Hypolipidemic and Antioxidant Effects of Tetrapleura tetraptera Fruits, Including Seeds, in Hypercholesterolaemic Rats

Sarah O. Nwozo* • Bosede F. Orojobi

ABSTRACT

In hypercholesterolemia, lipid profile and biomarkers of oxidative stress are known to fluctuate. In this study, the hypolipidemic and antioxidant effects of the fruits (including seeds) of Tetrapleura tetraptera, a spice used in the treatment of various ailments in Nigeria was investigated in cholesterol-fed rats. The ability of Questran® (a standard hypolipidaemic drug), to attenuate hypercholesterolemia in the rats was also examined. Rats were given by oral gavage cholesterol (40 mg/0.3 ml), T. tetraptera (250 mg/kg) and Questran® (0.26 g/kg), five times a week for 8 consecutive weeks. The hypolipidemic effect was assessed by measuring total cholesterol, LDL-cholesterol, triglyceride and HDL-cholesterol while the extent of oxidative stress was assessed by measuring thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities. The integrity of liver was assessed by determining the aspartate and alanine aminotransferases (ALT and AST) activities. T. tetraptera significantly ameliorated (P < 0.05) the cholesterol-induced body weight gain and, there was an over 50% decrease in serum and post mitochondria fraction (PMF) total cholesterol compared to hypercholesterolaemic rats. LDL-cholesterol was significantly decreased in the extract-treated animals when compared to hypercholesterolaemic rats. In hypercholesterolaemic rats, a remarkably increase in lipid peroxidation (LPO) and a concomitant decrease in the enzymatic antioxidant status was observed; however, these indices were significantly attenuated in hypercholesterolaemic rats treated with the extract. These results indicate that the methanolic extract of T. tetraptera exerts a hypolipidemic effect, reduces body weight gain and increases the body’s antioxidant defense system in hypercholesterolaemic rats.

Keywords: antioxidant, hypercholesterolemia, LDL-c, lipid peroxidation

INTRODUCTION

Atherosclerosis is the root cause of the biggest killer of the 21st-century and it is the culprit behind coronary artery disease, cerebral vascular disease and peripheral vascular diseases (Malika et al. 2007). Elevated level of blood cholesterol increases the risk of heart disease and atherosclerosis (Lu et al. 2010; Rupp et al. 2010). Metabolic and epidemiological studies have shown that serum cholesterol is strongly governed by dietary intakes, especially of saturated fats (Rennison and van Wagoner 2009). Genetic factors are also involved in the interplay of regulation of cholesterol and triglyceride concentrations in the plasma (Phillips et al. 2010). Polyunsaturated fatty acids in the diet, lowers serum cholesterol by redistribution between plasma and tissue (Hu et al. 2001). An increase in cholesterol consumption may induce fatty liver, hepatic steatosis or hypertrophy of the liver (Schaefer et al. 1995). A high cholesterol diet is an important factor in the development of hyperlipidemia, atherosclerosis and ischemic heart disease (Hancock et al. 2008; Rennison and van Wagoner 2009). Abnormal deposition of cholesterol in the tissues is associated with several conditions including atherosclerosis, hypertension and diabetes mellitus.

A diet rich in cholesterol tends to induce free radical production, followed by hypercholesterolaemia, which is a major risk factor in atherosclerosis. A number of theories such as dyslipidemia, hypercoagulability, oxidative stress, endothelia dysfunction, inflammation, and infection by certain pathogens have been propounded from time to time to explain this complex phenomenon (Malika et al. 2007). Reactive oxygen species have been involved in the physiological and pathological events such as inflammation, aging, mutagenicity and carcinogenicity and in the last decade evidences abound to the role of free radical-mediated lipid peroxidation in the pathogenesis of atherosclerosis (Namiki 1990), neurodegenerative disorders (Bonannome et al. 1992), carcinogenesis and aging (Halliwell and Gutteridge 1992).

Much work has been done on the development of hypolipidemic agents and, some of such agents are Colestid®, Niacin, Cholestyramin (Questran®) and they function by lowering high blood cholesterol. Hypolipidemic agents have lots of side effects such as formation of gall stones, gall bladder diseases, diarrhea and even death (Farmer 2003). Consequently plant foods and phytochemicals are being promoted to consumers as cardioprotective, antiatherogenic diet. Plant sterols and stanols have proven effective in combination with lipid-lowering drugs (Ames et al. 1993).

