna complex and the reaction center in sugar beet leaves 
under Fe-deficiency, leading to interruption of energy trans-
fer (Morales et al. 2001). Light absorption, PSII and Rubisco 
carboxylation ef�ciencies are also coordinately down-regu-
lated in response to Fe-de�ciency in sugar beet, optimizing 
the use of the remaining photosynthetic pigments, electron 
transport carriers and Rubisco (Larbi et al. 2006). 

The green algae Chlamydomonas reinhardtii has become 
the model species for the study of Fe-deficiency effects in 
chloroplasts. It has been demonstrated that, when C. rein-
hardtii is submitted to moderate Fe-deficiency, remodeling 
of the photosynthetic apparatus is induced (Moseley et al. 
2002). LHCI antennae proteins are uncoupled from PSI and 
degraded through a thylakoid membrane-associated prote-
ase, and novel LHCI proteins are synthesized in response to 
Fe-deficiency. This re-adaptation of the photosynthetic 
apparatus to Fe-deficiency renders C. reinhardtii more light-
competent under stress conditions. Indeed, the crd1 muta-
tion, which leads to constitutively uncoupled LHCI, increa-
ses growth of intense light-sensitive mutants. This remo-
deling could function to increase the light-energy dissipa-
tion capacity of the LHCI complex (Moseley et al. 2002). A 
keystone to PSI remodeling in C. reinhardtii cells submitted 
to Fe-deficiency is the N-terminal processing of the PSI 
protein known as Lhca3 (Naumann et al. 2005). It is also 
suggested that two proteins, namely Lhca4 and Lhca9, up-
regulated by Fe-deficiency, could be involved in dissipation 
of light energy (Naumann et al. 2005). 

The cyanobacteria Synechocystis has also been used in 
Fe-deficiency studies. In this model species, synthesis of 
the isiA protein is up-regulated under low Fe conditions. 
Eighteen subunits of the isiA protein are assembled in a ring 
shape, forming a super complex together with a PSI trimer 
(Kouril et al. 2005). The super complex is capable of light-
harvesting, thus increasing efficiency of the remaining PSI 
after Fe-deficiency stress. Moreover, empty isiA rings were 
shown to be strong light-energy dissipators, indicating that 
up-regulation of isiA under Fe-deficiency is important to 
optimize photosynthesis and protect from photoinhibition, 
dissipating excessive light energy (van der Weij-de Wit et al. 
2007). A dissipation activity that resembles isiA functions 
was already described for a PSII protein from Arabidopsis 
plants, named psbS (Li XP et al. 2000), but such photosyn-
thesis optimization and protection mechanisms in higher 
plants are largely unknown. 

Fe-deficiency induces PSI degradation, what results in 
higher Fe availability. In C. reinhardtii, it was demonstrated 
that the protein ferritin is used to buffer the Fe released by 
degradation of the photosynthetic complexes and plays a 
protective role under photo-oxidative stress conditions 
(Busch et al. 2008). Ferritins are ubiquitous, Fe-storage pro-
teins containing 24 subunits organized to form a cavity able 
to store up to 4,500 Fe atoms in a safe and bio-available 
form (Briat et al. 2006). In plants, ferritin is mainly loca-
lized in plastids and found also in mitochondria (Zancani et 
al. 2004). The results obtained in Chlamydomonas are in 
accordance with the function observed for ferritin in Arabi-
dopsis plants, where ferritin does not constitute the major 
Fe pool, but is essential to prevent oxidative damage (Ravet 
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et al. 2009). Therefore, it is clear that insights from photo-
synthesis models like C. reinhardtii and Synechocystis are 
valuable resources to help understand Fe-deficiency effects 
on chloroplasts of higher plants. 

Chloroplast-Fe-importing mechanisms are not com-
pletely understood as well. To date, two transporters have 
been linked to chloroplast Fe homeostasis (Duy et al. 2007). 
PIC1 is an Arabidopsis permease which is imported to the 
inner envelope of the chloroplast and is capable of com-
plementing yeast mutants defective in Fe transport. The 
pic1 mutant only grows heterotrophically and shows chloro-
sis, dwarfism and impaired chloroplast development, de-
monstrating that PIC1 is crucial to proper chloroplast func-
tion (Duy et al. 2007). The Multiple Antibiotic Resistance 1 
(MAR1) gene was isolated independently from Arabidopsis 
plants resistant to antibiotics similar to aminoglycosides 
that inhibit prokaryotic protein synthesis (Ausfatz et al. 
2009; Conte et al. 2009). Further results indicated that 
MAR1 localizes to the chloroplast and is fairly evenly 
expressed in most tissue types (Conte et al. 2009). Due to 
its sequence similarity to ferroportins - which are efflux Fe 
transporters firstly characterized in animals - and because 
MAR1 overexpression led to chlorosis, it was suggested that 
MAR1 could be involved in chloroplast Fe homeostasis, 
and serves as an opportunistic entrance for antibiotics to 
that organelle. In fact, the observed chlorosis could be 
reverted when plants were grown under 300 �M of Fe-
EDTA, and MAR1 mRNA levels decrease under Fe-defici-
ency, although they were not altered under Fe-excess (Conte 
et al. 2009). Since aminoglycosides mimic polyamines, and 
NA is a polyamine, MAR1 might transport either Fe or NA. 
Besides those transporters, an Fe3+ reductase from Arabi-
dopsis, AtFRO7, was the first FRO gene to be localized to 
chloroplasts (Jeong et al. 2008). Mutants defective in 
AtFRO7 have 75% decrease in chloroplastidic Fe3+ reduc-
tase activity and 33% reduction in the Fe content inside 
chloroplasts. These mutants also show severe chlorosis and 
die in alkaline soils unless treated with high levels of solu-
ble Fe (Jeong et al. 2008). 
 