Tetrapleura tetraptera (Taub) (Fabaceae) locally known as Aridan (South Western Nigeria), is widely distributed on the fringes of West Africa, especially the secondary forest of the Savannah woodland and rain forest. The tree is deciduous, about 20-25 m high and a girt of 1.5-3 m. The dark brown indehiscent pod (ribbed fruit) is about 15-25 cm long, approximately 5 cm across with 4 longitudinal wings like ridges nearly 3 cm broad, two of the wings are woody and the others are not with black seeds about 8 mm long. The plant has been used therapeutically in the management of schistosomiasis, asthma, epilepsy and hypertension (Oje-wole 2005). Aqueous extracts of the fruits have analgesic and antiinflammatory properties (Ojewole 2005). In eastern Nigeria, the fruits are used to prepare pepper soup from first day of delivery to prevent postpartum contraction (Odukoya 2005) and are used as multivitamins in Ghana. T. tetraptera has shown antibacterial, antifulcer, anticonvulsant (Noamesi...
et al. 2007; Okonkon et al. 2007), birth control (El-Ifizi et al. 1990) and specific hypotensive effects in anaesthetized rats. Leaves, leaf stalks, root bark and fruits of this herb have shown molluscidal activity (El Ifizi et al. 1990; Adewumi 1991a); these parts are not genotoxic (Adewumi 1991b; Ngassapa 1993).

To our knowledge, there are no reports on the effect of *T. tetraperta* fruits on hypercholesterolemia, hence this study was designed to investigate the effect of methanolic extract of the dried fruits on lipid profile and antioxidant status of rats rendered hypercholesterolaemic by feeding dietary cholesterol.

**MATERIALS AND METHODS**

**Chemicals**

Adrenaline, thiobarbituric acid (TBA), Ellman’s reagent (DTNB), glutathione (GSH) and bovine serum albumin (BSA) were purchased from Sigma Chemical (St Louis, MO, USA). Dietary cholesterol was procured from Aldrich Chemical (Milwaukee, WI, USA). Questran® (Bristol-Myers Squibb, Hounslow, UK) was obtained locally from a Chemist in Ibadan, Nigeria. The Randox diagnostic kit was used for cholesterol and high density lipoprotein cholesterol (HDL-c). Other reagents used were of purest quality available.

**Plant material**

Dried fruits of *T. tetraperta* were purchased locally from Bodija market, Ibadan, Nigeria and were identified at the Herbarium of Botany Department, University of Ibadan, Nigeria. Dried fruits, including seeds, were powdered using hammer mill and the powder was Soxhlet extracted using of methanol (1:2.5) for 72 h. Dark brown concentrated methanol fraction obtained was used at a concentration of 250 mg/kg body weight.

**Animals**

Thirty male albino rats (Wistar strain) weighing between 120 and 137 g were obtained from the Institute of Advanced Medical Research and Training (IMRAT), College of Medicine, University of Ibadan, Nigeria and were housed in the Animal house, Biochemistry Department, University of Ibadan, Ibadan at normal room temperature. The rats were acclimatized for two weeks on standard diet (palletized Guinea feed, purchased from Guinea Feed, Ibadan, Nigeria). The animals were allowed free access to food and water *ad libitum*. Rats were randomly placed into six groups of five rats each. Group A served as control and received only corn oil. Group B served as positive control and received only Questran®. Animals in group C (treatment group) had cholesterol and extract of *T. tetraperta*. Groups E, F and G received cholesterol only, [cholesterol + Questran®] and plant extract, respectively. Corn oil was used as vehicle for the administration of extract, Questran® and cholesterol. Dietary cholesterol and Questran® were given at doses of 40 mg/0.3 ml/animal and 0.26 g/kg body weight, respectively (Adaromoye et al. 2005), while methanol extract of *T. tetraperta* was administered at a dose of 250 mg/kg body weight. All drugs were administered by oral gavage, five times a week for eight consecutive weeks.

**Sample collection**

Animals were fasted for 24 h after the last dose of drugs and were sacrificed by cervical dislocation. Blood was obtained using a 2-ml syringe by cardiac puncture into clean bottles and allowed to clot. These were spun at 3000 rpm for 10 min; the supernatant (serum) was removed and stored at 4°C. The various organs (liver, kidney and heart) were quickly removed, weighed, washed with 1.15% KCl, homogenized in 56 mM Tris-HCl buffer (pH 7.4) containing 1.15% potassium chloride and the homogenate was centrifuged at 10,000 rpm for 15 min to obtain post mitochondrial fraction (PMF) at 4°C.