Improving iron uptake 
 
In order to deal with limiting amounts of Fe, plants have 
evolved two strategies to obtain Fe from the soil. Strategy I 
is carried out by all vascular plants, except the Gramineae 
(Poaceae), which use strategy II (Marschner and Römheld 
1994). Strategy I plants improve Fe uptake by three pro-
cesses: secretion of protons via a plasmalemma P-type 
ATPase to acidify the rhizosphere and thus enhance the 
solubility of Fe3+; reduction of Fe3+ by an Fe(III)-chelate 
reductase to the more soluble Fe2+ form; plasmalemma 
transport of Fe2+ by Fe transporters (Kerkeb and Connolly 
2006). All three components of this strategy increase their 
activities during Fe-de�ciency (Hell and Stephan 2003). 
Proton-ATPases of the AHA (Arabidopsis H+-ATPase) 
family are involved in this process (Schmidt et al. 2003; 
Kim and Guerinot 2007; Waters et al. 2007; Santi et al. 
2009). The Arabidopsis mutant, ferric-chelate reductase 
defective 1 (frd1), has no inducible root Fe(III)-chelate 
reductase activity and develops severe chlorosis when Fe is 
limiting (Yi and Guerinot 1996). The FRO2 gene was shown 
to map to the same location as the frd1 mutation. Subse-
quently, transformation of the frd1 mutant with the FRO2 
gene rescued the frd1 phenotype and proved that FRO2 
encodes the root ferric chelate reductase (Robinson et al. 
1999). The pea FRO1 gene was identified and expression of 
PsFRO1 in yeast showed that the enzyme function is to 
reduce Fe3+ to Fe2+ (Waters et al. 2002). PsFRO1 is ex-
pressed in many locations throughout the plant, suggesting 
that PsFRO1 takes part in Fe uptake from the soil and in Fe 
distribution within the plant (Waters et al. 2002). Fe2+ is 
transported into the root by IRT1, a member of the ZIP 
(ZRT, IRT-like proteins) metal transporter family. The Ara-
bidopsis IRT1 gene was identi�ed by functional comple-
mentation of a yeast Fe uptake mutant (Eide et al. 1996). 

IRT1 expression in roots is induced by Fe starvation (Eide 
et al. 1996; Connolly et al. 2002). The Arabidopsis irt1 
mutant exhibits chlorosis, severely impaired growth and 
dies before setting seed unless supplied with high levels of 
soluble Fe. IRT1 is expressed in the epidermal cells of Fe-
de�cient roots and localizes to the plasma membrane. Taken 
together, these data suggest that IRT1 is the major Arabi-
dopsis transporter for Fe uptake from soil (Vert et al. 2002; 
Kim and Guerinot 2007). 

Strategy I plants developed additional physiological 
responses to Fe-deficiency, which can aid Fe uptake from 
the soil by increasing Fe3+ solubility. These responses in-
clude, depending on the species, excretion of phenolics and 
accumulation and/or excretion of flavin compounds (Susín 
et al. 1994) and organic acids (Abadía et al. 2002). Phenolic 
compounds are frequently reported to be the main compo-
nents of root exudates in response to Fe-deficiency (Jin et al. 
2007). 

In response to Fe-de�ciency, strategy II plants produce 
small compounds known as phytosiderophores (PS), which 
are secreted to the rhizosphere. Due to their high affinity for 
Fe, PS efficiently solubilize inorganic Fe3+ by chelation, 
producing Fe(III)-PS complexes that are then taken up by a 
speci�c transporter on the root plasmalemma (Römheld and 
Marschner 1986). Both processes (release of PS and Fe(III)-
PS transport) are increased in response to Fe-de�ciency via 
up-regulation of the underlying genes (Hell and Stephan 
2003). This chelation strategy is more efficient than the re-
duction strategy used by the other plants and thus allows 
grasses to survive in more drastic Fe-de�ciency conditions 
(Curie and Briat 2003). In grasses, PS biosynthesis and sec-
retion, as well as Fe(III)-PS uptake are induced by Fe star-
vation. Different graminaceous species produce different 
types and quantities of PS. The amount of PS released into 
the soil correlates with the plant’s ability to tolerate Fe star-
vation (Kerkeb and Connolly 2006). Plant PS belong to the 
mugineic acid (MA) family of chelators, which was �rst 
described in oats and rice by Takagi (1976). Since then, the 
biochemical pathway for PS synthesis has been elucidated 
and many of the essential genes have been cloned (Negishi 
et al. 2002). An Fe-PS transporter was cloned from maize 
(Curie et al. 2001) and named yellow stripe1 (YS1) after 
the phenotype of a maize mutant de�cient in PS uptake. 
Both the ef�ux of PS and the steady-state level of YS1 
mRNA are strongly increased by Fe-de�ciency in grasses 
(Mori 1999; Curie et al. 2001). Electrophysiological analy-
sis in Xenopus laevis oocytes demonstrated that YS1 en-
codes a proton-coupled transporter of PS-metal chelates 
(Schaaf et al. 2004). Following the identification of ZmYS1, 
a large number of YS1 orthologs were noted in several stra-
tegy II species such as barley and rice (Murata et al. 2006; 
Inoue et al. 2009; Lee et al. 2009). In strategy I plants, 
which cannot synthesize or utilize MAs but only nicotiana-
mine (NA - Curie et al. 2001), Yellow Stripe-Like genes 
seem to play a role in the internal transport of Fe2+ and Fe3+ 
(Ling et al. 1999). NA, a non-proteinogenic amino acid, is 
the most studied Fe-chelator. NA forms stable complexes 
with Fe and other divalent transition metal ions (Benes et al. 
1983; Anderegg and Ripperger 1989) and has a crucial role 
in the internal transport of Fe and other metals such as Cu 
and Zn (Stephan et al. 1994; Pich and Scholz 1996; Taka-
hashi et al. 2003). It has been proposed that the primary 
function of YSL proteins in strategy I plants is to transport 
metal-NA complexes (Curie et al. 2001; DiDonato Jr. et al. 
2004; Le Jean et al. 2005; Schaaf et al. 2005; Gendre et al. 
2006; Waters et al. 2006). In strategy II plants, YSL pro-
teins can also transport metal-NA complexes (Koike et al. 
2004; Schaaf et al. 2004), in addition to their role in the 
transport of Fe-PS. For a comprehensive review see Curie 
et al. (2009). YSL proteins belong to the oligopeptide trans-
porter (OPT) family, a relatively poorly characterized 
family of transporter proteins that function in metal homeo-
stasis and movement of Fe to developing seeds of Arabi-
dopsis (Stacey et al. 2008) and participate in NA-bound Fe 
transport in rice (Vasconcelos et al. 2008). 
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It was recently shown that rice, in addition to the ability 
to transport Fe(III)-PS complexes, is able to transport Fe2+ 