**Biochemical assays**

Microsomal catalase (CAT) (EC 1.11.1.6) activity was determined by using hydrogen peroxide, briefly, the reaction mixture contained phosphate buffer (0.01 M, pH 7.0), tissue homogenate and 2 M H₂O₂. The reaction was stopped by the addition of dichromate-acetic acid reagents (5% potassium dichromate and glacial acetic acid were mixed in a ratio of 1:3). Superoxide dismutase (SOD) (EC 1.15.1.1) activity was assayed using the method of Misra and Fridovich 1972. The tissue homogenate (0.5 ml) was mixed with ethanol and chloroform mixture, and then centrifuged. To the supernatant, 0.025 M sodium pyrophosphate buffer (pH 8.3), phenazine methosulphate, nitroblue tetrazolium and NADH were added and incubated at 30°C for 90 sec. The reaction was stopped by the addition of glacial acetic acid and mixed with n-butanol. The intensity of the chromogen in the n-butanol was measured at 560 nm.

Reduced glutathione (GSH) (EC 1.11.1.9) was determined at 412 nm using the method of Jollow et al. (1974), briefly, 10% tri-chloroacetic acid was added to the homogenate and centrifuged. 1.0 ml of the supernatant was treated with 0.5 ml Ellman’s reagent and 3.0 ml of 0.2 M phosphate buffer (pH 8.0). The absorbance of the colour formed was read at 412 nm. The extent of lipid peroxidation was determined by estimating the thiobarbituric acid reactive substances (TBARS) formed. Cholesterol was determined using Randox kit. The lipoproteins, measured using enzymatic colorimetric method; Very low density lipoprotein (VLDL) and Low density lipoprotein (LDL) were precipitated using phosphotungstic acid and magnesium chloride. After centrifugation at 3000 x g for 10 min at 25°C, the clear supernatant contained high density lipoprotein (HDL-c) which was assayed for cholesterol using Randox kit. LDL-cholesterol (LDL-c) was calculated using the formulae of Friedewald et al. (1972). The concentration of protein in the serum and PMF was determined using the method Lowry et al. (1951), with BSA as standard. Serum alanine aminotransferase (ALT) (EC 2.6.1.2) and aspartate aminotransferase (AST) (EC 2.6.1.1) were assayed using the Randox kit.

**Statistical analysis**

Results were expressed as the mean ± S.D. (n = 5). A one-way analysis of variance (ANOVA) was used for the data analysis with GraphPad Prism Version 4 as Statistical Package. Significant differences among groups were detected in the ANOVA using Dunnnett’s Multiple Range Test at P ≤ 0.05.

**RESULTS**

Results in Table 1 imply that administration of cholesterol for 8 consecutive weeks caused a significant increase in the body weight of hypercholesterolaemic animals compared with the control. Simultaneous administration of *T. tetraperta* (250 mg/kg) with dietary cholesterol significantly decreased the cholesterol-induced body weight gain. Feeding cholesterol to rats produced a significant decrease in serum and hepatic HDL-cholesterol levels (Table 2). However, co-treatment with *T. tetraperta* and Questran® significantly attenuated the cholesterol-induced decrease in serum and hepatic HDL-cholesterol levels. Dietary cholesterol intake also caused a significant decrease in hepatic PMF glutathione level (GSH) in rats. Administration of *T. tetraperta* and Questran® produced a significant increase in the GSH level compared with hypercholesterolaemic group (Table 2). Specifically, there were 68 and 54% increases in hepatic PMF reduced glutathione levels following treatment with *T. tetraperta* and Questran®, respectively compared with hypercholesterolaemic rats. In Table 3, lipid peroxidation (LPO) increased by 119% in hypercholesterolaemic rats. The elevated LPO levels were significantly ameliorated in rats treated with *T. tetraperta* and Questran®. Furthermore, hepatic catalase and superoxide dismutase activities were significantly reduced in hypercholesterolaemic rats and, these were ameliorated upon treatment with the spice and Questran® (Table 3).
Feeding cholesterol caused a significant increase in serum and hepatic PMF total cholesterol in the rats. However, hypercholesterolaemia induced by cholesterol intake was significantly ameliorated by co-treatment with *Tetrapleura tetraptera* and Questran® (*Fig. 1*). Likewise, dietary cholesterol caused a significant increase in hepatic PMF triglycerides in the rats (*Fig. 2*). The hepatic hypertriglyceridaemia induced was significantly ameliorated in rats co-treated with *T. tetraptera* and Questran®. Precisely, there was 69% decrease in hepatic PMF triglycerides following treatment with *T. tetraptera*. Also, significant reduction in serum triglyceride levels was observed in rats co-treated with *T. tetraptera* and Questran® (*Fig. 2*). In hypercholesterolaemic rats, significantly elevated serum and hepatic PMF LDL-