(Ishimaru et al. 2006). The rice genome encodes two pro-
teins related to the strategy I transporter IRT1 (OsIRT1 and 
OsIRT2) that are speci�cally up-regulated in roots of Fe-
de�cient plants. OsIRT1 and OsIRT2 gene expression are 
localized in the plasma membrane of root epidermal cells, 
and confer Fe uptake in yeast functional complementation 
assays (Bughio et al. 2002; Ishimaru et al. 2006). However, 
no increases of FRO-like gene expression or Fe(III)-chelate 
reductase activity were detected in Fe-de�cient rice roots. It 
is possible that rice can compensate for the lack of effective 
Fe(III)-chelate reductases because of its wetland culture. It 
was suggested that this may be an adaptation to the soil 
conditions in �ooded, and thus oxygen-poor, rice paddies, 
in which levels of soluble Fe2+ are expected to be high 
(Ishimaru et al. 2006; Walker and Connolly 2008). 
 
Other responses to Fe deprivation 
 
Besides strategy I and II mechanisms, other responses are 
commonly observed to improve Fe uptake when plants are 
submitted to Fe-deprivation. Two morphological alterations 
in roots in response to Fe-deficiency have been charac-
terized, both aiming to increase the surface-to-volume ratio 
and thus optimize root absorption capacity: initiation of 
extranumerary root hairs, and transfer cell-like ingrowth 
depositions. 

The most well described alteration is the induction of 
extranumerary root hair cells. Root hairs are long tubular 
extensions from rhizodermal trichoblasts controlled by 
multiple gene loci (Grierson and Schiefelbein 2002; Larkin 
et al. 2003). In fact, absorption in low concentrations of 
soil-immobile nutrients, such as Fe and phosphate (P), can 
induce the increase in root surface. In Arabidopsis roots, the 
extra root hairs are generated by such nutrient-deficiencies 
in root locations where there are no hair cells under normal 
conditions (Schmidt et al. 2000; Schmidt and Schikora 
2001). Evidence suggests that the mechanism controlling 
the induction of root hair differentiation under Fe-defici-
ency is differentially regulated from the induction under P-
deficiency, as defects in ethylene or auxin signaling cas-
cades decrease root hair induction by Fe-deficiency but not 
by P-deficiency (Schmidt and Schikora 2001). In another 
work with mutants defective in genes important for normal 
root hair differentiation, Müller and Schmidt (2004) showed 
that nutrient-deficiency-induced root hair formation is not a 
general mechanism, as Arabidopsis mutants showed dif-
ferent responses to Fe and P deprivation. Moreover, they 
showed that extranumerary root hairs of Fe-deprived plants 
are commonly bifurcated, while P-deprived are only longer 
in length, when compared to control (Müller and Schmidt 
2004). These results strongly suggest that the induction of 
extranumerary root hairs is a specific adaptation to Fe-
deficiency. Using Laser Microdissection (LM), Santi and 
Schmidt (2008) showed that, in cucumber roots, the dif-
ferentiation of rhizodermal cells into root hairs in response 
to Fe-deficiency is accompanied by induction of the H+ 
pump CsHA1, ferric chelate reductase CsFRO1 and Fe2+ 

transporter CsIRT1, all in a cell-specific manner. The root 
structural alteration of Fe-deprived plants is thus tightly 
related to the induction of Fe-acquisition genes, further sug-
gesting the specificity of the developmental alteration. 

Transfer cell-like formation is a response specifically 
found in some taxa, as Arabidopsis rhizodermal cells can 
only differentiate on hair or non-hair cells, while transfer 
cells are not observed (Schmidt et al. 2000). Transfer cells 
possess extensive labyrinth-like protuberances on the outer 
cell walls, enrichment for mitochondria and rough endo-
plasmic reticulum (Schikora and Schmidt 2002). This cell 
type is not normally observed in plants grown in control 
conditions. When tomato plants are subjected to Fe-depriva-
tion, about 17% of rhizodermal cells differentiate into trans-
fer cells (Schikora and Schmidt 2002). Addition of the ethy-
lene precursor 1-aminocyclopropane-1 carboxylic acid 

(ACC) to Fe-sufficient medium induced comparable num-
ber of transfer cells, indicating that ethylene may participate 
in the transfer cell formation process. On the other hand, 
this hormone is probably not necessary for differentiation, 
as ethylene antagonists did not show the opposite effect and 
even increased transfer cell number (Schikora and Schmidt 
2002). The same work also showed that Fe and P-deficient 
tomato plants induced comparable numbers of transfer cells, 
indicating that, differently from extranumerary root hair 
induction, a common pathway could be involved in transfer 
cell induction by these two treatments. 

Metabolic changes in response to Fe-deficiency were 
described in sugar beet (Beta vulgaris) plants, which trans-
port organic acids via xylem from roots to shoots, accumu-
lating these compounds in leaves (López-Millán et al. 2001). 
There is increased concentration of organic acids (mostly 
malate and citrate complexed with Fe) both in the apoplas-
tic compartment and in the xylem sap (López-Millán et al. 
2000a). It was shown that phosphoenolpyruvate carboxy-
lase (PEPC) activity is enhanced in roots of sugar beet 
plants submitted to Fe-deficiency, together with other meta-
bolic changes that indicate non-autotrophic, anaplerotic 
carbon fixation (López-Millán et al. 2000b). This carbon 
can be transported via xylem to leaves for maintenance of 
basic processes under Fe-deficiency-reduced photosynthetic 
rates (López-Millán et al. 2000b). Working with tomato 
plants, López-Millán et al. (2009) found similar but less 
pronounced metabolic changes in roots submitted to Fe-
deficiency, indicating that these responses are differentially 
modulated in diverse strategy I species, what could be rela-
ted to different levels of Fe efficiency. 
 
Molecular regulation of Fe-deprivation responses 
 
The primary response of plants to Fe-deficiency is con-
trolled through coordinated transcriptional activation. Stu-
dies with the fer tomato mutant have led to the identi�ca-
tion of the LeFER basic helix-loop-helix (bHLH) transcrip-
tion factor, which controls root Fe3+ reductase and LeIRT1 
induction upon Fe limitation. The fer mutant is unable to 
induce the Strategy I mechanism in response to Fe-depri-
vation, leading to chlorosis and lethality under low Fe con-
ditions (Ling et al. 2002), but can be completely rescued if 
supplied with high amounts of easily degradable Fe chelates 
(Ling et al. 2002) or by grafting on wild type rootstock 
(Brown et al. 1971), showing that FER is required in the 
roots and not in the shoots. FER transcripts are detected 
when plants are grown with either low (0.1 �M) or mode-
rate (10 �M) amounts of Fe. However, FER protein levels 
are controlled by Fe availability. In transgenic tomato over-
expressing FER, transcripts can be detected from the plants 
grown at 10 �M and 100 �M Fe (Ling et al. 2002; Brum-
barova and Bauer 2005). FER protein, however, is not 
detected in plants grown at 100 �M Fe, suggesting FER is 
down-regulated post-transcriptionally at elevated Fe levels 
(Brumbarova and Bauer 2005). The Arabidopsis LeFER 
orthologue is the Fe-de�ciency-induced transcription factor 
1 (FIT1), also known as bHLH29/FRU (Colangelo and 
Guerinot 2004; Jakoby et al. 2004; Yuan et al. 2005). Ex-
pression of FIT1 in the fer mutant allows the tomato mutant 
to induce the Fe-de�ciency responses and survive under Fe-
limiting conditions (Yuan et al. 2005). �t1 mutants are also 
chlorotic and die under low Fe conditions. FIT1 is ex-
pressed in the root epidermal cells and is induced under Fe-
de�cient conditions, suggesting that FIT1 regulates Fe 
uptake genes in response to Fe-de�ciency. In �t1 mutants, 
no increase in FRO2 mRNA levels and Fe(III)-chelate 
reductase activity is observed upon Fe depletion (Colangelo 
and Guerinot 2004; Jakoby et al. 2004). However, whereas 
IRT1 mRNA up-regulation is not signi�cantly affected in 
�t1 mutants, the IRT1 protein is undetectable (Colangelo 
and Guerinot 2004; Jakoby et al. 2004). These results indi-
cate that FRO2 is a direct target for transcriptional regula-
tion by FIT1, while a FIT1-dependent mechanism of post-
transcriptional regulation controls IRT1 protein levels 
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(Colangelo and Guerinot 2004; Jakoby et al. 2004; Kim and 
Guerinot 2007; Puig et al. 2007). Besides FRO2, FIT1 
regulates 71 out of the 179 genes whose expression is modi-
�ed in roots after three days of Fe-de�ciency, including 
many important genes induced upon Fe-deprivation (Colan-
gelo and Guerinot 2004). Overexpression of FIT1 does not 
alter FRO2 and IRT1 expression patterns in roots under Fe-
sufficient conditions, suggesting that FIT acts with a bin-
ding partner that is expressed only in response to Fe limita-
tion (Colangelo and Guerinot 2004; Puig et al. 2007). Ad-
ditional bHLH family members (bHLH38, bHLH39, 
bHLH100, and bHLH101) have been identified as key play-
ers in the Fe-de�ciency response (Yuan et al. 2005; Wang et 
al. 2007; Yuan et al. 2008). bHLH38 and bHLH39 phy-
sically interact with FIT and transgenic plants that consti-
tutively co-express either bHLH38 or bHLH39 with FIT 
show Fe-independent high-level expression of FRO2 and 
IRT1 and accumulate more Fe than wild type plants (Yuan 
et al. 2008; Walker and Connolly 2008). It is therefore sug-
gested that FIT interacts with either bHLH38 or bHLH39 to 
induce expression of the strategy I Fe uptake machinery 
(Walker and Connolly 2008). 