### Table 1 Effect of *Tetrapleura tetraptera* fruit (including seed) on body weight and the relative weight of visceral organs in cholesterol-fed rats.

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Initial weight (g)</th>
<th>Final weight (g)</th>
<th>Weight gained (g)</th>
<th>Kidney weight (g)</th>
<th>Liver weight (g)</th>
<th>Heart weight (g)</th>
<th>Relative weight (as % body weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>137.50 ± 7.39</td>
<td>218.50 ± 11.97</td>
<td>81.00 ± 7.96</td>
<td>0.97 ± 0.05</td>
<td>6.72 ± 0.78</td>
<td>0.78 ± 0.80</td>
<td>0.45 ± 0.14</td>
</tr>
<tr>
<td>Qu</td>
<td>120.00 ± 3.20</td>
<td>211.25 ± 9.58</td>
<td>91.25 ± 6.58</td>
<td>0.93 ± 0.07</td>
<td>7.14 ± 1.03</td>
<td>0.76 ± 0.14</td>
<td>0.44 ± 0.04</td>
</tr>
<tr>
<td>CH + Tt</td>
<td>142.50 ± 6.92</td>
<td>238.00 ± 10.43</td>
<td>122.5 ± 8.37**</td>
<td>0.90 ± 0.07</td>
<td>7.24 ± 0.80</td>
<td>0.79 ± 0.06</td>
<td>0.38 ± 0.02</td>
</tr>
<tr>
<td>CH + Qu</td>
<td>130.00 ± 6.39</td>
<td>238.00 ± 11.97</td>
<td>108.10 ± 6.25</td>
<td>0.88 ± 0.08</td>
<td>5.91 ± 0.58</td>
<td>0.76 ± 0.09</td>
<td>0.48 ± 0.05</td>
</tr>
<tr>
<td>Tt</td>
<td>126.25 ± 7.22</td>
<td>224.38 ± 9.80</td>
<td>98.13 ± 6.25</td>
<td>0.77 ± 0.05</td>
<td>7.18 ± 0.56</td>
<td>0.68 ± 0.16</td>
<td>0.34 ± 0.05</td>
</tr>
</tbody>
</table>

* Data are the means ± S.D. (n = 5).
* Significantly different from control (P < 0.05).
** Significantly different from CH group (P < 0.05).
Qu - Questran, CH - cholesterol, Tt - *Tetrapleura tetraptera*.

### Table 2 Effect of *Tetrapleura tetraptera* fruit (including seed) on protein, high density lipoprotein (HDL)-cholesterol and glutathione levels in cholesterol-fed rats.

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Protein concentration (mg/100 ml)</th>
<th>HDL-cholesterol (mg/dl)</th>
<th>GSH (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>Kidney</td>
<td>Liver</td>
<td>Serum</td>
</tr>
<tr>
<td>Control</td>
<td>2.11 ± 0.97</td>
<td>0.27 ± 0.06</td>
<td>1.05 ± 0.27</td>
</tr>
<tr>
<td>Qu</td>
<td>2.06 ± 0.41</td>
<td>0.30 ± 0.05</td>
<td>1.00 ± 0.41</td>
</tr>
<tr>
<td>CH + Tt</td>
<td>1.96 ± 0.87</td>
<td>0.28 ± 0.04</td>
<td>1.04 ± 0.49</td>
</tr>
<tr>
<td>CH</td>
<td>2.02 ± 0.68</td>
<td>0.27 ± 0.03</td>
<td>1.08 ± 0.21</td>
</tr>
<tr>
<td>CH + Qu</td>
<td>2.13 ± 0.75</td>
<td>0.24 ± 0.05</td>
<td>0.98 ± 0.66</td>
</tr>
<tr>
<td>Tt</td>
<td>2.01 ± 0.81</td>
<td>0.28 ± 0.06</td>
<td>1.02 ± 0.41</td>
</tr>
</tbody>
</table>

* Data are the means ± S.D. (n = 5).
* Significantly different from control (P < 0.05).
** Significantly different from CH group (P < 0.05).
Qu - Questran, CH - cholesterol, Tt - *Tetrapleura tetraptera*.

### Table 3 Effect of *Tetrapleura tetraptera* fruit (including seed) on the activities of superoxide dismutase, catalase, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lipid peroxidation in cholesterol-fed rats.

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Superoxide dismutase activity (U/ mg protein)</th>
<th>Catalase activity (µmol/mg protein)</th>
<th>AST (µU/ml)</th>
<th>ALT (µU/ml)</th>
<th>LPO (µmol/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>Kidney</td>
<td>Liver</td>
<td>Serum</td>
<td>Kidney</td>
<td>Liver</td>
</tr>
<tr>
<td>Control</td>
<td>0.79 ± 0.21</td>
<td>0.04 ± 0.02</td>
<td>4.33 ± 0.83</td>
<td>3.01 ± 0.81</td>
<td>34.05 ± 2.23</td>
</tr>
<tr>
<td>Qu</td>
<td>0.81 ± 0.19</td>
<td>0.03 ± 0.03</td>
<td>4.53 ± 0.79</td>
<td>2.63 ± 0.62</td>
<td>37.20 ± 3.18</td>
</tr>
<tr>
<td>CH + Tt</td>
<td>0.57 ± 0.13**</td>
<td>0.03 ± 0.02</td>
<td>2.65 ± 0.63**</td>
<td>3.07 ± 0.72</td>
<td>38.68 ± 3.54</td>
</tr>
<tr>
<td>CH</td>
<td>0.16 ± 0.05*</td>
<td>0.03 ± 0.03</td>
<td>1.04 ± 0.27*</td>
<td>2.53 ± 0.68</td>
<td>35.42 ± 4.27</td>
</tr>
<tr>
<td>CH + Qu</td>
<td>0.63 ± 0.14**</td>
<td>0.04 ± 0.02</td>
<td>3.01 ± 0.59**</td>
<td>2.84 ± 0.71</td>
<td>35.08 ± 3.66</td>
</tr>
<tr>
<td>Tt</td>
<td>0.74 ± 0.13</td>
<td>0.03 ± 0.03</td>
<td>3.97 ± 0.98</td>
<td>2.81 ± 0.76</td>
<td>32.65 ± 2.80</td>
</tr>
</tbody>
</table>

* Data are the means ± S.D. (n = 5).
* Significantly different from control (P < 0.05).
** Significantly different from CH group (P < 0.05).
Qu - Questran, CH - cholesterol, Tt - *Tetrapleura tetraptera*.

### Fig. 1 Effect of *Tetrapleura tetraptera* on serum, liver and kidney total cholesterol levels in cholesterol fed rats. Data are the means ± S.D. (n = 5).
* Significantly different from control (P < 0.05).
** Significantly different from CH group (P < 0.05).
Qu - Questran, CH - cholesterol, Tt - *Tetrapleura tetraptera*. 

### Fig. 2 Effect of *Tetrapleura tetraptera* and Questran® on hepatic PMF triglycerides induced by cholesterol intake. Precisely, there was 69% decrease in hepatic PMF triglycerides following treatment with *T. tetraptera*. Also, significant reduction in serum triglyceride levels was observed in rats co-treated with *T. tetraptera* and Questran® (Fig. 2).
cholesterol levels were observed. Treatment with *T. tetraptera* and Questran® decreased both serum and hepatic PMF LDL cholesterol levels in the rats (Fig. 3). Precisely, there were 71 and 79% decreases in serum LDL–cholesterol levels, and 61% and 37% decreases in hepatic PMF LDL cholesterol levels following treatment with *T. tetraptera* and Questran®, respectively.

**DISCUSSION**

Cholesterol is a component of cell membranes and, functions in the regulation of membrane fluidity and permeability (Ahmad-Raus 2001; Adaramoye et al. 2005). Cholesterol acts as a precursor for the synthesis of bile acid, steroid hormones and vitamin D, hence it is of critical importance that the cells of major tissues of the body be assured a continuous supply of cholesterol. However, hypercholesterolemia from either dietary indiscretion or genetic factors can cause cardiovascular disease (CVD), and precipitate oxidative stress.