Ogo et al. (2006) identified a bHLH transcription factor 
gene named OsIRO2 which is up-regulated at the mRNA 
level by Fe-deficiency in both shoots and roots of rice. The 
expression of OsIRO2 was induced exclusively by Fe-defi-
ciency, and not by deficiencies of other metals. Although 
IRO2 is well conserved in grasses, it is not closely related to 
AtFIT or LeFER (Ogo et al. 2007; Walker and Connolly 
2008). It was shown that OsIRO2 binds preferentially to the 
sequence 5�-ACCACGTGGTTTT-3�, and sequences similar 
to the OsIRO2-binding sequence were found upstream of 
several genes that are involved in Fe acquisition, suggesting 
that IRO2 is involved in the regulation of gene expression 
under Fe-de�cient conditions (Ogo et al. 2006). Overex-
pression of IRO2 resulted in improved growth and in-
creased MAs secretion under Fe-deficient conditions, 
whereas repression of IRO2 resulted in reduced biomass 
and lower MAs secretion, besides hypersensitivity to Fe-
deficiency and lower accumulation of Fe, Zn, Cu and Mn 
(Ogo et al. 2007; Walker and Connolly 2008). Northern 
blots revealed that the expression of the genes involved in 
the Fe(III)-PS transport system was dependent on OsIRO2, 
but the expression of OsIRT1 was unchanged, indicating 
that OsIRO2 regulates the PS-mediated Fe uptake system of 
rice, but not the additional Fe2+ uptake mechanism (Ogo et 
al. 2007; Walker and Connolly 2008). 

Two cis-acting elements named IDE1 and IDE2 were 
identified by promoter deletion analysis in the barley IDS2 
gene, a dioxygenase involved in PS biosynthesis (Nakanishi 
et al. 2000; Kobayashi et al. 2003). IDE1 and IDE2 syner-
gistically induce Fe-deficiency-specific gene expression in 
tobacco roots (Kobayashi et al. 2003). The promoter re-
gions of many Fe-deficiency-inducible genes in barley, rice, 
and Arabidopsis possess IDE-like sequences (Kobayashi et 
al. 2003, 2005), suggesting that gene regulation mecha-
nisms involving IDEs not only are conserved among grami-
naceous (Strategy II) plants but are also functional in non-
graminaceous (Strategy I) plant species (Kobayashi et al. 
2007). Recently, transcription factors that interact with 
IDEs have been described (Kobayashi et al. 2007; Ogo et al. 
2008). The rice IDEF1 protein has the ability to bind to the 
IDE1 sequence. IDEF1 belongs to an uncharacterized branch 
of the plant-speci�c transcription factor family ABI3/VP1 
and exhibits the sequence recognition property of efficiently 
binding to the CATGC sequence within IDE1. IDEF1 trans-
cripts are constitutively present in rice roots and leaves. 
Transgenic tobacco plants expressing IDEF1 under the 
control of the constitutive cauli�ower mosaic virus 35S pro-
moter are able to transactivate IDE1-mediated expression 
only in Fe-de�cient roots, indicating that IDEF1 is speci�c-
ally involved in Fe-regulated gene expression. Overexpres-
sion of IDEF1 caused up-regulation of the OsIRT1 and 
OsIRO2 genes and enhances the plant ability to tolerate Fe-
de�ciency (Kobayashi et al. 2007). Recently, Kobayashi et 

al. (2009) showed that the rice transcription factor IDEF1 is 
essential for the early response to Fe-deficiency, and me-
diate transactivation of several Fe-related and late embryo-
genesis abundant genes, just after the onset of Fe starvation. 
The rice IDEF2 protein has the ability to bind to the IDE2 
sequence which belongs to an uncharacterized branch of the 
NAC transcription factor family and predominantly recog-
nizes CA(A/C)G(T/C)(T/C/A)(T/C/A) within IDE2 as the 
core-binding site. As well as IDEF1, expression of the 
IDEF2 transcript is not Fe-regulated, and IDEF2 mRNA is 
present in both shoots and roots, although expression is 
substantially higher in shoots (Ogo et al. 2008; Walker and 
Connolly 2008). Repression of the IDEF2 function caused 
aberrant Fe homeostasis in rice. Several genes up-regulated 
by Fe-deficiency, including the Fe(II)-NA transporter gene 
OsYSL2, were less induced by Fe-deficiency in rice plants 
in which the IDEF2 gene was silenced by RNAi, suggesting 
that IDEF2 is involved in the regulation of these genes. The 
transgenic lines exhibited lower than normal Fe levels in 
both shoots and roots of plants grown in Fe-de�cient condi-
tions, indicating an important role for IDEF2 in maintaining 
optimal Fe levels in tissues (Ogo et al. 2008; Walker and 
Connolly 2008). 

A summary list of Fe-deficiency responsive genes from 
plants is shown in Fig. 1 - Roots, including transcription 
factors (FER, FIT, IRO, IDEF), typical strategy I-induced 
genes (AHA, FRO, IRT) and the Fe-PS transporters (typical 
from the strategy II response) from the YSL gene family. 
 
IRON OVERLOAD STRESS 
 
Under normal conditions, the transient pool of Fe that could 
catalyze the formation of active oxygen is very small and 
plants face Fe-deficiency much more frequently. However, 
reactions involving free radicals such as lipid peroxidation 
are largely accentuated in tissues that have sustained 
physical injury or are in senescence, conditions that could 
lead to a decompartmentalization of Fe, and a consequent 
facilitation of activated oxygen formation (Wolff et al. 
1986). 

Wetland plants have evolved and are adapted to anaero-
bic and anoxic environments – conditions that are prerequi-
sites to the solubilization of large amounts of Fe from the 
soil. High amounts of soluble Fe (100-1,000 mg L-1) have 
been reported to occur in acid soils (Ponnanperuma 1972). 
Thereby, they are a good model to study the toxic effects of 
Fe in plants. As a wetland plant with high economic and 
scientific importance (Shimamoto and Kyozuka 2002), rice 
is known to display a wide variability in tolerance to Fe 
toxicity, depending on the cultivars (Fageria and Rabelo 
1987; Sahrawat et al. 1996) and agronomic management 
used (Benckiser et al. 1984; Winslow et al. 1989). Fe toxi-
city symptoms vary, but are generally characterized by a 
reddish-brown, purple bronzing, yellow or orange discolo-
ration of the lower leaves, with rice yield reductions from 
12 to 100%, depending on the Fe tolerance of the genotype, 
intensity of Fe toxicity stress and soil fertility status 
(Sahrawat 2004). 
 
Physiological impacts of Fe-overload stress 
 
When free and in excessive levels inside the cell, Fe can act 
as a pro-oxidant agent, reacting with H2O2, generating the 
hydroxyl radical through the Fenton Reaction (Becana et al. 
1998). The hydroxyl radical is extremely toxic to the cel-
lular metabolism, leading to the oxidation of macromole-
cules, including nucleic acids (Halliwell and Gutteridge 
1984). The regeneration of Fe2+ can occur through the 
Haber-Weiss reaction, with the reduction of Fe3+ by the 
superoxide anion, turning the Fe-mediated ROS (reactive 
oxygen species) generation into a cyclic process (Floyd 
1983). 

Due to its properties, Fe-excess is closely related to oxi-
dative stress. The excessive accumulation of Fe has been 
linked to oxidative damage to proteins, lipids and losses in 
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chlorophyll content (Gallego et al. 1996; Fang et al. 2001; 
Stein et al. 2009), causing photooxidative damage and 
oxidative stress. Excessive amounts of Fe have been repor-
ted to cause root cell death in rice seedlings, stimulating a 
rapid induction of a MBP (myelin basic protein) kinase, 
dependent of ROS (Tsai and Huang 2006). 

In leaves, most of the cellular Fe is located in chloro-
plasts (Terry and Low 1982). Thereby, any adverse event at 
the cellular level caused by Fe overload would occur pri-
marily in these organelles. Fe-excess has been reported to 
cause severe photooxidative damage, leading to decrease in 
photosynthetic activity, accompanied by photoinhibition, 
increased reduction of PSII and higher thylakoid energiza-
tion (Kampfenkel et al. 1995). The mechanism of Fe toxi-
city in leaf cells was precisely detailed by Suh et al. (2002), 
using de-rooted pea plants. Upon excessive Fe supply (0.9 
mM), positive correlations are seen between thylakoid Fe 
content, the rate of 1O2 photoproduction in thylakoids and 
the severity of photoinhibition damage to PSII (Suh et al. 
2002), indicating that the toxic effect of Fe-excess on the 
chloroplast metabolism is probably due to excessive pro-
duction of 1O2. 
 
Avoiding excessive iron accumulation 
 
The capacity to retain Fe at the root level is known as a 
tolerance mechanism used by some plants to avoid exces-
sive accumulation in shoots. This capacity is absent or res-
tricted in wet-intolerant plants (Wheeler et al. 1985). 

Bartlett et al. (1961) noted that oxidized Fe deposits 
were common in roots of hydrophytes and showed that the 
root oxidizing activity was specifically correlated with the 
ability to tolerate waterlogged soils. The Fe-oxide deposits 
are commonly observed on the roots of wetland and aquatic 
plants (Mendelssohn et al. 1995), and are generally named 
as “Fe plaque”. The Fe plaque is formed by the active 
oxidation of Fe at the root surface. Whether the formation 
of such barrier can cause nutrient imbalances, acting as a 
physical barrier to the active capture of other important 
nutrients, remains as a matter of debate, depending on plant 
genotype and soil characteristics (Sahrawat 2004). 

The ability to regulate Fe uptake and therefore to avoid 
its excessive accumulation could also be a mechanism for 
plants to deal with Fe-excess. Several genes involved in the 
uptake and internal transport of Fe have been described in 
plants (Briat et al. 2007). However, due to practical impli-
cations with the experimental procedures, only Fe transpor-
ters involved in the response to low Fe availability and with 
high Fe affinity have been identified. Indeed, the expression 
of known Fe transporters, such as the YSL and IRT/ZIP 
genes, are positively regulated only by Fe-deficiency, being 
negatively regulated by Fe-excess in rice (Stein et al., 
unpublished data). Other transporters, with lower affinity 
for the metal, could act as the main Fe transporters under 
Fe-excess, but their identification remains as an unachieved 
goal. The avoidance mechanism shown in Fig. 2 - Roots, 
represents both the “Fe plaque” formation and lower Fe up-
take rates, since both result in reduced intracellular root Fe 
concentrations. 

The ability to reduce Fe translocation from the root to 
the aerial parts, leading to accumulation of Fe in roots, 
could also be an important feature in the avoidance of ex-
cessive accumulation in leaves (Fig. 2 - Roots, Low Acro-
petal Transport Mechanism). One example is the rice 
EPAGRI 108 cultivar, studied in detail by our group. Iron 
concentration in shoots was 2.5 times lower in plants from 
this cultivar than in plants susceptible to Fe overload, from 
the BR-IRGA409 cultivar (Silveira et al. 2007). Becker and 
Asch (2005) pointed that Fe that has entered the xylem 
stream follows the transpiration-driven acropetal long-dis-
tance transport, and under Fe-excess (e.g. waterlogged con-
ditions) plants probably regulate its translocation. Organic 
acids (e.g. citrate) are the main Fe-chelators found in xylem 
exudates (Cataldo et al. 1988). A recently identified rice 
citrate transporter, OsFRDL1, is responsible for the translo-

cation of Fe and is localized at the root pericycle cells 
(Yokosho et al. 2008). 
 