Much attention has been drawn recently to the prospective biochemical function of naturally occurring antioxidants in biological systems. These can either be nutritive or non-nutritive (Balkan et al. 2004; Amarowicz et al. 2004; Song et al. 2006; Su et al. 2008). Natural extracts with proven antioxidant activity usually contain compounds with phenolic moiety, such as coumarin, flavonoids, tocopherols and catechins (Cook and Samman 1996; Choi et al. 2002; Havsteen 2002). In the present study *T. tetraptera* and Questran® significantly reduced cholesterol levels following treatment with *T. tetraptera* and Questran®, respectively. Likewise, administration of *T. tetraptera* and Questran® decreased serum triglyceride and LDL cholesterol levels (Ahmad-Raus et al. 2001). Similary, previous studies have established a linear correlation between dietary cholesterol intake and mortality of coronary heart disease (Li et al. 1994; Verschuren 1995). In this study, *T. tetraptera* was more effective than Questran® in reducing serum and hepatic total cholesterol levels when compared with untreated hypercholesterolaemic rats. The mechanism of this hypocholesterolaemic action may be due to inhibition of the absorption of dietary cholesterol in the intestine or its production by the liver (Ahmad-Raus et al. 2001) or stimulation of the biliary secretion of cholesterol and cholesterol excretion in the faeces (Fungwe 1993). Dietary cholesterol has been shown to reduce fatty acid oxidation, which in turn, increases the levels of hepatic and plasma triglyceride (Miettinen and Tarpillar 1977; Jody et al. 2009). There were 46 and 67% reduction in serum triglyceride levels following treatment with *T. tetraptera* and Questran®, respectively.
the liver to the blood vessels and seem to encourage the deposition of cholesterol in the arteries (Ruby et al. 2010). Plant sterols could cause decrease in total cholesterol, LDL cholesterol, triacylglycerol and as such would thereby increase high density lipoprotein (HDL) cholesterol levels (Lees et al. 1997; Jones et al. 2000). The higher the ratio of plant sterols to cholesterol in serum, the greater is the efficiency of cholesterol absorption (Noakes et al. 2002). β-sitosterol inhibits cholesterol production by the liver by specific liver enzymes (Ostlund 2002). The liver actually manufactures more cholesterol than is typically absorbed from food. However HMG CoA reductase, an important enzyme for the manufacture of cholesterol in the liver, is broken down rapidly in the presence of β-sitosterol resulting in the depletion of hepatic SOD and CAT must be due to the oxidative stress caused by dietary cholesterol. It is obvious that betaine treatment on triglyceride levels and oxidative stress in the liver of ethanol-treated guinea pigs. Experimental Toxicology and Pathology 55, 505-509


Chan PT, Fong WP, Chuang YL, Huang Y, Ho WK, Chen Z (1999) Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. Journal of Nutrition 199, 1094-1101


El-Izzi A, Bennie T, Thiedulant ML, Duval J (1990) Anti-gerontoproteic properties of Tetraptera tetraperta used as a natural contraceptive in Ivory Coast pharmacopoeia. Planta Medica 56, 357-359


Friedwald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentra-
tion of low-density lipoprotein cholesterol in plasma without use of the preparative ultra-centrifuge. Clinical Chemistry 18, 499-502


Lowry OH, Rosebrogh RJ, Furr AI, Randall RJ (1951) Protein measure-
ment with Folin-phenol reagent. Journal of Biological Chemistry 193, 625- 275

Lu Y, Feskens EJM, Dolle MET, Imholz S, Verschuren WMM, Mueller M, Boer JMA (2010) Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the dutchincam cohort study. American Journal of Clinical

REFERENCES


Adewumi CO (1991a) Plant molluscicides. Potential of Aidan, Tetragona tetraperta, for schistosomiasis control in Nigeria. Science of the Total Envi-
ronment 102, 21-33


ary Alternative Medicine 1, 1-6


Ojewole JA (2005) Analgesic and anticonvulsant properties of *Tetrapleura tetraptera* (Taub) [Fabaceae] fruit aqueous extract in mice. *Phytotherapy Research* 19, 1023-1029