Storing high iron levels 
 
The capacity to store Fe at high levels in plants may rely on 
the capacity to sequester and keep Fe at a safe and bio-
available form. Fe capable of ROS generation (especially 
the hydroxyl radical) is known to be bound to several small 
chelators (such as carboxylic acids, di- and tri-phosphate 
nucleotides - Floyd 1983; Baker and Gebicki 1986). Com-
plexation of Fe with non-Fenton reactive molecules plays 
an important role in the protection of the cell. One of these 
Fe-chelators is NA, which was proposed to have a central 
role in the regulation of Fe uptake and in its internal trans-
port (Stephan and Scholz 1993), based on the phenotype of 
the NA-auxotroph tomato mutant chloronerva (Scholz et al. 
1985). Although displaying interveinal chlorosis, a typical 
symptom of Fe-deficiency, chloronerva mutants over-ac-
cumulate Fe and other trace metals when grown at normal 
Fe levels (Pich and Scholz 1991), indicating the importance 
of NA in Fe transport. Despite the role of NA in the internal 
Fe trafficking, the Fe-NA complexes are relatively poor 
Fenton reagents (von Wirén et al. 1999) and NA concentra-
tion is increased in response to Fe-excess (Pich et al. 2001). 
Plants overexpressing nicotianamine synthase (NAS) genes 
accumulate higher NA levels in the plant body, which leads 
to increased accumulation of Fe, Zn and Mn in leaves, im-
proving the Fe use efficiency and leading to nickel toler-
ance (Douchkov et al. 2005). 

Storage and buffering of Fe at the sub-cellular level are 
crucial mechanisms that allow plants to cope with Fe-defi-
ciency and also with toxicity (Briat et al. 2007). The trans-
porter proteins encoded by genes from the YSL family are 
probably responsible for the transport of Fe-NA complexes 
across plant cell membranes (Curie et al. 2009). Along with 
YSL proteins, metal transporters localized in the tonoplast, 
like VIT1 (Kim et al. 2006), AtNRAMP3 and AtNRAMP4 
(Lanquar et al. 2005) could contribute to the Fe storage. 

Ferritins also appear as important players in the storage 
and protection of the cell to Fe-mediated oxidative damage. 
Fe overload was shown to be a strong ferritin mRNA induc-
tor in all plant systems tested (Lescure et al. 1991; Lob-
reaux et al. 1993; Petit et al. 2001a; Majerus et al. 2007). In 
Arabidopsis and maize, a cis-acting element named IDRS 
(iron-dependent regulatory sequence) is responsible for the 
transcriptional repression of AtFer1 and ZmFer1 under low 
Fe supply (Petit et al. 2001b). The exposure to high Fe 
concentration led to the degradation of the repressor via 
ubiquitination, leading to the accumulation of ferritin 
mRNA (Arnaud et al. 2006). 

Plant ferritins are also induced under oxidative stress, 
and are regulated by pro-oxidant treatments such as H2O2 
(Savino et al. 1997), NO donors and scavengers (Murgia et 
al. 2002; Murgia et al. 2007) and ozone applications (Mur-
gia et al. 2001). Plants overexpressing ferritin were shown 
to be more resistant to oxidative stress (Deák et al. 1999). 
The importance of ferritin in the protection of Fe-mediated 
oxidative stress was recently demonstrated by Ravet et al. 
(2009), who showed that ferritins are essential to protect 
cells from Fe-derived oxidative damage, and the lack of 
ferritin leads to reduced growth and strong defects in flower 
development, probably due to Fe-excess toxicity. 

To our knowledge, no specific Fe hyperaccumulator 
plants have been described. Metal hyperaccumulators are 
plants which, in their native habitats, accumulate high con-
centrations of arsenic, cadmium, cobalt, manganese, nickel, 
selenium or zinc, depending on the species (Reeves and 
Baker 2000). Interestingly, some of the genes known to be 
involved in Fe homeostasis are overexpressed in hyperac-
cumulators. These include NAS2 and 3, IRT1 and FRO2 in 
Arabidopsis halleri and Thlaspi caerulescens (Lombi et al. 
2002; Becher et al. 2004; Weber et al. 2004). Such obser-
vations argue that selective pressures have co-opted part of 
the Fe-response mechanisms in hyperaccumulators to play 
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an as yet unknown role in the metal hyperaccumulation pro-
cess (Salt 2006). 

Fe complexation with non-Fenton reactive molecules, 
compartmentalization in the vacuole and storage into fer-
ritin molecules are all represented by the Fe detoxification 
mechanism shown in Fig. 2 - Shoots, which also refers to 
the enzymatic activities described below. 
 
Trying to detoxify oxidative molecules 
 
To minimize the cell injury caused by ROS, plants have 
evolved a complex and interconnected antioxidative defense 
pathway, composed of both non-enzymatic and enzymatic 
mechanisms. The scavenging of superoxide radicals (O2

-) is 
mediated by superoxide dismutase (SOD) (Rabinowitch and 
Fridovich 1983), while H2O2 is scavenged by ascorbate 
peroxidase (APX) (Asada 1992) and catalase (CAT) (Wille-
kens et al. 1997). The antioxidant compounds ascorbate and 
glutathione are also directly (through ROS scavenging) or 
indirectly involved, taking part in the Ascorbate-Glutathi-
one cycle (Noctor and Foyer 1998). 

Plant exposure to high levels of Fe was shown to induce 
the activity of several enzymes involved in the detoxifica-
tion of ROS generated by the excessive amounts of Fe 
(Kampfenkel et al. 1995; Fang et al. 2000, 2001). Indeed, 
Wu et al. (1998) proposed that the antioxidative capacity of 
the leaf tissue plays an essential role in rice tolerance to Fe 
toxicity. 

There are several reports showing that Fe and oxygen 
metabolism are closely related. In Saccharomyces cerevi-
siae, a cytosolic catalase (CTT1) and an Fe3+ reductase are 
both regulated by the same transcription factor, MAC1 
(Jungmann et al. 1993). In plants, Fe-excess induced the ex-
pression of cytosolic APX genes, but treatment with gluta-
thione completely abolished the observed induction (Pekker 
et al. 2002; Fourcroy et al. 2004). The same regulatory path-
way appears to operate in the regulation of AtFer1, with the 
ferritin induction preceded by a NO burst, as an early event 
in the signal transduction pathway (Arnaud et al. 2006). 
 
DEALING WITH SENESCENCE: LIVE OR LET DIE 
 
Fe-deprivation-induced senescence 
 
Senescence and subsequent death are terminal phases in the 
development of all plant organs including leaves, stems, 
flowers and roots. Although senescence occurs in an age-
dependent manner, the initiation and progression of sense-
cence can be influenced by a variety of environmental con-
ditions such as shading, low temperature, high light, nutri-
ent deficiency, dehydration and pathogen infection. During 
senescence, plant cells undergo dramatic changes in cellular 
metabolism and a sequential degradation of cellular struc-
tures (Lim et al. 2003). The products of this degradation are 
translocated as nutrients to younger or reproductive organs. 
Senescence is therefore an active process, which is required 
for plant survival and adaptation to unfavorable environ-
mental conditions, rather than a passive process that simply 
leads to death (Yoshida 2003). 

Induction of senescence in plants submitted to Fe-defi-
ciency is not unexpected. It is well known that severe Fe-
deficiencies can lead to lower productivity and even to plant 
death, resulting in complete crop failure (Guerinot and Yi 
1994). However, there are only two reports (published by 
our research group) about the establishment of senescence 
after Fe-deficiency treatment (Sperotto et al. 2007, 2008). 
In rice shoots, we were able to detect 32 sequences acti-
vated by Fe-deficiency (Sperotto et al. 2007). Twenty eight 
of these genes had not been previously related to Fe-defi-
ciency responses in plants, and several classical senescence-
related sequences were identified. There was higher ac-
cumulation of total soluble sugars prior to the decrease of 
total chlorophyll content in Fe-deficient leaves, indicating 
that sugar accumulation may be one of the factors leading 
to premature leaf senescence induced by Fe-deficiency 

(Sperotto et al. 2007; Fig. 1 - Shoots, high TSS in leaves). 
Sugar content typically increases during Arabidopsis leaf 
senescence (Diaz et al. 2005) and Pourtau et al. (2006) 
showed increased accumulation of the hexoses glucose and 
fructose in senescent leaves, concluding that Arabidopsis 
leaf senescence is induced by sugars. In rice roots, we were 
able to detect 28 sequences activated by Fe-deficiency 
(Sperotto et al. 2008). None of them had been previously 
related to Fe-deficiency responses in plants, except in previ-
ous experiments performed by our group with Fe-defici-
ency-induced senescence in rice shoots. From the 28 se-
quences identified in our experiments, 11 sequences (39%) 
have already been related to senescence processes. Root 
growth reduction started after nine days of low Fe treatment, 
and was evident after 30 days. After the same period of time, 
there was increased root lipid peroxidation, a typical phy-
siological event during senescence. There were high levels 
of plasma membrane deterioration, an indicator of increased 
cell death, in rice roots submitted to 50 days of Fe-defici-
ency (Fig. 1 - Roots). Plants exposed to Fe-deficiency died 
70 days after stress imposition (Sperotto et al. 2008). 
 
Fe-overload-induced senescence 
 
Our group identified 24 genes that are up-regulated in res-
ponse to Fe-excess in rice. Several genes are associated 
with stress response and senescence. Among them, we cha-
racterized the expression pattern of OsWRKY80, a new 
senescence-associated gene (SAG) which is up-regulated at 
the later stages of senescence (Fig. 2 - Shoots). The onset of 
the senescence program in some plant organs may allow 
remobilization of nutrients (minerals, amino acids and car-
bohydrates) to less-affected tissues (Ricachenevsky et al. 
2010). Liu et al. (2007) also suggested that Fe is possibly a 
mediator of the pathogen attack defense signaling in wheat, 
being secreted to the apoplast and inducing an oxidative 
burst mediated by H2O2 after Blumeria graminis invasion. 
This indicates that Fe could be involved in the crosstalk 
between multiple stress pathways and senescence. 
 
PERSPECTIVES 
 
A significantly larger amount of work is available about Fe-
deficiency in plants than about Fe-overload. Nonetheless, a 
few key points about Fe-deficiency still need clarification. 
One important goal for future research would be the identi-
fication of the molecules responsible for the Fe status sig-
naling (both root- and shoot-borne signals). Although seve-
ral plant Fe homeostasis genes have been identified, they 
are mostly related to Fe-deficiency responses. It is not clear 
yet whether Fe uptake by roots under Fe-sufficiency or ex-
cess conditions is mediated by the same transporters res-
ponsible for Fe uptake under Fe-deficiency. Typical strategy 
I and strategy II genes are down regulated by Fe-excess, but 
small amounts of the corresponding proteins could be 
enough to carry Fe into root cells in those conditions. On 
the other hand, the existence of both high- and low-affinity 
Fe transporters in plants, as is the case in yeast (Eide et al. 
1996), was never discarded nor confirmed. If they exist, 
low-affinity Fe transporters could have important roles 
when plants face Fe-overload. The transcription factors 
which regulate the genes responsive to Fe-overload also 
need to be identified. One candidate for this function, 
OsWRKY80, is under investigation by our group. It would 
also be interesting to identify key genes responsible for the 
different mechanisms that can lead to tolerance to Fe-excess 
in plants. For that, microarray analyses comparing suscepti-
ble and tolerant genotypes could be of help. 

Understanding Fe stresses (deficiency and overload) in 
plants is an important step into assembling the complete 
puzzle of plant Fe homeostasis. This is an essential area of 
research, with several implications to plant biology, agricul-
ture and human nutrition. 
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